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Abstract  This paper presents a robust adaptive fuzzy control scheme for a class of uncertain nonlinear systems containing 
an unknown dead-zone. Dead-zone characteristics are quite commonly encountered in actuators, such as hydraulic and 
pneumatic valves, electric servomotors, and electronic circuits, etc. Therefore, by using a description of a dead-zone and by 
exploring the properties of this dead-zone model intuitively and mathematically, a robust adaptive fuzzy control method is 
presented without constructing the dead-zone inverse. The unknown nonlinear functions of the controlled system are 
approximated by the fuzzy logic system according to some adaptive laws. By means of Lyapunov stability theorem, the 
proposed robust adaptive fuzzy control scheme can guarantee the robust stability of the whole closed-loop system with an 
unknown dead-zone in the actuator and obtain good tracking performance as well. Finally, an example and simulation results 
are illustrated to demonstrate the validity of the proposed method. 
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1. Introduction 
Generally, many practical control systems have the 

structure of a dynamical system preceded by some 
nonsmooth nonlinearities in the actuator, such as dead-zone, 
backlash, saturation, etc[1-3]. Furthermore, these nonsmooth 
nonlinearities in such actuators give rise to undesirable 
inaccuracy or oscillations or even lead to instability, whose 
parameters are often unknown and may vary with time. Thus, 
the study of dead-zone is particularly important when the 
expected accuracy of the dynamical system is high, and the 
control problem of these nonsmooth nonlinearities has 
attracted considerable attention of a number of researchers 
over the past years[4-6].  

In the controller design of nonlinear systems, the feedback 
linearization methods have been widely studied and 
developed, and these methods can be utilized to transform a 
nonlinear dynamic system into a linear system by means of 
state feedback approach[7-8]. However, these methods can 
only be applied to nonlinear systems whose dynamics must 
be exactly known. If there exist uncertainties in those 
nonlinear terms, or the nonlinear terms are completely 
unknown, it is difficult to achieve the exact feedback 
linearization such that the nonlinear control systems have 
poor performance. In this study, we intend to apply adaptive  
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fuzzy modeling control schemes to deal with the unknown 
uncertain nonlinear systems preceded by an unknown 
dead-zone. 

Fuzzy logic control has recently found extensive 
applications for systems that are complex and ill-defined. 
Based on the universal approximation theorem, several 
stable adaptive fuzzy control schemes[9-14] have been 
developed to overcome the difficulty of extracting linguistic 
control rules from experts and to cope with the system 
parameter changes. An adaptive fuzzy system is a fuzzy 
logic system equipped with an adaptation algorithm to be 
able to update the fuzzy system parameters[15-16], and the 
fuzzy logic system is constructed from a collection of fuzzy 
IF-THEN rules. According to the definition in[15], the 
adaptive fuzzy approaches can be classified as: direct 
adaptive fuzzy control and indirect adaptive fuzzy control. 
The direct adaptive fuzzy control scheme uses fuzzy systems 
to describe the control action, and the parameters of the 
fuzzy system are adjusted directly to satisfy the required 
control objective[10, 12, 19]. In contrast with the direct 
adaptive fuzzy control scheme, an indirect adaptive fuzzy 
control scheme uses fuzzy systems to estimate the plant 
dynamics, and a suitable controller is developed for the 
estimated system[9-10, 13, 17-18]. In this study, due to the 
nonlinearity of dead zone and uncertainties, the indirect 
adaptive fuzzy control scheme is adopted to tackle the 
control problem of these nonlinear systems. 

Variable structure control (VSC) has been studied 
extensively and received many applications in recent years. 
It has been shown that variable structure control possesses 
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several advantages, such as fast response, robustness of 
stability, insensitivity to the matching parameters variations, 
and external disturbances[22-24]. Sliding mode control 
(SMC) methods can be considered as a synthesis procedure, 
which is often associated with the theory of variable 
structure control (VSC). Sliding mode control (SMC) design 
technique presents simple control laws which constrain the 
system motion on suitably chosen manifolds. However, 
when the dynamics of controlled system are in the switching 
hyperplane, a switching function must be used in the control 
law, which causes chattering of the control signals. 
Chattering is the main drawback of SMC, which can excite 
undesirable high-frequency dynamics. In order to reduce 
chattering phenomenon, a small boundary layer[25-26] is 
introduced around the sliding surface for better control 
accuracy. 

In this paper, in order to eliminate the effects arising from 
the dead-zone input nonlinearity, a robust adaptive fuzzy 
control scheme is proposed to overcome the stabilization 
problem of a class of uncertain nonlinear systems preceded 
by an unknown dead-zone. In the previous works[27-29], a 
common feature is the construction of an inverse dead-zone 
nonlinearity to minimize the effects of dead-zone. But, 
unlike the aforementioned method, by using a description of 
a dead-zone and exploring the properties of this dead-zone 
model intuitively and mathematically, a robust adaptive 
fuzzy control method is presented without constructing the 
dead-zone inverse. Finally, based on the Lyapunov stability 
theorem and the theory of variable structure control, the 
proposed robust adaptive fuzzy control scheme can 
guarantee the robust stability of the whole closed-loop 
system with an unknown dead-zone in the actuator and 
obtain good tracking performance as well. 

The remainder of this paper is organized as follows. In 
Section 2, the problem formulation is presented, and a 
detailed description of fuzzy logic systems and fuzzy basis 
functions is reviewed. Section 3 introduces robust adaptive 
fuzzy modeling control scheme to deal with the robust 
control problem for a class of uncertain nonlinear systems 
with an unknown dead-zone. Moreover, the robust stability 
condition will be derived by means of the Lyapunov 
approach. The simulation results are illustrated in Section 4 
to show the effectiveness of the proposed robust adaptive 
fuzzy controller. Finally, a conclusion is given in Section 5. 

2. Problem Formulation and 
Preliminaries 

2.1. Problem Statement 

Consider a class of the following uncertain nonlinear 
system with an unknown dead-zone of the form 
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where [ ] ( )1
1 2, , , , , ,

TT n n
nx x x x x x R− = = ∈ 

 x  is 

the system state vector which is assumed to be available for 
measurement, v R∈  and y R∈  are the input and output 

of the system, respectively, f  and g  are unknown 

nonlinear functions and f∆  is the unknown uncertainty.  
Without loss of generality, it is assumed that the sign of 

( )g x  is positive, and ( ) ( )f h∆ ≤x x , where ( )h x  is 

an unknown continuous function and can be estimated by an 
adaptive law in the latter.  ( )( ) :D v t R R→  is the 
nonlinear input function containing a dead-zone. 

To clarify the dead-zone nonlinear input function ( )D ⋅ , 
the dead-zone with input ( )v t  and output ( )w t , as 
shown in Fig. 1, is described by 
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where 0rb > , 0lb <  and 0rm > , 0lm >  are 
parameters and slopes of the dead-zone, respectively.  In 
order to investigate the key features of the dead-zone in the 
control problems, we have the following assumptions: 

 
Figure 1.  Dead-zone model 
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Assumption 1: The dead-zone output ( )w t  is not 
available. 

Assumption 2: The dead-zone slopes are same, i.e. 
r lm m m= = . 
Assumption 3: There exist known constants  minrb , 

 maxrb ,  minlb ,  maxlb , minm , maxm  such that the 

unknown dead-zone parameters rb , lb , and m  are 

bounded, i.e. [ ] min  max,r r rb b b∈ , [ ] min  max,l l lb b b∈ , 

and [ ]min max,m m m∈ . 

Based on the above assumptions, the expression (3) can be 
represented as 

( ) ( )( ) ( ) ( )( ) ,w t D v t mv t d v t= = +        (4) 

where ( )( )d v t  can be calculated from (3) and (4) as 

( )( )
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r r

l r
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mb v t b

− ≥


= − < <
− ≤

     (5) 

From Assumptions 2 and 3, one can conclude that 
( )( )d v t  is bounded, and satisfies 

( )( )d v t ρ≤ ,  

where ρ  is the upper-bound, which can be chosen as 
{ }max  max max  minmax ,r lm b m bρ = − ,        (6) 

where  minlb  is a negative value. 

Let my  be a given bounded reference signal and contain 
finite derivatives up to the nth order. Define the tracking 
error 

1 me y y= − .                       (7) 

and ( )1, , ,
Tny y y − =  

y  and ( )1, , ,
Tn

m m my y y − =  my 
 .   

The control objective  of this paper is to design a control 
law ( )v t  such that y  can follow a given desired 

reference signal my , under the constraint that all signals 
involved must be bounded. 

2.2. Description of Fuzzy Logic Systems 
Fig. 2 shows the basic configuration of the fuzzy logic 

system which consists of four main components: fuzzy rule 
base, fuzzy inference engine, fuzzifer and defuzzifer[15-16]. 
The fuzzy logic system performs a mapping from nU R⊂  
to V R⊂ . Let 1 nU U U= × ×  where iU R⊂ , 

1, 2, ,i n= 
. The fuzzifer maps a crisp point in U  into a 

fuzzy set in U . The fuzzy rule base consists of a collection 
of fuzzy IF-THEN rules: 

( )
1 1 2 2:  IF  is ,  and  is ,  and  and,   is 

         THEN  is ,

l l l l
n n

l

R x F x F x F

y G

  (8) 

in which [ ]1 2, , , T
nx x x U= ∈x   and y V R∈ ⊂  are 

the input and output of the fuzzy logic system, l
iF  and lG  

are fuzzy sets in iU  and V , respectively.  The fuzzy 

inference engine performs a mapping from fuzzy sets in U  
to fuzzy sets in V , based upon the fuzzy IF-THEN rules in 
the fuzzy rule base and the compositional rule of inference.  
The defuzzifier maps a fuzzy set in V  to a crisp point in 
V . 

The fuzzy systems with center-average defuzzifer, product 
inference and singleton fuzzifier are of the following form: 
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where lθ  is the point at which fuzzy membership function 

( )l
l

G
µ θ  achieves its maximum value, and we assume that 

( ) 1l
l

G
µ θ = .  Eq. (9) can be rewritten as 

( ) ( )Ty ξ=x θ x                    (10) 

where 1 2, , ,
Tlθ θ θ =  θ   is a parameter vector, and 

( ) ( ) ( )1 , ,
TMξ ξ ξ =  x x x  is a regressive vector with 

the regressor ( )lξ x , which is defined as fuzzy basis 
function 
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Figure 2.  The basic configuration of fuzzy logic system 

3. Controller Design and Stability 
Analysis 
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In this section, we synthesize the robust adaptive fuzzy 
controller to deal with the control problem of uncertain 
nonlinear systems with unknown dead zone.  

First, let 
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and 

[ ]1 2, , , T
ne e e=e  .           (13) 

From (4), (12), and (13), the tracking error dynamic 
equation can be expressed as 
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Let [ ]1 2, , , n
nk k k R= ∈K be chosen such that all roots 

of the polynomial ( ) 1
1

n n
nh s s k s k−= + + +  are in the 

open left-half plane. If the parameter m  and the functions 
f  and g  are known and the system is free of uncertainty, 

then control law of the certainty equivalent controller is 
obtained as 

( )
( ) ( ) ( )( ) 11 n

mv y f d v t
mg

−∗  = + − − Ke x
x

.     (15) 

Substituting (15) into (14), we have 
( ) ( )1

1 0n n
ne k e k e−+ + + = , 

where the main objective of control is ( )lim 0t e t→∞ = .  
However, in (15) some system parameter and functions such 
as m , f  ,and g  are unknown, and 0f∆ ≠ , the control 

input v∗  cannot be determined.  In this situation, the 
approximation by fuzzy logic system can be employed to 
deal with this tracking control problem. 

3.1. Robust Adaptive Fuzzy Control Design 

Consider the tracking error dynamic equation (14) as 
follow: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) n
my f f mg v t g d v t = + − −∆ − − e Ae b x x x x

. (16) 

Choose a matrix [ ]1 2, , , n
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and f  and g  are unknown nonlinear functions and f∆  
is the unknown uncertainty with the unknown upper bound 
function, i.e.,  

( ) ( )f h∆ ≤x x .                      (18) 

where ( ( ))h tx  is an unknown smooth positive function 
and can be estimated by the adaptive law in the later. 

First, let the nonlinear functions ( )f x , ( )g x , and 

( )h x  can be approximated, over a compact set Ωx , by the 
fuzzy logic systems as follows: 
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f ff ξ=x θ θ x ,                   (19) 

( ) ( )ˆ T
g gg ξ=x θ θ x ,                  (20) 

( ) ( )ˆ T
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where ( )ξ x  is the fuzzy basis vector, fθ , gθ , and hθ  
are the corresponding adjustable parameter vectors of each 
fuzzy logic system.  Let us define the optimal parameter 
vectors f

∗θ , g
∗θ , and h

∗θ  as follows: 
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where 
f

Ωθ , 
g

Ωθ , and 
h

Ωθ  denote the sets of suitable 

bounds on fθ , gθ , and hθ , respectively. Also the 
parameter estimation errors are defined as 

,       ,       f f f g g g h h h
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as the minimum approximation errors, which correspond to 
approximation errors obtained when optimal parameters are 
used. 

Secondly, we define 
ˆφ φ φ= − ,                         (27) 

where φ̂  is an estimate of φ , which is defined as 
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( ) 1: mφ −= . 

Based on the given plant and dead-zone models under the 
assumptions 1-3, consider the following controller: 

1 2 3v v v v= + + ,                   (28) 
where 
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where mink mρ∗ ≥ , ρ  is defined in (6), and P  is a 
positive definite matrix, which is a solution of the following 
Lyapunov equation 

T
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The main result of the robust adaptive fuzzy control 
scheme is summarized in the following theorem. 

Theorem 1. Consider the uncertain nonlinear system (1) 
with an unknown dead-zone (3) at the input subject to the 
assumptions 1-3. The robust adaptive fuzzy controller 
defined by (28)-(31) with adaptation laws given by (33)-(36) 
ensures that all the closed-loop signals are bounded, and the 
tracking errors converge to a neighborhood of zero. 

Proof.  Consider the Lyapunov function candidate 
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Differentiating the Lyapunov function V  with respect to 
time, we can obtain 

1 1 1 1 1 1
2 2

T T T T T
f f g g h h

f g h

V
m m m m

φφ
γ γ γ η

= + + + + +
⋅ ⋅

   

       

 e Pe e Pe θ θ θ θ θ θ .  (39) 

From (17) and by the fact f f=θ θ

  , g g=θ θ

  , 

h h=θ θ

  , and ˆφ φ= 

 , the above equation becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ){ } 1
2

Tn
m mV y f f mg v t g d v t

m
 + + − −∆ − −  

= A e b Ke x x x x Pe

 
( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

 

 

1 1 1 1 1 ˆ
2

1 1
2

1 1 1 1

n
mT T T T

m f f g g h h
f g h

nT T T
m m m

T T T
f f g g h h

f g h

y f f

m m mmg v t g d v t

y f f mg v t g d v t
m m

m m

η
φφ

γ γ γ

γ γ γ

  + − −∆  + + + + + +   ⋅ ⋅ − −   

  = + + + − −∆ − −    

+ + + +
⋅ ⋅

Ke x x
e P A e b θ θ θ θ θ θ

x x

e A P PA e e Pb Ke x x x x

θ θ θ θ θ θ



      

      ˆ.             
η
φφ

     (40) 

Applying (32) and (18) to (40) yields 
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According to (19)-(26), we obtain 
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e Qe e Pb θ x e Pb Ke x θ x θ



      

 ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )( ) ( ) ( )1 1 2

ˆ

1 1 1 1 1ˆ      

1 1 1 1 ˆ      .                 

g g

T T T T T T T
g h h

T T T
f f g g h h

f g h

v t g d v t

mv t m d v t h
m m m m m

m m η

ξ ω ξ ω

φφ
γ γ γ

 −  

+ ⋅ + ⋅ − ⋅ + ⋅ − ⋅ + ⋅

+ + + +
⋅ ⋅

x θ

e Pb θ x e Pb e Pb x θ e Pb θ x e Pb

θ θ θ θ θ θ

 



      

(42) 

Substituting (34)-(36) into (42), we have 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

1 2

 

1 2

 

1 1 1
2

1 1 1ˆ ˆ ˆˆ ˆ    

1 1 1  
2

1 1 1ˆ ˆ ˆˆ ˆ    

T T T

nT T
m f g g h

T T T

nT T
m f g g h

V
m m m

y f mg v t g d v t h
m m

m m m

d v t
y f g v t g h

m m m

ω ω

φφ
η

ω ω

φ
η

≤ − − ⋅ + ⋅

 + + − − − + ⋅ +  

= − − ⋅ + ⋅

 
+ + − − − + ⋅ + 

  

e Qe e Pb e Pb

e Pb Ke x θ x θ x θ e Pb x θ

e Qe e Pb e Pb

e Pb Ke x θ x θ x θ e Pb x θ









( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )( )

1 2

 

1 2

 

1 1 1  
2

1ˆ ˆ ˆˆ ˆ    

1 1 1  
2

ˆ ˆˆ ˆ    

T T T

nT T T
m f g g h

T T T

nT T T
m f g g

m m m

d v t
y f g v t g h

m

m m m

d v t
y f g v t g

m

φ

ω ω

φ φ φφ
η

ω ω

φ φ

= − − ⋅ + ⋅

 + ⋅ + − − − ⋅ + ⋅ ⋅ +  

≤ − − ⋅ + ⋅

 + ⋅ + − − + ⋅ + ⋅ ⋅  

e Qe e Pb e Pb

e Pb Ke x θ x θ e Pb x θ e Pb x θ

e Qe e Pb e Pb

e Pb Ke x θ x θ e Pb x θ e Pb







( ) 1 ˆ. hh φφ
η

+x θ 



       (43) 

Using the control law (28)-(31), the above equation can be rewritten as 
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( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( )

  
1 2

 
1 2

1 1 1 ˆ ˆˆ
2

1ˆˆ ˆˆ      

1 1 1 1ˆ ˆ  
2

n nT T T T
m f m f

T T
g g

nT T T T T
m f g

V y f y f
m m m

d v t
g k h

m

y f h
m m m

ω ω φ φ

φ φ φφ
η

ω ω φ φ
η

∗

 ≤ − − ⋅ + ⋅ + ⋅ + − − ⋅ + −  

 
 − ⋅ − + − ⋅ ⋅ +
 
 

≤ − − ⋅ + ⋅ − ⋅ ⋅ + − − ⋅ ⋅ +

e Qe e Pb e Pb e Pb Ke x θ Ke x θ

e Pb x θ e Pb x θ

e Qe e Pb e Pb e Pb Ke x θ e Pb x θ







  ˆ.φφ

         (44) 

 
 

By applying adaptation law (33), one has 

1 2
1 1 1

2

1  .          
2

T T T

T

V
m m m

m

ω ω≤ − − ⋅ + ⋅

≈ −

e Qe e Pb e Pb

e Qe



    (45) 

Therefore, it can be concluded that 0V ≤  from (45), and 
the closed-loop system is asymptotically stable based on 
Lyapunov synthesis approach.  This completes the proof. 

4. An Example and Simulation Results 
Consider the second-order nonlinear system 

( ) ( )
1

1

1 2

2 1

1

,

1 0.5 sin 3 ,
1

,          

x

x

x x

ex x t w t
e

y x

−

−

=

−
= − +

+

=



          (46) 

where the nonlinear functions ( ) ( ) ( )1 11 1x xf e e− −= − +x  

and ( ) 1g =x  are assumed to be unknown, and the 

( ) ( )10.5 sin 3f x t∆ = −x  is an unknown uncertain with 

unknown upper bound functions, i.e., ( ) ( )f h∆ ≤x x , and 

( )w t  is an output of a dead-zone. The control objective is to 
maintain the system output y  to follow the reference signal 

( )2.5sinmy t= . 

In the simulation, parameters of the dead-zone are 1m = , 
0.5rb = , 0.6lb = − . And their bounds are chosen as 

max 1.25m = , min 0.85m = ,  max 0.6rb = ,  min 0.1rb = , 

 max 0.1lb = − ,  min 0.7lb = − , and 2.5k∗ = .  In the 
implementation, six fuzzy sets are defined over interval[-3, 3] 
for both 1x  and 2x , with labels NB, NM, NS, PS, PM, and 
PB, and their membership functions are 

( ) ( )( )
1

1 exp 5 2NB i
i

x
x

µ =
+ +

,    

( ) ( )( )2exp 1.5NM i ix xµ = − + , 

( ) ( )( )2exp 0.5NS i ix xµ = − + ,    

( ) ( )( )2exp 0.5PS i ix xµ = − − , 

( ) ( )( )2exp 1.5PM i ix xµ = − − ,    

( ) ( )( )
1

1 exp 5 2PB i
i

x
x

µ =
+ −

,  1,  2.i =  

In this section, we apply the proposed robust adaptive 
fuzzy control approach in Section 3 to deal with the above 
second-order nonlinear system.  Let [ ]1,  2=K  (so that 

2
2 1p k p k+ +  is stable) and [ ]10,10diag=Q , then we 

have Lyapunov equation (32) and obtain 
15 5
5 5

 
=  
 

P .                     (47) 

Choose the initial values are chosen as ( ) [ ]0 2.5,3.5= −x , 

( )0f =θ 0 , ( )0g =θ 5 , ( )0hθ = 0 , and ( )ˆ 0 0.85φ = , 

and 1.5fγ = , 2.0gγ = , 1.5hγ = , and 1.0η =  ,and 
boundary layer 0.13ε = .  Simulation results are shown in 
Figs. 3-5. Fig. 3 shows the position tracking performance. 
Fig 4 shows the velocity tracking performance. The control 
signal is shown in Fig. 5.  Apparently, the proposed control 
scheme can achieve the objective of good tracking 
performance and robust stability simultaneously. 

 

Figure 3.  The output ( )1y x=  (solid line) and its desired value my  

(dashed line) 
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Figure 4.  The output ( )2y x=  (solid line) and its desired value my  

(dashed line) 

 
Figure 5.  The control input v  

5. Conclusions 
Dead-zone with unknown parameters in physical 

components may severely limit the performance of control, 
and its characteristics are quite commonly encountered in 
actuators in practical control systems. By using a description 
of a dead-zone and exploring the exploring the properties of 
this dead-zone model intuitively and mathematically, this 
paper presents the robust adaptive fuzzy control scheme 
without constructing the dead-zone inverse for a class of 
uncertain nonlinear systems containing an unknown 
dead-zone. Based on Lyapunov stability theorem, the 
proposed robust adaptive fuzzy control scheme can not only 
guarantee the robust stability of the whole closed-loop 
system with an unknown dead-zone in the actuator, but also 
obtain the good tracking performance. Finally, simulation 
results are illustrated to verify the effectiveness of the 

proposed method. 
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