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Abstract—This paper presents a novel method for identifying in 

real-time the sprung mass of a 2-DOF quarter-car suspension model.   

It does so by uniquely combining the base-excitation concept with 

polynomial chaos estimation.  This unique combination of the two 

methods provides two important benefits.  First, the base-excitation 

concept makes it possible to estimate the sprung mass without 

explicitly measuring or knowing the terrain profile prior to estimation.  

Second, the polynomial chaos estimation strategy makes it possible to 

perform such mass estimation using sprung and unsprung 

acceleration measurements without pseudo-integration filters that can 

be difficult to tune.  This paper derives the proposed method in detail 

and presents computer simulations to evaluate its convergence speed 

and accuracy.  The simulation results consistently converge to within 

10% of the true mass value typically within 120 seconds.  

I. INTRODUCTION 

HIS paper examines the problem of estimating the sprung 

mass of an off-road vehicle online in real time.  Such 

estimation can be valuable to online vehicle control systems such 

as powertrain controllers and active safety controllers.  These 

controllers often need accurate mass estimates to optimize gear 

shifting, brake actuation, etc.  This can be particularly critical for 

vehicles whose mass varies significantly between trips due to 

changes in cargo.  

 The main goal of this paper is to develop an online sprung 

mass estimator for vehicles that experience large changes in 

loading, with particular attention to off-road civilian and military 

trucks.  Off-road driving often imparts significant vertical 

vibrations on such vehicles: a fact that motivates this paper’s 

focus on using vertical vibrations to estimate vehicle sprung 

mass.  A number of other vertical vibration-based sprung mass 

estimation algorithms already exist in the literature [1-8].  A 

detailed survey of these algorithms and their advantages and 

limitations appears in a previous publication by the authors [1], 

and is omitted here for brevity.  The main contribution of this 

paper compared to these existing algorithms is the development 

of a novel method that combines the base excitation and 

polynomial chaos concepts [1,9] for off-road vehicle sprung 

mass estimation.  Both the base excitation and polynomial chaos 

concepts have been used in previous off-road vehicle mass 

estimation research [1,2], but this paper uniquely combines these 

concepts into a single novel estimation algorithm.  The remainder 

of this introduction briefly describes the base excitation and 

polynomial chaos estimation concepts, then summarizes the 

unique advantages of the proposed algorithm.   

The concept of base excitation is borrowed from the vibrations 

community (see [10]) and can be interpreted within the sprung 

mass estimation context as the explicit treatment of unsprung 

motions as a vehicle vibration excitation source.  Previous work 

by the authors used the base excitation concept in combination 

with recursive least squares for sprung mass estimation [1].  The 

resulting estimator only required sprung and unsprung 

acceleration measurements plus a priori knowledge of the 

suspension spring constant.  It integrated the acceleration signals 

with respect to time to determine the suspension velocity and 

displacement.  Then it filtered each of the signals with a high 

pass filter in order to remove the effect of integration drift.  Its 

main limitation was the algorithm’s sensitivity to the selection of 

the high pass filter parameters. 

 The polynomial chaos parameter estimation algorithm adopted 

in this paper was recently developed by Southward [9].  The 

strategy cleverly propagates the uncertainty due to unknown 

vehicle parameters through the suspension’s dynamic equations 

via polynomial chaos expansions and the Galerkin method.  Then 

it uses the “MIT rule” (a steepest descent method) to converge to 

parameter estimates that minimize the squared difference 

between the model-predicted output and the measured system 

output.  Shimp [2], leveraging the work of Southward, used the 

polynomial chaos estimation (PCE) method for sprung mass 

estimation and experimentally validated the method, proving its 

feasibility for real-time applications.  Shimp’s work relied on 

prior knowledge of the ground input, which was produced by a 

T
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shaker table.  Unfortunately in most applications, sufficient prior 

information about the ground input is not available.   

 This paper combines the base excitation concept with the 

polynomial chaos estimation (PCE) algorithm developed by 

Southward.  This unique combination provides two important 

benefits.  First, the base excitation concept makes it possible to 

estimate the sprung mass without measuring the terrain profile or 

knowing it a priori.  Second, the polynomial chaos method makes 

it possible to perform such estimation using sprung and unsprung 

acceleration measurements only, and eliminates the need for 

measuring suspension velocities and displacements or estimating 

them using pseudo-integrators.  This can be particularly 

attractive given the costs of suspension stroke and velocity 

sensors and the tuning involved in pseudo-integration.   

The remainder of the paper is organized as follows:  Section 2 

presents the proposed mass estimation algorithm;  Section 3 

presents the simulations used for testing this algorithm;  Section 

4 presents the results of these simulations; and Section 5 provides 

conclusions and recommendations. 

II. SOLUTION FORMULATION 

This section derives the proposed mass estimator by 

combining the base excitation concept [1,10] with the 

polynomial chaos estimation method proposed by Southward [9].  

Part A introduces the base excitation formulation.  Part B then 

expands the resulting base excitation model onto polynomial 

chaos bases.  Part C applies the Galerkin projection to this 

expansion, and Part D concludes by developing the proposed 

mass estimator using the MIT rule. 

A. Quarter-car Base-excitation Model 

Previous work by the authors [1] proposed using the following 

base-excitation suspension model for sprung mass estimation.  

Consider a free body diagram (see Figure 1) of the sprung mass 

from a standard quarter car suspension system model.  

Furthermore, suppose that the spring stiffness coefficient �� is a 

known constant and that the sprung mass �� and suspension 

damping coefficient �� are unknown.  Finally, suppose that the 

sprung mass acceleration ��� and unsprung mass acceleration ��� 

are measured, but the suspension velocity ��	� 
 �	�� and 

displacement ��� 
 ��� are not. 

 
Fig. 1.  Free body diagram of the sprung mass in a suspension system. 

From a force analysis of the free body diagram in Figure 1, we 

obtain the equation: ������ 
 ��� � ���� � ����	� 
 �	�� � ����� 
 ��� 
 ��� 

Defining ��
 ��� 
 ���, and moving the last ����term to the 

right-hand side, the equation becomes as follows: 

� ���� � ���	 � ��� 
 �
������� ����

The measured unsprung mass acceleration ��� is treated as the 

(exogenous) input to the system.  The output is the measured 

sprung mass acceleration ���.  Define � � � ��� , ��� 
 �, and ��� 
 �	 .  Then the base-excitation model in state-space form is 

the following: 

� ��	��	�� 
 � � �
��� 
���� ������ � � �
�� ������� 
 �
��� 
���� ������ � �������� ����

In this model formulation, there are two uncertain parameters 

which we desire to estimate simultaneously: � 
 � ���  and ��.  
Parts B-D will present a strategy for such estimation. 

B. Polynomial Chaos Expansions 

Both the parameters � and �� of the base-excitation model and 

their precise statistical distributions are, in practice, unknown.  

However, to implement the polynomial chaos estimation 

procedure outlined by Southward [9], this paper assumes that 

both of these parameters are uniformly distributed between 

known upper and lower bounds, i.e., ��  �  �� and ��!�  ��  ��!�.  

A set of basis functions is required in order to develop a 

polynomial chaos expansion of the unknown parameters and 

state equations of Equation (2).  Since by assumption the 

unknown parameters are drawn from the uniform distribution, 

Xiu and Karniadakis [11] showed that a convenient choice of 

polynomial basis functions is the set of Legendre polynomials 

over the interval [-1,1].  The first five Legendre polynomials "#�$�! % 
 �! �! & !' of variable $ are given here for convenience 

[12]: "(�$� 
 �� "��$� 
 $ "��$� 
 )* $� 
 �* 

"+�$� 
 ,* $+ 
 )* $ 

"-�$� 
 ),. $- 
 �,' $� � ). 

The Legendre polynomial "/0��$� of order 1 � � can be 

generated from lower-order polynomials "/�$� and "/2��$� as 

follows[12]: "/0��$� 
 �*1 � ��$"/�$� 
 1"/2��$�1 � � ! 1 
 �!*! & 

 The Legendre polynomials are orthogonal with respect to the 3� inner product on the interval �
�!��, i.e.,  

4"5�$�! "6�$�7 
 8"5�$�"6�$�9$�
2� 
 **: 
 � ;56 

;56 
 <��%=�: 
 ���%=�: > �? 
 In polynomial chaos theory, the variable $ of the polynomials 
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"#�$�! % 
 �! �! & is viewed as being random.  In this paper, the 

variable $ is assumed to be drawn from the uniform distribution 

on the interval �
�!��.  The probability density function (pdf) of 

the random variable $ is therefore =�$� 
 �� @�2�!���$�, i.e., 

=�$� 
 A� *� 
�  $  �� �BCDEFG%HE ? 
 Viewing $ as a uniform random variable, the inner product 

defined above can be interpreted as the expectation of *"5�$�"6�$� since 

4"5�$�! "6�$�7 
 8*"5�$�"6�$� �* 9$
�

2�

 8*"5�$�"6�$�=�$�9$�
2� 
 IJ*"5�$�"6�$�K� 

Since the polynomials "#�$�! % 
 �! �! & are functions of the 

random variable $, they are called polynomial chaos functions.  

The goal of this section (Section 2.B) is to first expand the 

unknown parameters  � and �� in terms of the polynomial chaos 

functions, and second, expand the base excitation equations of 

Equation (2) in terms of the polynomial chaos functions (see 

[13]). 

Assume that the vehicle damping parameter is independent of 

its mass.  Then the unknown parameters � and �� can be written 

in terms of independent variables $� and $�.  The variables $� and $� are uniformly distributed on the interval �
�!��.  Then ��$�� 
 ��( � ��$� 
 �("(�$�� � ��"��$�� 
is the polynomial chaos expansion of the unknown parameter �, 

and ���$�� 
 ��( � ��$� 
 �("(�$�� � ��"��$�� 
is the polynomial chaos expansion of the unknown parameter ��.  
The mean �(�and maximum variation �� of ��$�� are �( 
��� � ���L* and �� 
 ��� 
 ���L*  respectively.  Similarly, �( 
 ���!� � ��!��L*  is the mean and �� 
 ���!� 
 ��!��L* the 

maximum variation of ���$��. 
Because the system parameters are uncertain, the system states 

and their respective derivatives are also uncertain.  They can be 

expanded in terms of the polynomial chaos basis functions.  The 

approximated MNO state and its derivative have the respective 

expansions: 

�PQ�C! $�! $�� R �SS�PQ!T�C�"#�$��"5�$��U2#
5V(

U
#V(  

�S�PQ!T�C�WX�Y�! Y��Z
TV(  

and 

�P	Q�C! $�! $�� R �SS�P	Q!T�C�"#�$��"5�$��U2#
5V(

U
#V(  

�S�P	Q!T�C�WX�Y�! Y��Z
TV(  

 

where [ is the highest order of the polynomials "#�$�� and "5�$��, \ 
 [ U0+� , and ] � % ^[ � +2#� _ � :�  These are 

approximations of the state �Q and its derivative �	Q because 

the expansions are truncated at a finite value \.  

The functions "#�$�� and �"5�$�� are Legendre polynomials.  

Their product forms the ]NO basis function, i.e. WX�Y�! Y�� 
"#�$���"5�$��.  The weighting functions �PQ!T�C� and their 

derivatives �P	Q!T�C� are functions of time but not functions of the 

uncertain parameters $� and $�.  The basis functions WX�Y�! Y�� 
are not functions of time.   

 The polynomial chaos expansion of the system given by 

Equation (2) then becomes `�P	��C! $�! $���P	��C! $�! $��a 
 � � �
����$�� 
���$����$��� ��P��C! $�! $���P��C! $�! $���� � �
�� ����C��
�����̂���C! $�! $�� 
 �
����$�� 
���$����$��� ��P��C! $�! $���P��C! $�! $���� �������C���

 The basis functions Φκcξ�! ξ�d! ] 
 �!�! & ! \ are orthogonal 

[13] with respect to the inner product  

4We�Y�! Y��! Wf�Y�! Y���7 
 � 8 8We�Y�! Y��Wf�Y�! Y��gY�gY��
2�

�
2� � 

The Galerkin method exploits this orthogonality in order to 

numerically solve for the weighting functions �PQ!T�C� 
independent of the unknown parameters $� and $�.  This is 

discussed in the next section. 

C. The Galerkin Method 

The Galerkin projection is the process of taking the expanded 

equations (Equation (3)) and projecting them onto the 

polynomial bases.  The Galerkin method separates the stochastic 

and time-dependent elements of the system’s dynamics, thereby 

allowing one to solve explicitly for the time variables. 

Using the inner product defined above, the state equations 

from Equation (3) are projected onto the polynomial basis 

functions.  To demonstrate this, consider the projection of each 

component of the second state equation �P	��C! $�! $�� 

����$���P��C! $�! $�� 
 ���$����$���P��C! $�! $�� 
 ����C� onto 

the polynomial basis functions. 

First, the projection of �P	��C! $�! $�� onto the hij basis function 

is given by 

4Wk�Y�! Y��! �P	��C! $�! $��7 
 4Wk!S�P	�!T�C�WXZ
TV( 7 
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S�P	�!T�C�Z
TV( 4Wk! WX7 
 �PQ!/�C�4Wk! Wk7� 

The last equality follows from the orthogonality of the basis 

functions.   

The projection of 
����$���P��C! $�! $�� onto Wk�Y�! Y�� is 4Wk�Y�! Y��!
����$���P��C! $�! $��7
 
�� l�P�!/�C��(4Wk! Wk7
�S�P�!TZ
TV( �C���4Wk! $�WT7m� 

 The projection of 
���$����$���P��C! $�! $�� onto Wk�Y�! Y�� is  4Wk�Y�! Y��! 
���$����$���P��C! $�! $���7
 
l�P�!/�C��(�(4Wk! Wk7
�S�P�!TZ
TV( �C����(4Wk! $�WT7

�S�P�!TZ
TV( �C��(��4Wk! $�WT7

�S�P�!TZ
TV( �C�����4Wk! $�$�WT7m� 

 

 And, finally, the projection of 
����C� onto Wk�Y�! Y�� is given 

by 4Wk�Y�! Y��! 
����C��7 
 
����C�4Wk�Y�! Y��! W(�Y�! Y���7
 n
����C�4W(! W(�7 1 
 �� BCDEFG%HE? 
Thus the projection of Equation (3) onto the basis functions Wk�Y�! Y�� , 1 
 �!�! &\ results in the following equations: 

 

� �o pp o� q	 �C� 
 rstuq�C� � vstu����C�� ����

i.e., 

� q	 �C� 
 rwuxq�C� � vwux����C�� ����

where  

 rstu 
 � p o
����(o � ��o�� 
�(�(o 
 ���(o� 
 �(��o� 
 ����o���y z��Z0��{��Z0�� 
and rstuq�C� is the result of projecting product of the state 

transition matrix and the states of Equation (3) onto the 

polynomial basis functions.    

vstu 
 | p}0~
4W(! W(7p} � y z��Z0�� 
is the results of projecting the input matrix onto the basis 

functions.  Note that p} 
 �� & ��� y zZ � 

q�C� �
��
��
���P�!(�C���P�!Z�C��P�!(�C���P�!Z�C���

��
�� y z��Z0�� 

is a vector of weighting functions that are the deterministic 

system’s states. rwux 
 �o pp o�2� rstu 

is the new state transition matrix for the states q�C�. vwux 
 �o pp o�2� vstu 

is the new input vector.  And  

o � |4W(! W(7 � �� � �� � 4WZ ! WZ7� y zZ0�{Z0� 
 

o� � �4W(! $�W(7 4W(! $�W�74W�! $�W(7 4W�! $�W�7 & 4W(! $�W�7& 4W�! $�W�7� �4W�! $�W(7 4W�! $�W(7 � �& 4W�! $�W�7� y z
Z0�{Z0� 

 

o� � �4W(! $�W(7 4W(! $�W�74W�! $�W(7 4W�! $�W�7 & 4W(! $�W�7& 4W�! $�W�7� �4W�! $�W(7 4W�! $�W(7 � �& 4W�! $�W�7� y z
Z0�{Z0� 

and 

o�� � �4W(! $�$�W(7 4W(! $�$�W�74W�! $�$�W(7 4W�! $�$�W�7 & 4W(! $�$�W�7& 4W�! $�$�W�7� �4W�! $�$�W(7 4W�! $�$�W(7 � �& 4W�! $�$�W�7�y zZ0�{Z0� 
are component matrices of rstu , rwux, and vwux. 

 

The following are properties of the system given by Equations 

(4) and (5): 

a) It is deterministic because rwux and vwux are constant, 

known, deterministic matrices. 

b) q�C� is a time-dependent vector consisting of the 

polynomial chaos expansion weighting functions. 

c) �o pp o� is a diagonal, invertible matrix.  Each diagonal 

term is nonzero by definition of orthogonality, i.e. 4W# ! W#7 > � for all %. 
Given these properties, one can solve for q�C� independent of 

the uncertain parameters via numerical integration. 

With knowledge of q�C�, the stochastic state approximations 

are: ��P��C! $�! $���P��C! $�! $��� 
 ��$�! $��q�C� 
where ��$�! $�� 
 ���$�! $�� �� ��$�! $��� 
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and ��$�! $�� 
 �W(�Y�! Y�� W��Y�! Y�� & W��Y�! Y��� 
and the approximated output equation is �̂���C! $�! $�� 
 ��$�! $����$�! $��q�C��
with���$�! $�� 
 �
����$�� 
���$����$����� 

The output �̂���C! $�! $�� is stochastic.  Its time-varying 

distribution is a function of the (static) distributions of the 

uncertain parameters $� and $�.  

Part D determines estimates of the uncertain parameters $� and $� using the MIT rule.   

D. Estimation via the MIT Rule 

Following the procedure outlined in [9], this section uses the 

MIT rule (a gradient-based, steepest descent method) to estimate $� and $�.   

First, the cost is defined as a function of the error between the 

measured and approximated sprung mass acceleration [9,2]. � 
 ��* E� 
 �* ^����C� 
 �̂��cC! $��! $��d_� 

The MIT rule proposes updating the estimates by searching in 

a direction opposite the gradient: $�	� 
 
�� ��cC! $��! $��d�$��  

and $�	� 
 
�� ��cC! $��! $��d�$��  

where �� and �� are fixed, non-negative scalars.  Then  

 $�	# 
 �#E ���c$��! $��d�$�# �c$��! $��d � �c$��! $��d ��c$��! $��d�$�# �q�C�� 
where ���c$��! $��d�$�� � 
 J
���� 
��c$��d��K 
and ��c$��! $��d�$�� 
 J� 
��!��c$��dK� 
Also, 

 

��c$��! $��d�$�# 

���
����c$��! $��d�$�# �

� ��c$��! $��d�$�# ���
��
 

where �c$��! $��d 
 JW(c$��! $��d W�c$��! $��d & W�c$��! $��dK
 J�(�$����(c$��d �(�$������$��� & ���$����(�$���K 
so, ��c$��! $��d�$��
 `��(c$��d�$�� �(c$��d ��(c$��d�$�� ��c$��d & ���c$��d�$�� �(c$��da 


 `� ��c$��d & ���c$��d�$�� �(c$��da 
and ��c$��! $��d�$��
 `�(c$��d ��(c$��d�$�� �(c$��d ���c$��d�$�� & ��c$��d ��(c$��d�$�� a 
 �� �(�$��� & �� 

The block diagram of Fig. 2 illustrates the flow of information 

in the estimation procedure. 

 
Fig. 2. The polynomial chaos estimation method. 

III. SIMULATION-BASED DEMONSTRATION 

This section presents a numerical simulation framework, as 

shown in Figure 3, intended for demonstrating the effectiveness 

of estimating the sprung mass by the proposed approach.  The 

section presents the parameters of the vehicle simulation model 

(in subsection 3A), the terrain model used as a source of 

excitation (in subsection 3B), and the structure of the estimation 

algorithm (subsection 3C).  Section 4 then presents and discusses 

the simulation results. 

 
Fig. 3. The simulation setup. 

A. Simulation Parameters 

This paper presents simulations of the quarter-car system using 

parameter data from an analysis of a HMMWV vehicle (see 

[14]).  The values used in the simulation are shown in Table 1.  

The suspension damping force with respect to velocity was 

piece-wise linear.  Other system components were assumed to be 

linear.  
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B.  The Terrain Model 

This work uses an autoregressive integrated moving average 

ARIMA(8,1,0) model to represent an off-road terrain profile and 

to provide a vertical ground input �� to the quarter-car 

simulation.  Kern suggested this type of terrain model and gave 

ARIMA(8,1,0) coefficients [15].  A sample 100 meter section of 

the resulting terrain profile is shown in Figure 4. 

 

 
Fig. 4. 100- meter section of the terrain profile used in the simulations. 

C. Estimator 

A block diagram of the estimator is shown in Fig. 2.  The 

following are design variables: ��, ��, �(, ��, ��!(, and ��!�.  The 

order of the PCE equations, determined by [, is also a design 

variable.  Unless otherwise stated, in the simulations, �( 
 ��((�, �� 
 �����((, ��!( 
 ����, ��!� 
 ',��, and \ 
 ), (i.e. [ 
 �). 

IV. SIMULATION RESULTS AND DISCUSSION 

Using the simulation models from Section 3, the effect of the 

estimator design variables, signal noise levels, and vehicle speed 

on the convergence properties of the proposed estimation 

algorithm are presented.   

The value of [ (the highest order of the polynomials used in 

the polynomial chaos expansions, see Section 2.B) is one of the 

most critical variables in the PCE method.  The value of [ 

determines the value \ at which the polynomial chaos expansion 

is truncated.  Higher values of [ correspond to more accurate 

approximations, but the number of states (weighting functions) in 

the vector q�C� is related to [ by g��cq�C�d 
 *�\ � �� 
* ^[ [�)* � �_.   Increasing the number of states increases the 

computational demand.  Thus [ introduces a tradeoff between 

computational demand and estimation accuracy. 

Fig. 5 and 6 illustrate the sensitivity of the PCE method to the 

value of  [.  In these figures, the error is mainly due to the 

truncation of the polynomial chaos expansions at a finite value. 

The simulation was void of signal noise and suspension 

nonlinearities.  Instead of assuming different values for ��!� N and ��!¡¢Q (as listed in Table I), Fig. 5 and Fig. 6 assumed that ��!� N 
 ��!¡¢Q 
 ����� £H �� .  Fig. 5 shows the sensitivity of 

the estimate of the sprung mass to the value of [, and Fig. 6 

shows the sensitivity of the estimate of the suspension damping 

coefficient to the value of  [. 

 
Fig. 5.  Variation of sprung mass estimates with polynomial order ¤. 

0 20 40 60 80 100
-0.6

-0.4

-0.2

0

0.2

E
le

v
a
ti
o
n
 (

m
)

Station (m)

Road Elevation Profile

0 50 100 150 200 250 300
750

800

850

900

950

1000

Time (sec)

M
a
s
s
 (

k
g
)

S=2

S=5

S=7 S=3

S=4

TABLE I 

QUARTER-CAR SIMULATION AND MODEL PARAMETERS 

Symbol Description Value 

Ts Sampling Period 0.005 s 

ms Vehicle sprung mass 803 kg 

ks Suspension spring 

stiffness 

63,528 N/m 

bs,ext Damping coefficient 

for extension 

3,428 N-s/m 

bs,cmp Damping coefficient 

for compression 

10,571 N-s/m 

ζs,ext Damping  ratio for 

extension 

0.24 

ζs,cmp Damping  ratio for 

compression 

0.74 

mu Vehicle unsprung 

mass 

98 kg 

ku Tire stiffness 

coefficient 

204,394 N/m 

bu Tire damping 

coefficient 

0 N-s/m 

All units are SI: “s” indicates second; “kg” indicates kilogram; 

“N” indicates Newton; and “m” indicates meter. 
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Fig. 6 Variation of damping estimates with polynomial order ¤. 

 As seen from Figures 5-6, as long as [ ¥ ), the estimation 

errors remained less than 1.5% for mass and 3% for damping.  

Although not shown here, even when noise and suspension 

nonlinearities were added to the simulation, the estimate based 

on [ = 3 was comparable to the estimate based on [ = 7.  The 

central processing unit (CPU) times to run the simulations in 

Matlab/Simulink® for [ = 2, 3, 4, 5, and 7 were respectively 

0.044, 0.055, 0.068, 0.084, and 0.123 in units of seconds of CPU 

time per second of simulated time.  That is, it took 44 seconds of 

CPU time to simulate 1000 seconds when [ = 2, etc. 

 For the remainder of the paper, [ = 7, ��!� N and ��!¡¢Q are as 

listed in Table I, and the simulated acceleration signals are 

corrupted by additive Gaussian white noise.  Unless otherwise 

specified, both the sprung mass and unsprung mass acceleration 

signals were corrupted by white noise with standard deviation  \/¦#�� 
 ��,' m/s2.  The standard deviation of the true (i.e. 

noiseless) sprung mass acceleration signal was \§�¨ 
 )�© m/s2, 

and for the unsprung mass acceleration signal \§�ª 
 «�) m/s2.  

Therefore, the signal-to-noise ratio (SNR) for the (noisy) sprung 

mass acceleration signal was 16dB, and for the unsprung mass 

acceleration, the SNR was 25dB.  The SNR was calculated 

according to the following formula: [£¬ 
 *�­B®�( HC9E¯�H%®1°­�HC9E¯�1B%HE� � 
Fig. 7 illustrates the sensitivity of the PCE method to the MIT 

rule gains �� and ��.  In each simulation run, �� 
 �� 
 �.    

 
Fig. 7.  Convergence of the mass estimate for varying values of the MIT 

rule gains ±. 

As seen in Fig. 7, higher MIT rule gains improved the 

convergence rate, but reduced the convergence precision.  

Conversely, lower gains increased the precision of the estimate, 

but slowed the rate of convergence.   

The convergence of an estimation method generally depends 

on the degree to which the dynamics of the system at hand are 

excited (see [16]).  The ground input �� is the source of 

excitation in the quarter-car model.  Given a fixed terrain profile 

such as the one shown in Fig. 4, one can vary the characteristics 

of the ground input �� by varying the forward velocity of the 

vehicle.  Since the estimation measurements are acceleration 

signals, varying the velocity of the vehicle changes both the 

frequency and amplitude of the acceleration signals. 

Fig. 8 shows the convergence of the estimate of mass for 

different values of vehicle velocity.  In all cases �� 
 �� 
 ���.  

The noise standard deviation was \/¦#�� 
 ���) m/s2 for both 

acceleration signals.   

 
Fig. 8. Convergence of the mass estimate for varying forward velocities. 

The trend in Fig. 8 shows that as the vehicle velocity 

increases, the convergence rate also increases.  Larger amplitudes 
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in the ground input cause the suspension damping nonlinearity to 

have an observable effect on the mass estimate.  Therefore, the 

precision of the mass estimate degrades at higher speeds.   

Fig. 9 shows the effect on the mass estimate due to varying the 

noise standard deviation \/¦#��.  In all cases, \§�¨ 
 )�© m/s2 and \§�ª 
 «�) m/s2.  Higher levels of noise affected the transient part 

of the convergence more than on the steady state result. 

 
Fig. 9.  The effect of noise on the estimate of sprung mass. 

Finally, Fig. 10 compares a typical estimate based on the PCE 

method proposed in this paper with a typical estimate based on 

the recursive least squares (RLS)  method as done in an earlier 

paper [1].   The RLS method converges at a faster rate, but the 

PCE method produces a less biased estimate. 

 
Fig. 10 the convergence of the PCE method compared with the recursive 

least squares method. 

V. CONCLUSIONS 

This paper uniquely combined base-excitation concepts with a 

polynomial chaos-based estimation method.  Doing so provided a 

potential solution to real-time, off-road vehicle sprung mass 

estimation for situations in which the ground profile and 

suspension damping are not known prior to estimation.  The 

method eliminates the need for pseudo-integration of the sprung 

and unsprung mass acceleration measurements, thereby also 

eliminating the need for pseudo-integrator tuning. 

Simulation studies of a 2 degree of freedom suspension model 

were used to demonstrate the method.   Convergence was around 

120 seconds with the steady state estimate within 10% of the true 

sprung mass.  A small tradeoff existed between convergence 

accuracy and computational load.  This tradeoff was due to the 

order of the polynomial basis functions.  A more significant 

tradeoff existed between the convergence rate and convergence 

precision.  This tradeoff was due to the selection of the MIT rule 

gains.  The effect of vehicle speed and signal noise was also 

evaluated. Overall, the simulation results suggest that the 

proposed base-excitation approach to polynomial chaos based 

estimation provides a potentially viable solution to real-time, off-

road vehicle sprung mass estimation. 

ACKNOWLEDGMENTS 

This research was funded by the U.S. Army TARDEC through 

its center for excellence in automotive modeling and simulation.  

The authors would like to acknowledge this financial support. 

REFERENCES 

[1] B. L. Pence, H. K. Fathy, J. L. Stein, “Off-road Vehicle Sprung Mass 

Identification from Suspension Measurements”, 2009 American Controls 

Conference, St. Louis, MO, USA 

[2] S. Shimp III. “Vehicle Sprung Mass Parameter Estimation Using an 

Adaptive Polynomial-Chaos Method”, 2008, Master’s Thesis, Virginia 

Tech. 

[3] Y. Lin and W. Kortüm “Identification of system physical parameters for 

vehicle systems with nonlinear components” 1992, Vehicle System 

Dynamics, 20:6, 354 — 365 

[4] M. C. Best and T. J. Gordon, “Suspension System Identification Based on 

Impulse-Momentum Equations” 1998, Vehicle System Dynamics 

Supplement 28, pp 598-618 

[5] R. Tal and S. Elad, “Method for determining weight of a vehicle in motion”, 

1999, U.S. Patent No. 5,973,273 

[6] R. Rajamani and J. K. Hedrick, “Adaptive Observers for Active Automotive 

Suspensions: Theory and Experiment”, 1995, IEEE Tansactions on Control 

Systems Technology, Vol. 3. No. 1, March 1995 

[7] S. Ohsaku and H. Nakai, “Sprung Mass Estimating Apparatus” 2000, U.S. 

Patent No. 6,055,471 

[8] K. Huh, S. Lim, J. Jung, D. Hong, S. Han, K. Han, H. Y. Jo, J. M. Jin 

“Vehicle Mass Estimator for Adaptive Roll Stability Control”, 2007, SAE 

paper 2007-01-0820. 

[9] S.C. Southward, “Real-Time Parameter ID using Polynomial Chaos 

Expansions”, 2007, IMECE2007-43745 

[10] D. J. Inman, Engineering Vibration 2nd edition, 2001, Prentice Hall, pp 113-

120. 

[11] D. Xiu, G. E. Karniadakis, “The Wiener-Askey polynomial chaos for 

stochastic differential equations”, 2002, SIAM Journal on Scientific 

Computing, v 24, n 2, p 619-44. 

[12] A. D. Poularikas, “The Handbook of Formulas and Tables for Signal 

Processing”, Boca Raton: CRC Press LLC, 1999 

[13] A. Sandu, C. Sandu, M, Ahmadian, “Modeling multibody systems with 

uncertainties.  Part I: Theoretical and computational aspects”, 2006, 

Multibody Sys. Dyn. 15:373-395 

[14] Z. Lou, C. B . Winkler, R. D. Ervin, F. E. Filisko, P. J. Th. Venhovens, G. 

E. Johnson, “Electrorheology for Smart Automotive Suspensions” June 

1994, UMTRI-94-15 pg.23-24 

[15] J. V. Kern, “The Development of Measurement and Characterization 

Techniques of Road Profiles”, 2007, Master’s Thesis, Virginia Polytechnic 

Institute and State University 

[16] P. A. Ioannou, J. Sun, Robust Adaptive Control, 1996 Prentice Hall, Inc. pp 

250-310. 

0 50 100 150 200 250 300
700

750

800

850

900

950

1000

1050

1100

1150

Time (sec)

M
a
s
s
 (

k
g
)

σnoise
=4

σnoise
=3

σnoise
=2

σnoise
=1 σnoise

=0

0 50 100 150 200 250 300
600

650

700

750

800

850

900

950

1000

Time (sec)

M
a
s
s
 (
k
g
)

PCE

RLS

8 Copyright © 2009 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use


