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Coloring and Guarding Arrangements∗
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Abstract

Given an arrangement of lines in the plane, what is the
minimum number c of colors required to color the lines
so that no cell of the arrangement is monochromatic?
In this paper we give bounds on the number c, as
well as some of its variations. We cast these problems
as characterizing the chromatic and the independence
numbers of a new family of geometric hypergraphs.

1 Introduction

While dual transformations may allow converting a
combinatorial geometry problem about a configura-
tion of points into a problem about an arrangement
of lines, or reversely, the truth is that most math-
ematical questions appear to be much cleaner and
natural in only one of the settings. In many cases,
the dual version is considered solely when, besides
making sense, it is additionally useful. Both kinds of
geometric objects have inspired many problems and
attracted much attention. Concerning arrangements
of lines, possibly the most prevalent problems consist
of studying the number of cells of each size, say tri-
angles, that appear in every arrangement, but many
other issues have been considered (see [3,6,7]). There
are also problems that combine both kinds of objects,
like counting incidences between points and lines, or
studying the arrangements of lines spanned by point
sets, which includes the celebrated Sylvester-Gallai
problem on ordinary lines [2].

Many other natural questions can be asked when
considering arrangements of colored lines. For ex-
ample, is it true that every bicolored arrangement of
lines has a monochromatic cell? We prove in this pa-
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per that the generic answer is no, but that it is yes
when the colors are slightly unbalanced. This leads
immediately to another simple question: How many
colors are always sufficient, and occasionally neces-
sary, to color any set of n lines in such a way that
the induced arrangement contains no monochromatic
cell? This last question brings manifestly the flavor of
Art Gallery Problems. While coloring and guarding
arrangements of lines may appear at first glance as
unrelated problems, there is a clean unifying frame-
work provided by considering appropriate geometric
hypergraphs. For example, minimally coloring an ar-
rangement while avoiding monochromatic cells can be
reformulated as follows: Let Hline−cell be the geo-
metric hypergraph where vertices are lines and edges
represent cells of the arrangement; what is its chro-
matic number? (Here a proper coloring is one where
no hyperedge is monochromatic.)

In this work we consider several questions as the
ones described above, which arise as fundamental in
terms of coloring and guarding arrangements of lines,
and translate consistently into problems on geomet-
ric hypergraphs, like maximum independent set, min-
imum vertex cover, or some coloring parameter.

The terminology for hypergraphs on arrangements
is introduced in Section 2, where we also provide a
table summarizing our results. Coloring problems are
then discussed in Section 3 and guarding problems in
Section 4. Due to lack of space, proofs of the results
in this paper have been omitted. Details will be given
in an upcoming extended version.

2 Definitions and Summary of Results

Let A be an arrangement of a set of lines L in R2.
This arrangement decomposes the plane into different
cells, where a cell is a maximal connected component
of R2 \ L.

We define Hline−cell = (L,C) as the geometric hy-
pergraph corresponding to the arrangement, where C
is the set containing all cells defined by L. Similarly,
Hvertex−cell = (V,C) is the hypergraph defined by
the vertices of the arrangements and its cells, where
V =

(
L
2

)
is the set of intersection of lines in A. Fi-

nally, Hcell−zone = (C,Z) is the hypergraph defined
by the cells of the arrangement and its zones. The
zone of a line ` in A is the set of cells bounded by `.
The set Z is defined as the set of subsets of C induced
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by the zones of A. Note that this hypergraph is the
dual hypergraph of Hline−cell.

An independent set of a hypergraph H = (V,E) is
a set S ⊆ V such that ∀e ∈ E : e 6⊆ S. This definition
is the natural extension from the graph variant, and
requires that no hyperedge is completely contained in
S. Analogously, a vertex cover of H is a set S ⊆ V
such that ∀e ∈ E : e ∩ S 6= ∅. The chromatic number
χ(H) of H is the minimum number of colors that can
be assigned to the vertices v ∈ V so that ∀e ∈ E :
∃v1, v2 ∈ e : col(v1) 6= col(v2); that is, no hyperedge
is monochromatic.

In the forthcoming sections we give upper and lower
bounds on the worst-case values for these quantities
on the three hypergraphs defined from a line arrange-
ment. Our results are summarized in Table 1. Note
that the maximum independent set and minimum ver-
tex cover are complementary problems. As a result,
any lower bound on one gives an upper bound on the
other and vice versa. This property, along with the

facts that |L| = n, |V | =
(
n
2

)
, and |C| = n(n+1)

2 + 1,
are used to complement many entries of the table.

The definitions of an independent set and a proper
coloring of the Hline−cell hypergraph of an arrange-
ment are illustrated in Figures 1(a) and 1(b), respec-
tively. Similarly, the definition of a vertex cover of
the Hvertex−cell and Hcell−zone hypergraphs are illus-
trated in Figures 1(c), and 1(d), respectively.

3 Coloring Lines, and Related Results

We first consider the chromatic number of the line-cell
hypergraph of an arrangement, that is, the number of
colors required for coloring the lines so that no cell
has a monochromatic boundary. At the end of the
section we include some similar results.

3.1 Two-colorability

We say that a set of lines L is k-colorable if we can
color L with k-colors such that no cell is monochro-
matic (in other words, the corresponding Hline−cell
hyper graph has chromatic number k). Any coloring
c : L→ {0, . . . , k} that satisfies such a property is said
to be proper. We first tackle the (simple) question
of whether the two-colorable Hline−cell hypergraphs
have bounded size:

Theorem 1 There are arbitrarily large two-colorable
sets of lines.

An infinite family of such examples are provided
by a set of 2q + 1 lines in convex position (for any
q ∈ N). It is easy to check that, if we color the lines
alternatively red and blue by order of slope, no cell
will be monochromatic.

(a) The thick lines form an independent set in the Hline−cell hy-
pergraph: no cell is bounded by those lines only.

(b) A proper 3-coloring of the Hline−cell hypergraph: no cell is
monochromatic.

(c) The marked intersections form a vertex cover of the
Hvertex−cell hypergraph: every cell has at least one such inter-
section on its boundary.

(d) The two marked cells form a vertex cover of the Hcell−zone

hypergraph: every line has a segment that lies on the boundary of
one of those cells.

Figure 1: Illustrations of the definitions.
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Hypergraph Max. Ind. Set Vertex Cover Chromatic number

Hline−cell ≥
√
n
2

(Th. 3) ≥ n
3

(Cor. 14) Ω(logn/ log logn) (Th. 6)

≤ 2n
3

(Th. 4) ≤ n−
√
n
2

(Cor. 14) ≤ 2
√
n + O(1) (Th. 5)

Hvertex−cell ≥ n2

3
− 5n

2
(Cor. 10) ≥ n2

6
(Th. 9) 2 (Th. 7)

≤ n2

3
− n

2
(Cor. 10) ≤ n2

6
+ 2n (Th. 9)

Hcell−zone ≥ n2

2
+ 5n

48
− o(1) (Cor. 13) ≥ n

4
(Th. 12) 2 (Th. 8)

≤ n2

2
+ 5n

4
+ 1 (Cor. 13) ≤ 19n

48
+ o(n) (Th. 12)

Table 1: Worst-case bounds for the different problems studied in this paper.

The coloring used in Theorem 1 uses essentially the
same number of lines of each color. This actually
holds in general, up to a lower order term.

Theorem 2 Each color class of a proper 2-coloring
c : L → {0, 1} of a set L of n lines has size at most
n
2 +

√
n−1−1

2 .

3.2 Independent lines in Hline−cell

Recall that an independent set of lines in an arrange-
ment is defined as a subset of lines S so that no cell
of the arrangement is only adjacent to lines in S.

Theorem 3 For any set L of n lines, the correspond-
ing Hline−cell hypergraph has an independent set of
size
√
n/2.

Theorem 4 Given a set L of n lines, an indepen-
dent set of the corresponding Hline−cell hypergraph
has size at most 2n/3.

3.3 Chromatic number of Hline−cell

In this section, we study the problem of coloring the
Hline−cell hypergraph. That is, we want to color the
set L so that no cell is monochromatic. We start
by giving an upper bound on the required number of
colors. This result is proved by iteratively picking a
maximal independent set of size

√
n/2.

Theorem 5 Any arrangement of n lines can be col-
ored with at most 2

√
n+O(1) colors so that no edge

of the associated Hline−cell hypergraph is monochro-
matic.

We were also able to prove a slightly sublogarithmic
lower bound for the chromatic number of Hline−cell:

Theorem 6 There exists an arrangement of n lines
whose corresponding hypergraph Hline−cell has chro-
matic number Ω(log n/ log log n).

Proof. (Sketch) In order to show the claim, we con-
struct a set of (roughly) kk lines in which any k-
coloring will contain a monochromatic cell (for any
k > 0). The basic idea behind our construction is

the following: consider any coloring with k colors of
a set of k+ 1 lines. By the pigeonhole principle there
will be two lines with the same assigned color. More-
over, since the two lines must cross, these two lines
must be consecutive in the vertical ordering of the
lines at some given x coordinate. Our approach is
to cross these two lines with a second pair of lines
that have the same color assigned, hence obtaining a
monochromatic quadrilateral. The main difficulty of
the proof is that the line set must satisfy this property
for any k-coloring of L. In particular, we do not know
neither which color will be repeated, nor at which x-
coordinate. �

3.4 Other coloring results

For the sake of completeness, we end this section by
stating two easy results on coloring vertices or cells
instead of lines.

Theorem 7 The chromatic number of Hvertex−cell is
2.

(Remark that cells of size two only have one vertex,
hence cannot be polychromatic. Therefore, we only
consider cells of size at least 3.)

The following claim is equivalent to the fact that
the dual graph of the arrangement is bipartite

Theorem 8 (Folk.) The chromatic number of
Hcell−zone is 2.

4 Guarding Arrangements

We now consider the vertex cover problem of the
above hypergraphs. That is, we would like to select
the minimum number of vertices so that any hyper-
edge is adjacent to the selected subset. Geometrically
speaking, we would like to select the minimum num-
ber of vertices (or cells or lines), so that each cell (or
line or cell, respectively) contains at least one of the
selected items.

4.1 Guarding cells with vertices

We first consider the following problem: given an ar-
rangement of lines A, how many vertices do we need



28th European Workshop on Computational Geometry, 2012

to pick in order to guard the whole arrangement when
lines act as obstacles blocking visibility? This can be
rephrased as finding the smallest subset of vertices V
so that each cell contains a vertex in V , and thus we
are looking for bounds on the size of a vertex cover
for Hvertex−cell.

Theorem 9 For any set L of n lines, a vertex cover
of the corresponding Hvertex−cell hypergraph has size
at most n2/6 + 2n. Furthermore, n2/6 vertices might
be necessary.

Recall that the hypergraph Hvertex−cell has
(
n
2

)
=

n2

2 −
n
2 vertices. Combining this fact with the previous

bounds on the size of a vertex cover allow us to get
similar bounds for the independent set problem.

Corollary 10 For any set L of n lines, a maximum
independent set of the corresponding Hvertex−cell hy-
pergraph has size at least n2/3−O(n). Furthermore,
there exists sets of lines whose largest independent set

has size at most n2

3 −
n
2 .

4.2 Guarding lines with cells

We now consider the problem of touching all lines of L
with a smallest subset of cells, i.e., we look for bounds
on the size of a vertex cover for Hcell−zone.

Theorem 11 Given a set L of n lines, a minimal ver-
tex cover of the corresponding Hcell−zone hypergraph
has size at most dn2 e.

We next provide a lower bound, and improve as well
on the upper bound, for large values of n.

Theorem 12 Given any set L of n lines, a minimal
vertex cover of the corresponding Hcell−zone hyper-
graph has size at most 19n

48 + o(n). Moreover, there
exists a set L of n lines, such that every vertex cover
of the corresponding Hcell−zone hypergraph has size
at least n

4 .

Corollary 13 For any set L of n lines, a maximum
independent set of the corresponding Hcell−zone hy-

pergraph has size at least n2

2 + 5n
48 − o(1) and at most

n2

2 + n
4 + 1.

4.3 Guarding cells with lines

For the sake of completeness, we also give bounds on
the number of lines needed to guard (touch) all cells.

Corollary 14 For any set L of n lines, its minimal
vertex cover of the corresponding Hline−cell hyper-

graph has size at least n/3 and at most n−
√
n
2 .

5 Concluding Remarks

Clearly, the main open problems arising from our
work consist of closing gaps (when they exist) between
lower and upper bounds; this is especially interesting
in our opinion for the problem of coloring lines with-
out producing any monochromatic cell.

However, it is worth noticing that there are several
computational issues that are interesting as well. For
example, it is unclear to us which is the complexity of
deciding whether a given arrangement of lines admits
a two-coloring in which no cell is monochromatic.
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[7] B. Grünbaum. How many triangles? Geombinatorics,
8:154–159, 1998.
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