
A Structural Result for Delayed Sharing Information Structures

Ashutosh Nayyar, Aditya Mahajan and Demosthenis Teneketzis

Abstract— The n-step delayed sharing information structure
is investigated. This information structure is a link between
the classical information structure, where information is shared
perfectly among the controllers, and a non-classical information
structure, where there is no “lateral” sharing of information
among the controllers. A structural result for optimal control
policies in systems with such information structures is pre-
sented. A methodology for sequentially finding optimal policies
is also established. The solution approach provides an insight
for identifying structural results for general decentralized
stochastic control problems.

I. INTRODUCTION

A. Motivation

One of the difficulties in optimal design of decentralized
control systems is handling the increase of data at the
control stations with time. This increase in data means that
the domain of control laws increases with time which, in
turn, creates two difficulties. Firstly, the number of control
strategies increases doubly exponentially with time; this
makes it harder to search for an optimal strategy. Secondly,
even if an optimal strategy is found, implementing functions
with time increasing domain is difficult.

In centralized stochastic control [1], these difficulties can
be circumvented by using the conditional probability of the
state given the data available at the control station as a suf-
ficient statistic (where the data available to a control station
comprises of all observations and control actions till the cur-
rent time) . This conditional probability, called information
state, takes values in a time-invariant space. Consequently,
we can restrict attention to control laws with time-invariant
domain. Such results, where data that is increasing with time
is “compressed” to a sufficient statistic taking values in a
time-invariant space, are called structural results. While the
information state/structural result for centralized stochastic
control problems is well known, no general methodology to
find such information states or structural results exists for
decentralized stochastic control problems.

In this paper, we find structural results for decentralized
control systems with delayed sharing information structures.
In a system with n-step delayed sharing, at each time t, every
control station knows all the observations and control actions
of all other control stations up to time t−n. This information
structure, proposed by Witsenhausen in [2], is a link between
the classical information structures, where information is
shared perfectly among the controllers, and the non-classical
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information structures, where there is no “lateral” sharing
of information among the controllers. Witsenhausen asserted
a structural result for this model without any proof in his
seminal paper [2]. Varaiya and Walrand [3] proved that
Witsenhausen’s assertion was true for n = 1 but false for
n > 1. For n > 1, Kurtaran [4] proposed another structural
result. However, Kurtaran proved his result only for the
terminal time step (that is, the last time step in a finite horizon
problem); for non-terminal time steps, he gave an abbreviated
argument, which we believe is incomplete.

We prove a structural result of the optimal control laws for
the delayed sharing information structure. We compare our
results to those conjectured by Witsenhausen and show that
our structural results for n-step delay sharing information
structure simplify to that of Witsenhausen for n = 1; for
n > 1, our results are different from the result proposed by
Kurtaran. We also present a methodology to sequentially find
optimal control policies.

B. Notation

Random variables are denoted by upper case letters; their
realization by the corresponding lower case letter. Xa:b is a
short hand for the vector (Xa, Xa+1, . . . , Xb) while Xc:d

is a short hand for the vector (Xc, Xc+1, . . . , Xd). The
combined notation Xc:d

a:b is a short hand for the vector
(Xj

i : i = a, a + 1, . . . , b, j = c, c + 1, . . . , d). P (·) is the
probability of an event, E {·} is the expectation of a random
variable. For a collection of functions g, we use Pg (·) and
Eg {·} to denote that the probability measure/expectation
depends on the choice of functions in g .1A(·) is the indicator
function of a set A. For singleton sets {a}, we also denote
1{a}(·) by 1a(·). For a finite set A, P {A} denotes the
space of probability mass functions on A. For convenience
of exposition, we will assume all sets have finite cardinality.

C. Model

Consider a system consisting of a plant and K controllers
with decentralized information. At time t, t = 1, . . . , T , the
state of the plant Xt takes values in X ; the control action Ukt
at station k, k = 1, . . . ,K, takes values in Uk. The initial
state X0 of the plant is a random variable. With time, the
plant evolves according to

Xt = ft(Xt−1, U
1:K
t , Vt) (1)

where Vt is a random variable taking values in V . {Vt; t =
1, . . . , T} is a sequence of independent random variables that
are also independent of X0.

The system has K observation posts. At time t, t =
1, . . . , T , the observation Y kt of post k, k = 1, . . . ,K, takes
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values in Yk. These observations are generated according to

Y kt = hkt (Xt−1,W
k
t ) (2)

where W k
t are random variables taking values in Wk. {W k

t ;
t = 1, . . . , T ; k = 1, . . . ,K} are independent random vari-
ables that are also independent of X0 and {Vt; t = 1, . . . , T}.

The system has n-step delayed sharing. This means that
at time t, control station k observes the current observation
Y kt of observation post k, the n steps old observations Y 1:K

t−n
of all posts, and the n steps old actions U1:K

t−n of all stations.
Each station has perfect recall; so, it remembers everything
that it has seen and done in the past. Thus, at time t, data
available at station k can be written as (∆t,Λkt ), where

∆t := (Y 1:K
1:t−n, U

1:K
1:t−n)

is the data known to all stations and

Λkt := (Y kt−n+1:t, U
k
t−n+1:t−1)

is the additional data known at station k, k = 1, . . . ,K. Let
Dt be the space of all possible realizations of ∆t; and Lk be
the space of all possible realizations of Λkt . Station k chooses
action Ukt according to a control law gkt , i.e.,

Ukt = gkt (Λkt ,∆t). (3)

The choice of g = {gkt ; k = 1, . . . ,K; t = 1, . . . , T} is
called a design or a control strategy. G denotes the class of
all possible designs. At time t, a cost ct(Xt, U

1
t , . . . , U

K
t ) is

incurred. The performance J (g) of a design is given by the
expected total cost under it, i.e.,

J (g) = Eg

{
T∑
t=1

ct(Xt, U
1:K
t )

}
(4)

where the expectation is with respect to the joint measure
on all the system variables induced by the choice of g. We
consider the following problem.

Problem 1: Given the statistics of the primitive random
variables X0, {Vt; t = 1, . . . , T}, {W k

t ; k = 1, . . . ,K;
t = 1, . . . , T}, the plant functions {ft; t = 1, . . . , T}, the
observation functions {hkt ; k = 1, . . . ,K; t = 1, . . . , T}, and
the cost functions {ct; t = 1, . . . , T} choose a design g∗

from G that minimizes the expected cost given by (4).

D. The structural results

Witsenhausen [2] asserted the following structural result
for Problem 1.

Structural Result (Witsenhausen [2]): In Problem 1, with-
out loss of optimality we can restrict attention to control
strategies of the form

Ukt = gkt (Λkt ,P (Xt−n |∆t)). (5)

Witsenhausen’s result claims that all control stations can
“compress” the common information ∆t to a sufficient
statistic P (Xt−n |∆t). Unlike ∆t, the size of P (Xt−n |∆t)
does not increase with time.

As mentioned earlier, Witsenhausen asserted this result
without a proof. Varaiya and Walrand [3] proved that the

above separation result is true for n = 1 but false for n > 1.
Kurtaran [4] proposed an alternate structural result for n > 1.

Structural Result (Kurtaran [4]): In Problem 1, without
loss of optimality we can restrict attention to control strate-
gies of the form

Ukt = gkt
(
Y kt−n+1:t,P

g1:K1:t−1
(
Xt−n, U

1:K
t−n+1:t−1

∣∣∆t

) )
. (6)

Kurtaran used a different labeling of the time indices, so
the statement of the result in his paper is slightly different
from what we have stated above.

Kurtaran’s result claims that all control stations can “com-
press” the common information ∆t to a sufficient statistic
Pg

1:K
1:t−1

(
Xt−n, U

1:K
t−n+1:t−1

∣∣∆t

)
, whose size does not in-

crease with time.
Kurtaran proved his result for only the terminal time-step

and gave an abbreviated argument for non-terminal time-
steps. In this paper, we prove a new structural result.

Structural Result (this paper): In Problem 1, without loss
of optimality we can restrict attention to control strategies of
the form

Ukt = gkt
(
Λkt ,P

g1:K1:t−1
(
Xt−1,Λ1:K

t

∣∣∆t

) )
. (7)

This result claims that all control stations can “com-
press” the common information ∆t to a sufficient statistic
Pg

1:K
1:t−1

(
Xt−1,Λ1:K

t

∣∣∆t

)
, whose size does not increase with

time.
Our structural result cannot be derived from Kurtaran’s

result and vice-versa. At present, we are not sure of the
correctness of Kurtaran’s result. As we mentioned before,
we believe that the proof given by Kurtaran is incomplete.
We have not been able to complete Kurtaran’s proof; neither
have we been able to find a counterexample to his result.

II. STRUCTURAL RESULT

In this section, we prove the structural result (7) for
optimal strategies of the K control stations. For ease of
notation, we first prove the result for K = 2, and then show
how to extend it for general K. We refer the reader to [5]
for detailed proofs of the results.

A. Two Controller system (K = 2)

The proof for K = 2 proceeds as follows:
1) First, we formulate a centralized stochastic control

problem from the point of view of a coordinator who
observes the shared information ∆t, but does not
observe the private information (Λ1

t ,Λ
2
t ) of the two

controllers.
2) Next, we argue that any strategy for the coordinator’s

problem can be implemented in the original problem
and vice versa. Hence, the two problems are equivalent.

3) Then, we identify states sufficient for input-output
mapping for the coordinator’s problem.

4) Finally, we transform the coordinator’s problem into a
MDP (Markov decision process), and obtain a struc-
tural result for the coordinator’s problem. This struc-
tural result is also a structural result for the delayed
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sharing information strucutres due to the equivalence
between the two problems.

Below, we elaborate on each of these stages.

Stage 1

We consider the following modified problem. In the model
described in Section I-C, in addition to the two controllers,
a coordinator ,that knows the common (shared) information
∆t available to both controllers at time t, is present. At time
t, the coordinator decides the partial functions

γkt : Lk 7→ Uk

for each controller k, k = 1, 2. The choice of the partial
functions at time t is based on the realization of the common
(shared) information and the partial functions selected before
time t. These functions map each controller’s private infor-
mation Λkt to its control action Ukt at time t. The coordinator
then informs all controllers of all the partial functions it
selected at time t. Each controller then uses its assigned
partial function to generate a control action as follows.

Ukt = γkt (Λkt ). (8)

The system dynamics and the cost are the same as in
the original problem. At the next time step, the coordinator
observes the new common observation

Zt+1 := {Y 1
t−n+1, Y

2
t−n+1, U

1
t−n+1, U

2
t−n+1}. (9)

Thus at the next time, the coordinator knows ∆t+1 = Zt+1∪
∆t and its choice of all past partial functions, and selects
the next partial functions for each controller. The system
proceeds sequentially in this manner until time horizon T .

In the above formulation, the only decision maker is
the coordinator: the individual controllers simply carry out
the necessary evaluations prescribed by (8). At time t, the
coordinator uses a decision rule ψt to map its information
(∆t, γ

1
1:t−1, γ

2
1:t−1)to its decision (γ1

t , γ
2
t ), that is,

(γ1
t , γ

2
t ) = ψt(∆t, γ

1
1:t−1, γ

2
1:t−1), (10)

or equivalently,

γkt = ψkt (∆t, γ
1
1:t−1, γ

2
1:t−1), k = 1, 2. (11)

The choice of ψ = {ψt; t = 1, . . . , T} is called a
coordination strategy. Ψ denotes the class of all possible
coordination strategies. The performance of a coordinating
strategy is given by the expected total cost under that strategy,
that is,

Ĵ (ψ) = Eψ

{
T∑
t=1

ct(Xt, U
1
t , U

2
t )

}
(12)

where the expectation is with respect to the joint measure
on all the system variables induced by the choice of ψ. The
coordinator has to solve the following optimization problem.

Problem 2 (The Coordinator’s Optimization Problem):
Given the system model of Problem 1, choose a coordination
strategy ψ∗ from Ψ that minimizes the expected cost given
by (12).

Stage 2

We now show that the Problem 2 is equivalent to
Problem 1. Specifically, we will show that any design g
for Problem 1 can be implemented by the coordinator in
Problem 2 with the same value of the problem objective.
Conversely, any coordination strategy ψ in Problem 2 can
be implemented in Problem 1 with the same value of the
performance objective.

Any design g for Problem 1 can be implemented by the
coordinator in Problem 2 as follows. At time t the coor-
dinator selects partial functions (γ1

t , γ
2
t ) using the common

(shared) information δt as follows.

γkt (·) = gkt (·, δt) =: ψkt (δt), k = 1, 2. (13)

Consider Problems 1 and 2. Use design g in Problem 1
and coordination strategy ψ given by (13) in Problem 2.
Fix a specific realization of the initial state X0, the plant
disturbance {Vt; t = 1, . . . , T}, and the observation noise
{W 1

t ,W
2
t ; t = 1, . . . , T}. Then, the choice of ψ according

to (13) implies that the realization of the state {Xt; t =
1, . . . , T}, the observations {Y 1

t , Y
2
t ; t = 1, . . . , T}, and

the control actions {U1
t , U

2
t ; t = 1, . . . , T} are identical in

Problem 1 and 2. Thus, any design g for Problem 1 can
be implemented by the coordinator in Problem 2 by using
a coordination strategy given by (13) and the total expected
cost under g in Problem 1 is same as the total expected cost
under the coordination strategy given by (13) in Problem 2.

By a similar argument, any coordination strategy ψ for
Problem 2 can be implemented by the control stations in
Problem 1 as follows. At time 1, both stations know δ1; so,
all of them can compute γ1

1 = ψ1
1(δ1), γ2

1 = ψ2
1(δ1). Then

station k chooses action uk1 = γk1 (λk1). Thus,

gk1 (λk1 , δ1) = ψk1 (δ1)(λk1), k = 1, 2. (14a)

At time 2, both stations know δ2 and γ1
1 , γ

2
1 , so both of them

can compute γk2 = ψk2 (δ2, γ1
1 , γ

2
1), k = 1, 2. Then station k

chooses action uk2 = γk2 (λk2). Thus,

gk2 (λk2 , δ2) = ψk2 (δ2, γ1
1 , γ

2
1)(λk2), k = 1, 2. (14b)

Proceeding this way, at time t both stations know δt and
γ1
1:t−1 and γ2

1:t−1, so both of them can compute (γ1
1:t, γ

2
1:t) =

ψt(δt, γ1
1:t−1, γ

2
1:t−1). Then, station k chooses action ukt =

γkt (λkt ). Thus,

gkt (λkt , δt) = ψkt (δt, γ1
1:t−1, γ

2
1:t−1)(λkt ), k = 1, 2. (14c)

Now consider Problems 2 and 1. Use coordinator strategy
ψ in Problem 2 and design g given by (14) in Problem 1.
Fix a specific realization of the initial state X0, the plant
disturbance {Vt; t = 1, . . . , T}, and the observation noise
{W 1

t ,W
2
t ; t = 1, . . . , T}. Then, the choice of g according

to (14) implies that the realization of the state {Xt; t =
1, . . . , T}, the observations {Y 1

t , Y
2
t ; t = 1, . . . , T}, and

the control actions {U1
t , U

2
t ; t = 1, . . . , T} are identical in

Problem 2 and 1. Hence, any coordination strategy ψ for
Problem 2 can be implemented by the stations in Problem 1
by using a design given by (14) and the total expected cost
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under ψ in Problem 2 is same as the total expected cost
under the design given by (14) in Problem 1.

Since Problems 1 and 2 are equivalent, we derive structural
results for the latter problem. Unlike, Problem 1, where we
have multiple control stations, the coordinator is the only
decision maker in Problem 2.

Stage 3

We now look at Problem 2 as a controlled input-output
system from the point of view of the coordinator and identify
a state sufficient for input-output mapping. From the coordi-
nator’s viewpoint, the input at time t has two components:
a stochastic input that consists of the plant disturbance Vt
and observation noises W 1

t ,W
2
t ; and a controlled input

that consists of the partial functions γ1
t , γ

2
t . The output is

the observations Zt+1 given by (9). The cost is given by
ct(Xt, U

1
t , U

2
t ). We want to identify a state sufficient for

input-output mapping for this system.
A variable is a state sufficient for input output mapping

of a control system if it satisfies the following properties
(see [6]).
P1) The next state is a function of the current state and the

current inputs.
P2) The current output is function of the current state and

the current inputs.
P3) The instantaneous cost is a function of the current state,

the current control inputs, and the next state.
We claim that such a state for Problem 2 is the following.
Definition 1: For each t define

St := (Xt−1,Λ1
t ,Λ

2
t ) (15)

Next we show that St, t = 1, 2, . . . , T + 1, satisfy
properties (P1)–(P3). Specifically, we have the following.

Proposition 1:

1) There exist functions f̂t, t = 2, . . . , T such that

St+1 = f̂t+1(St, Vt,W 1
t+1,W

2
t+1, γ

1
t , γ

2
t ). (16)

2) There exist functions ĥt, t = 2, . . . , T such that

Zt = ĥt(St−1). (17)

3) There exist functions ĉt, t = 1, . . . , T such that

ct(Xt, U
1
t , U

2
t ) = ĉt(St, γ1

t , γ
2
t , St+1). (18)

Proof: The proposition is an immediate consequence of
the definitions of St, Zt, Λkt , the dynamics and observation
equations of the system given by (1) and (2) and the
evaluations carried out by the control stations according
to (8).

Stage 4

Proposition 1 establishes St as the state sufficient for
input-output mapping for the coordinator’s problem. We now
define information states for the coordinator.

Definition 2 (Information States): For a coordination
strategy ψ, define information states Πt as

Πt(st) := Pψ
(
St = st

∣∣∆t, γ
1
1:t−1, γ

2
1:t−1

)
. (19)

As shown in Proposition 1, the state evolution of St de-
pends on the controlled inputs (γ1

t , γ
2
t ) and the random noise

(Vt,W 1
t+1,W

2
t+1). This random noise is independent across

time. Consequently, Πt evolves in a controlled Markovian
manner as below.

Proposition 2: For t = 1, . . . , T−1, there exists functions
Ft (which do not depend on the coordinator’s strategy) such
that

Πt+1 = Ft+1(Πt, γ
1
t , γ

2
t , Zt+1). (20)

At t = 1, since there is no shared information, Π1 is sim-
ply the unconditional probability P (S1) = P

(
X0, Y

1
1 , Y

2
1

)
.

Thus, Π1 is fixed a priori from the joint distribution of
the primitive random variables and does not depend on the
choice of coordinator’s strategy ψ. Proposition 2 shows that
at t = 2, . . . , T , Πt depends on the strategy ψ only through
the choices of γ1

1:t−1 and γ2
1:t−1. Moreover, as shown in

Proposition 1, the instantaneous cost at time t can be written
in terms of the current and next states (St, St+1) and the
control inputs (γ1

t , γ
2
t ). Combining the above two properties,

we get the following:
Proposition 3: The process Πt, t = 1, 2, . . . , T is a

controlled Markov chain with γ1
t , γ

2
t as the control actions

at time t, i.e.,

P
(
Πt+1

∣∣∆t,Π1:t, γ
1
1:t, γ

2
1:t

)
= P

(
Πt+1

∣∣Πt, γ
1
t , γ

2
t

)
.
(21)

Furthermore, there exists a deterministic function Ct such
that

E
{
ĉt(St, γ1

t , γ
2
t , St+1)

∣∣∆t,Π1:t, γ
1:2
1:t

}
= Ct(Πt, γ

1
1 , γ

2
t ).
(22)

The controlled Markov property of the process {Πt, t =
1, . . . , T} immediately gives rise to the following structural
result.

Theorem 1: In Problem 2, without loss of optimality we
can restrict attention to coordination strategies of the form

(γ1
t , γ

2
t ) = ψt(Πt), t = 1, . . . , T. (23)

Proof: From Proposition 3, we conclude that the opti-
mization problem for the coordinator is to control the evolu-
tion of the controlled Markov process {Πt, t = 1, 2, . . . , T}
by selecting the partial functions {γ1

t , γ
2
t , t = 1, 2, . . . , T}

in order to minimize
∑T
t=1E

{
Ct(Πt, γ

1
t , γ

2
t )
}

. This is an
instance of the well-known Markov decision problems where
it is known that the optimal strategy is a function of the
current state. Thus, the structural result follows from Markov
decision theory [1].

The above result can also be stated in terms of the original
problem.

Theorem 2 (Structural Result): In Problem 1 with K =
2, without loss of optimality we can restrict attention to
coordination strategies of the form

Ukt = gkt (Λkt ,Πt), k = 1, 2. (24)

where

Πt = P(g11:t−1,g
2
1:t−1)

(
Xt−1,Λ1

t ,Λ
2
t

∣∣∆t

)
(25)
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where Π1 = P
(
X0, Y

1
1 , Y

2
1

)
and for t = 2, . . . , T , Πt is

evaluated as follows:

Πt+1 = Ft+1(Πt, g
1
t (·,Πt), g2

t (·,Πt), Zt+1) (26)
Proof: Theorem 1 established the structure of the

optimal coordination strategy. As we argued in Stage 2,
this optimal coordination strategy can be implemented in
Problem 1 and is optimal for the objective (4). At t = 1,
Π1 = P

(
X0, Y

1
1 , Y

2
1

)
is known to both controllers and they

can use the optimal coordination strategy to select partial
functions according to:

(γ1
1 , γ

2
1) = ψ1(Π1)

Thus,

Uk1 = γk1 (Λk1) = ψk1 (Π1)(Λk1) =: gk1 (Λk1 ,Π1), k = 1, 2.
(27)

At time instant t + 1, both controllers know Πt and
the common observations Zt+1 = (Y 1

t−n+1, Y
2
t−n+1,

U1
t−n+1, U

2
t−n+1); they use the partial functions

(g1
t (·,Πt), g2

t (·,Πt)) in equation (20) to evaluate Πt+1. The
control actions at time t+ 1 are given as:

Ukt+1 = γkt+1(Λkt+1) = ψt+1(Πt+1)(Λkt+1)

=: gkt+1(Λkt+1,Πt+1), k = 1, 2.
(28)

Moreover, using the design g defined according to (28), the
coordinator’s information state Πt can also be written as:

Πt = Pψ
(
Xt−1,Λ1

t ,Λ
2
t

∣∣∆t, γ
1
1:t−1, γ

2
1:t−1

)
= Pg

(
Xt−1,Λ1

t ,Λ
2
t

∣∣∆t, g
1:2
1 (·,Π1), . . . , g1:2

t−1(·,Πt−1)
)

= P(g11:t−1,g
2
1:t−1)

(
Xt−1,Λ1

t ,Λ
2
t

∣∣∆t

)
(29)

where we dropped the partial functions from the condi-
tioning terms in (29) because under the given control laws
(g1

1:t−1, g
2
1:t−1), the partial functions used from time 1 to

t − 1 can be evaluated from ∆t (by using Proposition 2 to
evaluate Π1:t−1).

Theorem 2 establishes the structural result stated in Sec-
tion I-D for K = 2. In the next section, we show how to
extend the result for general K.

B. Extension to General K

Theorem 2 for two controllers (K = 2) can be easily
extended to general K by following the same sequence of
arguments as in stages 1 to 4 above. Thus, at time t, the co-
ordinator introduced in Stage 1 now selects partial functions
γkt : Lk 7→ Uk, for k = 1, 2, . . . ,K. The state sufficient for
input output mapping from the coordinator’s perspective is
given as St := (Xt−1,Λ1:K

t ) and the information state Πt

for the coordinator is

Πt(st) := Pψ
(
St = st

∣∣∆t, γ
1:K
1:t−1

)
. (30)

Results analogous to Propositions 1–3 can now be used to
conclude the structural result of Theorem 2 for general K.

C. One-Step Delay

In this section, we focus on the one-step delay information
structure, that is, we take n = 1. For a two-controller system
with n = 1, we have, ∆t = (Y 1

1:t−1, Y
2
1:t−1, U

1
1:t−1, U

2
1:t−1),

Λ1
t = (Y 1

t ) and Λ2
t = (Y 2

t ).
The partial functions γkt , k = 1, 2 to be selected by

the coordinator are therefore mappings from Yk to Uk,
k = 1, 2. Also, the new shared observation at time t + 1
is Zt+1 = (Y 1

t , Y
2
t , U

1
t , U

2
t ). Following the arguments in

Section II, the state sufficient for input-output mapping from
the coordinator’s perspective is

St = (Xt−1, Y
1
t , Y

2
t ),

and the coordinator’s information state is

Πt(xt−1, y
1
t , y

2
t )

:= Prψ(Xt−1 = xt−1, Y
1
t = y1

t , Y
2
t = y2

t |
∆t, γ

1
1:t−1, γ

2
1:t−1). (31)

At t = 1, Π1 is simply the unconditional probability
P (S1) = P

(
X0, Y

1
1 , Y

2
1

)
. Thus, Π1 is fixed a priori from

the joint distribution of the primitive random variables and
does not depend on the choice of coordinator’s strategy ψ.
Moreover, the update equation for the information states in
Proposition 2 can be refined for n = 1 as follows:

Proposition 4: For t = 1, . . . , T−1, there exists functions
Gt (which do not depend on the coordinator’s strategy) such
that

Πt+1 = Gt+1(Πt, Zt+1). (32)
Proposition 4 and the fact Π1 is fixed a priori imply that, for
all time instants t, the realization of Πt does not depend on
the choice of partial functions but only on the realization of
the shared observations, Z1, Z2, . . . , Zt, which is ∆t. Thus,
we can write Πt as:

Πt(xt−1, y
1
t , y

2
t )

:= P
(
Xt−1 = xt−1, Y

1
t = y1

t , Y
2
t = y2

t

∣∣∆t

)
(33)

The result of Theorem 2 can now be restated for this case
as follows:

Corollary 1: In Problem 1 with K = 2 and n = 1, there
is no loss of optimality in restricting to control laws of the
form:

Ukt = gkt (Y kt ,Πt), k = 1, 2. (34)

where
Πt := P

(
Xt−1, Y

1
t , Y

2
t

∣∣∆t

)
(35)

We can now compare our result for one-step delay with the
structural result proved in [3]. The result in [3] states that
there is no loss of optimality in using control laws of the
form:

Ukt = gkt (Y kt ,P (Xt−1 |∆t)), k = 1, 2. (36)

One can recover the above structural result from (34) by
observing that there is a one-to-one correspondence be-
tween Πt and the belief P (Xt−1 |∆t). Clearly, the belief
P (Xt−1 |∆t) is a marginal of Πt and therefore can be
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evaluated from Πt. Moreover, given the belief P (Xt−1 |∆t),
one can evaluate Πt as:

Πt(xt−1, y
1
t , y

2
t |∆t)

= P
(
Y 1
t = y1

t

∣∣Xt−1 = xt−1

)
× P

(
Y 2
t = y2

t

∣∣Xt−1 = xt−1

)
× P (Xt−1 = xt−1 |∆t) .

(37)

The fact that there is a one-to-one correspondence between
Πt and P (Xt−1 |∆t) means that the separation result pro-
posed in this paper for n = 1 is effectively equivalent to the
one proved in [3].

III. SEQUENTIAL DECOMPOSITION

In addition to obtaining the structural result of Theorem 2,
the coordinator’s problem also allows us to write a dynamic
program for finding the optimal control strategies as shown
below. We focus on the two controller case (K = 2). The
result can be easily extended to general K.

Theorem 3: The optimal coordination strategy can be
found by the following dynamic program: For t = 1, . . . , T ,
define the functions Jt : P {S} 7→ R as follows. For
π ∈ P {S} let

JT (π) = inf
γ̃1,γ̃2

E

{
CT (ΠT , γ

1
T , γ

2
T )
∣∣∣∣ΠT = π,

γ1
T = γ̃1,
γ2
T = γ̃2

}
.

(38)
For t = 1, . . . , T − 1, and π ∈ P {S} let

Jt(π) = inf
γ̃1,γ̃2

E{Ct(Πt, γ
1
t , γ

2
t )

+ Jt+1(Ft+1(Πt, γ
1
t , γ

2
t , Zt+1))|Πt = π,

γ1
t = γ̃1,
γ2
t = γ̃2 }.

(39)

The arg inf (γ∗,1t , γ∗,2t ) in the RHS of Jt(π) is the optimal
action for the coordinator at time t then Πt = π. Thus,

(γ∗,1t , γ∗,2t ) = φ∗t (πt)

The corresponding control strategy for Problem 1, given
by (14) is optimal for Problem 1.

Proof: As in Theorem 1, we use the fact that the
coordinator’s optimization problem can be viewed as a
Markov decision problem with Πt as the state of the Markov
process. The dynamic program follows from standard results
in Markov decision theory [1]. The optimality of the corre-
sponding control strategy for Problem 1 follows from the
equivalence between the two problems.

The dynamic program of Theorem 3 can be extended to
general K in a manner similar to Section II-B.

IV. CONCLUSION

We studied the stochastic control problem with n-step de-
lay sharing information structure and established a structural
result for it. We also provided a methodology to sequentially
identify the optimal control strategies. To derive our results,
we formulated an alternative problem from the point of
a coordinator of the system. We believe that this idea of
formulating an alternative problem from the point of view

of a coordinator which has access to information common to
all controllers is also useful for general decentralized control
problems, as is illustrated by [7] and [8].

Our structural results differ from those asserted by Wit-
senhausen in a fundamental way. The sufficient statistic (also
called information state) P (Xt−n |∆t) of Witsenhausen’s
assertion does not depend on the control strategy. The
sufficient statistic Pg

1:K
1:t−1

(
Xt−1,Λ1:K

t

∣∣∆t

)
of our result

depends on the control laws used before time t. An alter-
native structural result that highlights the dependence of the
coordinator’s sufficient statistic at time t on the controls laws
used before time t is presented in [5].
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