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Abstract 
Planar airfoils are studied for the unsteady flow motion in two-dimensional aerodynamics. Such 
problems are reduced to the solution of a non-linear multidimensional singular integral equation, 
when the form of the source and vortex strength distribution is dependent on the history of these 
distributions on the NACA airfoil surface. A turbulent boundary layer model is also proposed, 
based on the formulation of the unsteady behavior of the momentum integral equation. Finally,  an 
application is given to the determination of the velocity and pressure coefficient field around an 
aircraft by assuming constant vortex distribution.  
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1. Introduction 

Over the last years a continuously increasing interest has been given to the non-linear singular 
integral equations by which are solved very important problems of aerodynamics and fluid 
mechanics, especially these referred to unsteady flows. The computational methods which are used 
for the numerical evaluation of the non-linear singular integral equations consist of the latest high 
technology to the solution of general problems of solid and fluid mechanics. For this reason such 
computational methods are continuously improved. 

 The aerodynamic characteristics of the NACA airfoils are too important for the design of the 
new generation aircrafts, with very high speeds. This new technology aerodynamic problems are 
therefore reduced to the solution of non-linear singular integral equations, which are used for the 
determination of the velocity and pressure coefficient field around the NACA airfoils. Hence, 
special attention should be concentrated to such computational methods used for the solution of the 
above mentioned aerodynamic and fluid mechanics problems of unsteady flows. 

 The first scientists who investigated aerodynamic panel methods for studying airfoils with zero 
lift, were A.M.O.Smith and J.L.Hess [1]. They modeled the airfoil with either distributed potential 
source panels for nonlifting flows, or vortex panels for flow with lift. This method was further 
extended by R.H.Djojodihardjo and S.E.Widnall [2], P.E.Robert and G.R.Saaris [3], J.M.Summa 
[4], D.R.Bristow [5], D.R.Bristow and J.D.Hawk [6] and R.J.Lewis [7], when studying three-
dimensional steady and unsteady flows, by combining source and vortex singularities. The 
unsteady panel methods were also extended to the modeling of separated wakes using discrete 
vortices, by T.Sarpkaya and R.L.Schoaf [8]. 

Beyond the above, N.D.Ham [9], F.D.Deffenbaugh and F.J.Marschall [10], M.Kiya and M.Arie 
[11] and T.Sarpkaya and H.K.Kline [12] studied some other potential flow models, and the 
separating boundary layers were represented by an array of discrete vortices, emanating from a 
known separation point location on the airfoil surface. 

Over the last years, several other scientists made extensive calculations by using unsteady 
turbulent boundary layer methods. Among them we shall mention: R.E.Singleton and J.F.Nash 
[13], J.F.Nash, L.W.Carr and R.E.Singleton [14], A.A.Lyrio, J.H.Ferzinger and S.J.Kline [15], 
W.J.McCroskey and S.I.Pucci [16] and J.Kim, S.J.Kline and J.P.Johnston [17]. 
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Non-linear singular integral equation methods were recently proposed by E.G.Ladopoulos [18] - 
[22] for the solution of fluid mechanics problems and by E.G.Ladopoulos and V.A.Zisis [23], [24] 
for two-dimensional fluid mechanics problems applied to turbomachines. 

By the current research, the aerodynamic problem of the unsteady flow of a two-dimensional 
NACA airfoil which is moving by a velocity UA, is reduced to the solution of a non-linear 
multidimensional singular integral equation. Such a nonlinearity is valid, because the source and 
vortex strength distribution are dependent on the history of the vorticity and source distribution on 
the NACA airfoil surface. A turbulent boundary layer model is further proposed, based on the 
formulation of the unsteady behavior of the momentum integral equation.  

An application is finally given to the determination of the velocity and pressure coefficient field 
around an aircraft by assuming constant vortex distribution.       
 
2. Non-linear Unsteady Aerodynamics and Fluid Dynamics 

A general non-linear unsteady aerodynamics and fluid dynamics representation analysis is 
investigated, for the unsteady flow of a two-dimensional NACA airfoil. The method presented 
consists to the generalization of all past methods, by reducing the problem to the solution of a non-
linear multidimensional singular integral equation. Hence, such a nonlinearity results because of 
the general form given to the source and vortex strength distribution, as these functions are 
dependent on the history of the vorticity and source distribution on the NACA airfoil surface. In 
this case the airfoil is moving with a speed .  AU
 

 Consider a two-dimensional airfoil moving in an  homogeneous  and  inviscid  fluid. (Fig.1). 
 

 
Fig. 1 A two-dimensional airfoil of surface  S  in an homogeneous and inviscid fluid. 

 
A complete lifting system in an irrotational flow through the ideal fluid is comprised by the  

airfoil with the wake. Because of this irrotationality, then for the local fluid velocity U is valid:    

                                          0=×∇ U                                                              (2.1) 

Moreover, by replacing the fluid velocity with the total velocity potential  H  we have: 

                                                                        H∇=U                                                               (2.2) 

while (2.2) can be further written as:    
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                                                                      h∇+= ∞UU                                                           (2.3) 

with  the outward velocity (Fig. 1) and  h  the potential due to the presence of the airfoil. ∞U
 

 Furthermore, by using Green’s theorem [25] follows a basic relation for the velocity potential  
,  with  t  the time, at any point  x  in continuous, acyclic irrotational flow: ),( th x

                                  [ ] [ ]∫∫
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in which  S  is the surface of the airfoil  (Fig. 1),  W  the surface of the wake,    the surface 
normal at the source point  ξ  (Fig. 1),  

1n
[ ]ht,,ξλ   the source strength distribution,  [ ht,,ξ ]δ   the 

vortex strength distribution and  r  the distance equal to:  

                                           ξx −=r                                                                (2.5) 

 The velocity potential (2.4) can be also written as following, which denotes a two-dimensional 
non-linear singular integral equation: 

                                         [ ] [ ]
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ξξx δπλπ                       (2.6)    

 The kinematical surface tangency condition on the surface of the airfoil can be written as 
following: [26] 

                                             ( ) 0),(),(1 2
2

=⋅++∇ ∞ nUxx
n
h

t
tStS

∂
∂

∂
∂                                      (2.7) 

 
in which    denotes the surface normal at the field point  x  (Fig. 1). 2n
 

The above condition can be further written in the following form, for a body fixed coordinate 
system: 

                                            ( ) ( 2
),(),(1 nxωUxx A ⋅×+−=∇ At

tStS )
∂

∂                                     (2.8) 

where    denotes the airfoil translation velocity and    the airfoil angular rotation. AU Aω
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   From eqs (2.7) and (2.8) follows: 

                                                       ( 02
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=⋅×−−+ ∞ nxωUU AAn
h

∂
)∂                                       (2.9) 

Furthermore, by inserting (2.9) into (2.6) results the following two-dimensional non-linear 
singular integral equation: 
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 The non-linear singular integral equation (2.10) can be further written as: 
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                               (2.11) 

Hence, by solving the non-linear integral equation (2.11) with the corresponding boundary 
conditions, then the velocity at any field point will be determined through (2.7). 
 
3.  Non-linear Pressure Analysis 

The pressure distribution on the airfoil may be obtained by the unsteady Bernoulli equation, valid 
at any point in an irrotational, ideal flow: 

                                                    ( ) ⎥⎦
⎤

⎢⎣
⎡ ∇+−= ∞

221 H
t

HPP
∂
∂ρ                                           (3.1) 

in which  ρ  denotes the fluid density. 
 

 Moreover, by using the derivation of the previous section, then (3.1) will be written as: 

                                         ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ∇+∇⋅×−−+−= ∞∞

221 hh
t
hPP AA xωUU
∂
∂ρ                       (3.2) 

 
  Also, (3.2) reduces to the following form: 
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if we replace the ,  by the surface gradient f∇ hS∇ : 

                                                                         
1

1
nS n

hhh ε
∂
∂

+∇=∇                                                (3.4) 

 
Therefore, because of (2.9), then (3.3) can be written as: 
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which will be used for the computations. 
 
4. Turbulent Boundary Layer Models 

There are several boundary layer models which can be used in order to determine the 
aerodynamic behavior of the airfoils, for the laminar and turbulent flow, as well as the transition 
region between them. Such boundary layer models are the finite difference, finite element or 
integral models.  

 
 The turbulent boundary layer model which is proposed by the present research is based on the 

formulation of the unsteady behavior of the momentum integral equation [15]. Furthermore, the 
formulation for the laminar portion of the boundary layer is based on Thwaites method [27]. The 
major extension of the above method by the present research is the inclusion of unsteady terms in 
the momentum integral equation. 
    

The unsteady momentum integral equation, which is valid for both laminar and turbulent flow 
can be therefore written as: (Fig. 2) 
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in which  u  is the boundary layer edge velocity, t the time, δ the displacement thickness,  d  the 
momentum thickness, S  the surface distance and  c

B

F  the friction factor. 
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Fig. 2 Laminar and Turbulent Boundary Layer Model for Aerodynamics. 

 
Considering firstly the case for the laminar layer, then the pressure gradient parameter µ  is 

given by the relation: 

                                                          )1(
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where  Rd  is the Reynolds number based on   u  and   d.  B

 
 Furthermore, by considering some special relations between the parameters  cF /2, d and δ, then 

a solution for the laminar formulation may be obtained. For the wedge flow solutions following 
relations are valid: [27] 
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in which  M  is the shape parameter, B the blockage factor  δ / δ , with δ   the boundary layer 
thickness and  R  the Reynolds number based on  u and  δ. 

B B

δ δ

   
On the other hand, for the turbulent layer model following formula is valid: 

                                                             Eu
Su BB

B
=−

∂
∂ )]([1 δδ                                               (4.4) 

and the function  E  is obtained as following: 
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where  τ  is the wall shear stress and  dp/dx the streamwise pressure gradient. w

 
Also the  shape factor relationships are obtained by following relations: 
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with  u  the velocity in the boundary layer at a distance  y from the wall and  ρ  the fluid density.     
 

  Finally, the skin friction law is valid as: 
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Additional details concerning the entrainment, the wall shear stress and the skink friction relations 
can be found in [15]. 
 
5.  Velocity and Pressure Coefficient Field for Constant Vortex Distribution (Airfoil with 
Velocity) 
    Consider the special case of a constant vortex distribution  δ. Then the non-linear problem 
presented in previous paragraphs, is greatly simplified and is solved as a linear problem. Also, in 
Fig. 3 is shown the geometrical representation of the above problem.  
 

For constant vortex distribution δ, then the fluid  velocity  U,  is determined by the formula: 
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where  A  is the separating wake (Fig. 3) and  i  are the unit vectors on the x  and  y  axes, 
respectively. 

j,

 

 
 

Fig. 3 Coordinate system for the 2D airfoil of an aircraft. 

 
 Hence, when  and  0≠py 0=py , then the fluid velocity  U  will be computed by the 

following formulas: 
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Moreover, we consider the pressure coefficient  : pC

                                                        ])(21[)(
2

Ap UUPPC −−= ∞∞ ρ                                       (5.3) 

in which  ρ  denotes the fluid density and  the stream pressure. ∞P
 

By using further the unsteady equation of Bernoulli, then the pressure coefficient will be 
simplified through the relation: 

                                                                 22 )( Ap UUUC −−= ∞                                               (5.4) 

which will be used for the computations. 
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6. Unsteady Aerodynamics for Aircraft Application 
 
The analytical theory of 2-D unsteady inviscid flowfields will be applied for the computation of 

the velocity and pressure coefficient field around an aircraft. The application of new generation 
turbojet engines makes possible the design of very fast big jets. Beyond the above, the increasing 
evolution of aeroelasticity in aircraft turbomachines continues to be under active investigation, 
driven by the needs of aircraft powerplant and turbine designers. The target of Aeronautical 
Industries is therefore to achieve a competitive technological advantage in certain strategic areas of 
new and rapidly developing advanced technologies, by which increased market share can be 
achieved, in the medium and longer terms. This considerably big market share consists to the 
design of new generation large aircrafts with very high speeds. 
  

In the present application the length of the aircraft under consideration is c=50.0m and the 
airfoil section NACA 0021 (Fig. 3). 
 

 Beyond the above, it was supposed unit vortex distribution and hence, the velocity field on the 
boundary and around of the airfoil was computed by (5.2). Also, the pressure coefficients   were 
calculated through (5.4) for several aircraft velocities   and wind velocity U = 15m/sec. 

Cp

AU ∞

 
  Figures 4, 5, 6 and 7  show the pressure distribution on the turbojet presented, for aircraft 

speeds  1,2,3,4 Mach  respectively (1 Mach=332 m/sec). Also, Figs. 4a to 7a show the same 
pressure distribution on the airfoil, in three dimensional form. 

=AU

 
 

 
 

Fig. 4 Pressure distribution around the aircraft of Fig.3, for constant vortex distribution and speed 1 Mach. 
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Fig. 4a Pressure distribution around the aircraft  of Fig.3, for constant vortex distribution and speed 1 Mach – 

3D form. 

 
 
 

 
 
 

Fig. 5 Pressure distribution around the aircraft  of Fig.3, for constant vortex distribution and speed 2 Mach. 
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Fig. 5a :Pressure distribution around the aircraft  of Fig.3, for constant vortex distribution and speed 2 Mach 

– 3D form. 

 
 

 
 

 
 

Fig. 6 Pressure distribution around the aircraft  of Fig.3, for constant vortex distribution and speed 3 Mach. 
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Fig. 6a Pressure distribution around the aircraft  of Fig.3, for constant vortex distribution and speed 3 Mach – 

3D form. 

 
 
 

 
 

Fig. 7 Pressure distribution around the aircraft  of Fig.3, for constant vortex distribution and speed 4 Mach. 
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Fig. 7a Pressure distribution around the aircraft  of Fig.3, for constant vortex distribution and speed 4 Mach – 

3D form. 

 
 

From the above Figures, it is shown, that for the up boundary points of the airfoil the values of 
the pressure coefficient are increasing approximately up to x/c = 0.25, while then decreasing again 
up to x/c =1. On the other hand, for the down boundary points the values of the coefficient are 
decreasing up to x/c = 0.35, and then increasing again.  
 
7. Conclusions 

By the present research a non-linear model has been proposed for the determination of the 
velocity and pressure coefficient field around a NACA airfoil moving by a velocity UA in three-
dimensional unsteady flow. This problem was reduced to the solution of a non-linear 
multidimensional singular integral equation, for which closed form solutions are not possible to be 
determined and hence, has to be sold only by computational methods. Such a nonlinearity resulted 
because the source and vortex strength distributions are dependent on their history on the NACA 
airfoil surface. 

 A boundary layer model was proposed based on the formulation of the unsteady behavior of the 
momentum integral equation. Such a boundary layer model is valid for both laminar and turbulent 
flow, and was proposed as a general method for the study of the aerodynamic behavior of the 
airfoils. 

 Beyond the above, the velocity and pressure coefficient field around an aircraft moving with 
several velocities, was determined for constant vortex distribution. Such a method will be applied 
for the design of new generation large aircrafts with very high speeds. 

The non-linear singular integral equation methods, as proposed in the present research, will be 
in future of continuously increasing interest for the solution of generalized solid and fluid 
mechanics problems. Hence, special attention should be given to the improvement of the non-linear 
singular integral equation methods, as many modern problems of aerodynamics and structural 
analysis with considerable complicated forms, are recently reduced to non-linear forms. 
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