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Abstract

In this paper, an application of reproducing kernel Hilbert space (RKHS)
method is applied to solve second-order integrodifferential equation of Volterra
type. The analytical solution is represented in the form of series in the repro-
ducing kernel space. The n−truncation approximation un(x) is obtained and
proved to converge to the analytical solution u(x). Moreover, the presented
method has an advantages that it is possible to pick any point in the interval
domain and as well the approximate solution and its derivatives will be appli-
cable Numerical experiments are displayed to illustrate the validity, accuracy,
efficiency and applicability of the proposed method. Results indicates that our
technique is simple, straightforward and effective.
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1 Introduction

Integro-differential equations play a crucial role in modeling of much physical
phenomena such as particle vibrations in lattices, currents in electrical net-
works and pulses in biological chains and much more applications. Recently,
there have been lots efforts in giving exact or approximate solution relating
different kinds of problems in integro-differential equations.

In many branches of physics, mathematics, and engineering, solving a
problem means solving a set of ordinary, partial, integral or either integro-
differential equations. In fact, integro-differential equations are usually diffi-
cult to solve analytically so it is required to obtain an efficient approximate
or numerical solution. Nowadays, the technique that used more in integro-
differential equations is based on applying reproducing kernel. In recent years,
there has been a growing interest to solve the operator equation using the
reproducing kernel.

The theory of reproducing kernel was used for the first time at the beginning
of the 20th century by S. Zaremba in his work on boundary value problems
for harmonic and biharmonic functions. In 1943, N. Aronszajn developed the
theory of reproducing kernels which contains the Bergman kernel functions.
However, the original idea of Zaremba to apply the kernels to the solution of
BVPs was developed by S. Bergman and M. Schiffer (1948).

Actually, this theory has been implemented in several operator, differential,
integral, and integro-differential equations such as nonlinear partial differential
equations [24], nonlinear operator equations [3], nonlinear second-order singu-
lar BVPs [5,22], nonlinear Fredholm-Volterra integral equation [14], nonlinear
system of Fredholm integro-differntial equations [13], nonlinear fourth order
integro-differential equations [11,12], nonlinear Fredholm-Volterra integro dif-
ferential equations [15], nonlinear Fredholm integro-differential equations [16],
and others.

The purpose of this paper is to extend the application of the reproducing
kernel Hilbert space method to provide approximate solution for the second-
order boundary value problems of integro-differential equation of the following
Volterra type

u′′ (x) + g(u(x), u′(x)) +

x∫
0

k(x, s)f(u (s) , u′ (s))ds = h(x), 0 ≤ x, s ≤ 1,

(1.1)

subject to the boundary conditions

u(0) = α1, u(1) = α2, (1.2)
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where α1, α2 are real finite constants, u(x) ∈W 3
2 [0, 1] is an unknown function

to be determined, k(x, s) and h(x) are continuous functions on [0, 1]× [0, 1]
and [0, 1], respectively, and f(u, u′) and g(u, u′) are linear or nonlinear function
of u, u′ depend on the problem discussed.

For details about the existence and uniqueness of the solution for such
problems, see [19,20,25]. However, we assume that Eq. (1.1) subject to the
boundary conditions Eq. (1.2) has a unique analytic solution on the given
interval.

The numerical solvability of second-order integro-differential equations with
boundary conditions of the Fredholm and Volterra types and other related
equations has been pursued by several authors. To mention a few, the authors
in [2] have discussed the Legendre polynomials method for solving second-order
Fredholm integro-differential equation, the compact finite difference method
and the monotone iterative sequences method are carried out for solving second-
order Volterra integro-differential equation in [9,18]. Further, series solution
of second-order integro-differential equations with boundary conditions of the
Fredholm and Volterra types by means of the homotopy analysis method is
considered in [21].

The rest of the paper is organized as follows. In the next section, two re-
producing kernel spaces and a linear operator are described. In section 3, a
complete normal orthogonal basis and some essential results are introduced.
The algorithm for solving second-order boundary value problems of integro-
differential equation of Volterra type based on reproducing kernel space is pro-
posed in section 4. In section 5, numerical examples are presented to demon-
strate the computation efficiency of the presented method. The conclusions of
this paper are introduced in the last section.

2 Constructive Method for the Reproducing

Kernel Spaces

Definition 2.1 Let E be a nonempty abstract set. A function K : E×E → C

is a reproducing kernel of the Hilbert space H iff

1. ∀t ∈ E, K (·, t) ∈ H .

2. ∀t ∈ E, ∀ϕ ∈ H , (ϕ,K (·, t)) = ϕ (t).

Definition 2.2 A Hilbert spaces H of functions on a set Ω is called a repro-
ducing kernel Hilbert spaces if there exists a reproducing kernel K of H.

It is known that the reproducing kernel of a Hilbert space is unique, and
that existence of a reproducing kernel is due to the Riesz Representation The-
orem. The reproducing kernel K of a Hilbert space H completely determines
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the space H. Every sequence of functions {hn}∞n=1 which converges strongly to
a function h in H, converges also in the pointwise sense. Indeed, this conver-
gence is uniform on every subset on Ω on which x→ K(x, x) is bounded.

2.1 The reproducing kernel Hilbert space W 3
2 [0, 1]

The inner product space W 3
2 [0, 1] is defined as W 3

2 [0, 1] = {u(x) : u, u′, u′′

are absolutely continuous real valued functions, u′′′ ∈ L2[0, 1], u (0) =u (1) =0}.
The inner product in W 3

2 [0, 1] is given by

〈u(x), v(x)〉W 3
2

=
2∑

i=1

u(i) (0) v(i) (0) +

∫ 1

0

u′′′ (x) v′′′ (x) dx (2.1)

and the norm ‖u‖W 3
2

is denoted by ‖u‖W 3
2

=
√
〈u, u〉W 3

2
, where u, v ∈W 3

2 [0, 1].

Theorem 2.1 The space W 3
2 [0, 1] is a complete reproducing kernel space.

That is, for each fixed x ∈ [0, 1], there exists Rx (y) ∈ W 3
2 [0, 1] such that

〈u (y) , Rx (y)〉W 3
2

= u (x) for any u (y) ∈ W 3
2 [0, 1] and y ∈ [0, 1]. The repro-

ducing kernel function Rx (y) can be denoted by

Rx (y) =

⎧⎪⎪⎨
⎪⎪⎩

6∑
i=1

ci(x)y
i−1, y ≤ x,

6∑
i=1

di(x)y
i−1, y > x.

(2.2)

Proof. The proof of the completeness and reproducing property of W 3
2 [0, 1]

is similar to the proof in [9]. Now, let us find out the expression form of the
reproducing kernel function Rx (y) in the space W 3

2 [0, 1]. Through several
integration by parts, we obtain

1∫
0

u′′′(y)∂3
yRx(y)dy =

2∑
i=0

(−1)i u(i) (y) ∂5−i
y Rx (y) |y=1

y=0 −
1∫

0

u (y)∂6
yRx (y)dy.

Thus, from Eq. (2.1) we can write

〈u (y) , Rx (y)〉W 3
2

=
2∑

i=0

u(i) (0) [∂i
yRx (0) + (−1)i+1∂5−i

y Rx (0)]

+
2∑

i=0

(−1)iu(i) (1) ∂5−i
y Rx (1)

−
∫ 1

0

u (y)∂6
yRx (y) dy.

(2.3)

Since Rx (y) ∈W 3
2 [0, 1], it follows that

Rx (0) = Rx (1) = 0.
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Since u(x) ∈W 3
2 [0, 1], it follows that u (0) = u (1) = 0. Hence, if ∂4

yRx (1) = 0,
∂3

yRx (1) = 0, ∂2
yRx (0) − ∂3

yRx (0) = 0, and ∂1
yRx (0) + ∂4

yRx (0) = 0, then Eq.
(2.3) implies that

〈u (y) , Rx (y)〉W 3
2

=

∫ 1

0

u (y) (−∂6
yRx (y))dy

Now, for any x ∈ [0, 1], if Rx (y) satisfies

∂6
yRx (y) = −δ (x− y) , δ dirac-delta function, (2.4)

then 〈u (y) , Rx (y)〉W 3
2

= u (x). Obviously, Rx (y) is the reproducing kernel

function of the space W 3
2 [0, 1].

Here, we will give the expression of the reproducing kernel function Rx (y).
The auxiliary equation of Eq. (2.4) is given by λ6 = 0, and their auxiliary
values are λ = 0 with multiplicity 6. So, let the expression of the reproducing
kernel function Rx (y) be as defined in Eq. (2.2).

But on the other aspect as well, for Eq. (2.4) , let Rx (y) satisfy the equation

∂i
yRx (x+ 0) = ∂i

yRx (x− 0) , i = 0, 1, ..., 4

Integrating ∂6
yRx (y) = −δ (x− y) from x − ε to x + ε with respect to y and

let ε→ 0, we have the jump degree of ∂5
yRx (y) at y = x given by

∂5
yRx (x+ 0) − ∂5

yRx (x− 0) = −1.

Through the last descriptions, the unknown coefficients ci(x) and di(x), i =
1, 2, ..., 6 of Eq. (2.2) can be obtained. However, by using Mathematica 7.0,
the representation form of the reproducing kernel function Rx (y) is provided
by

Rx (y)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−1
18720

(x− 1)y(156y4+6x2(120 + 30y + 10y2−5y3+y4)

−4x3(120 + 30y + 10y2−5y3+y4) + x4(120 + 30y

+10y2−5y3+y4) + 12x(360 − 300y − 100y2−15y3+3y4)),

y ≤ x,

−1
18720

(y − 1)x(30xy(−120 + 6y − 4y2+y3) + 10x2y(−120

+6y − 4y2+y3) + 120y(36 + 6y − 4y2+y3) − 5x3y(36+

6y − 4y2+y3) + x4(156 + 36y + 6y2−4y3+y4)),

y > x,

This completes the proof.

2.2 The reproducing kernel Hilbert space W 1
2 [0, 1]
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The inner product space W 1
2 [0, 1] is defined as W 1

2 [0, 1] = {u(x) : u is
absolutely continuous real valued function, u′ ∈ L2[0, 1]}. The inner product
in W 1

2 [0, 1] is given by

〈u, v〉W 1
2

= u (t) v (t) +

∫ 1

0

u′ (t) v′ (t) dt.

and the norm ‖u‖W 1
2

is denoted by ‖u‖W 1
2

=
√
〈u, u〉W 1

2
, where u, v ∈W 1

2 [0, 1].

In [24], it has been proved that W 1
2 [0, 1] is also a complete reproducing

kernel space and its reproducing kernel is

Kx (y) =

{
1 + y
1 + x

y ≤ x,
y > x.

.

From the definitions of the reproducing kernel spacesW 3
2 [0, 1] andW 1

2 [0, 1] ,
clearly that W 1

2 [0, 1] ⊃W 3
2 [0, 1] for any u(x) ∈W 3

2 [0, 1] and ||u||W 1
2
≤ ||u||W 3

2
.

3.2 Introduction into a linear operator

Let Lu = u′′, L : W 3
2 [0, 1] → W 1

2 [0, 1]. After homogenization of the initial
conditions, then Eq. (1.1) and Eq. (1.2) can be converted into the following
form {

Lu (x) = F (x, u(x), u′(x), Tu(x)), 0 < x < 1,

u(0) = u(1) = 0,
(2.5)

where u(x) ∈W 3
2 [0, 1], Tu(x) =

x∫
0

k(x, s)f(u (s) , u′ (s))ds, and F (x, y1, y2, y3) ∈
W 1

2 [0, 1] for y1 = y1(x), y2 = y2(x), y3 = y3(x) ∈W 3
2 [0, 1].

Theorem 2.2 The operator L : W 3
2 [0, 1] −→W 1

2 [0, 1] is bounded linear oper-
ator.

Proof. We need to prove ‖Lu(x)‖2
W 1

2
≤ M ‖Lu(x)‖2

W 3
2
, where M is positive

constant. From the definition of the inner product and the norm of W 1
2 [0, 1],

we have ‖Lu‖2
W 1

2
= 〈Lu, Lu〉W 1

2
= [(Lu)(0)]2 +

1∫
0

[(Lu)′(x)]2dx. By reproducing

property of Rx(y), we have

u(x) = 〈u, Rx〉W 3
2
, (Lu)(x) = 〈u, (LRx)〉W 3

2
, (Lu)′(x) = 〈u, (LRx)

′〉W 3
2
.

By Schwarz inequality, we get

|(Lu)(x)| =
∣∣∣〈u, (LRx)〉W 3

2

∣∣∣
≤ ‖LRx‖W 3

2
‖u‖W 3

2
= M1 ‖u‖W 3

2
,

|(Lu)′(x)| =
∣∣∣〈u, (LRx)

′〉W 3
2

∣∣∣
≤ ‖(LRx)

′‖W 3
2
‖u‖W 3

2
= M2 ‖u‖W 3

2
,
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where M1,M2 > 0 are positive constants.

Thus ‖(Lu)(x)‖2
W 1

2
= [(Lu)(0)]2 +

∫ 1

0
[(Lu)′(x)]2dx ≤ (M2

1 + M2
2 ) ‖u‖W 3

2
=

M ‖u‖W 3
2
, where M = (M2

1 +M2
2 ) > 0 is positive constant.

3 An Orthogonal Basis

Now, we construct an orthogonal system of functions. Let ϕi (x) = Kxi
(x) and

ψi (x) = L∗ϕi (x), where L∗ is the conjugate operator of L and {xi}∞i=1 is dense
on [0, 1]. In terms of the properties of Kx (y) , one obtains 〈u (x) , ψi (x)〉W 3

2
=

〈u (x) , L∗ϕi (x)〉W 3
2

= 〈Lu (x) , ϕi (x)〉W 1
2

= Lu (xi) , i = 1, 2, ....

The normal orthogonal system
{
ψ̄i (x)

}∞
i=0

in W 3
2 [0, 1] can be derived from

Gram-Schmidt orthogonalization process of {ψi (x)}∞i=0 as follows

ψ̄i (x) =
i∑

k=1

βikψk (x) , (βii > 0, i ∈ N). (3.1)

where βik are orthogonalization coefficients and are given by the following
subroutine

βij =
1

‖ψ1‖
, for i = j = 1,

βij =
1

dik
, for i = j �= 1,

βij = − 1

dik

i−1∑
k=j

cikβkj, for i > j,

such that dik =

√
‖ψi‖2 −

i−1∑
k=1

(cik)
2, cik =

〈
ψi, ψk

〉
W 3

2
, and {ψi (x)}∞i=1 is the

orthogonal system in W 3
2 [0, 1].

Through the next theorem the subscript y by the operator L indicates that
the operator L applies to the function of y.

Theorem 3.1 If {xi}∞i=0 is dense on [0, 1], then {ψi (x)}∞i=1 is a complete
function system of W 3

2 [0, 1] and ψi (x) = LyRx (y)|y=xi
.

Proof. Notice that

ψi (x) = L∗ϕi (x)

= 〈L∗ϕi (y) , Rx (y)〉
= 〈ϕi (y) , LyRx (y)〉 = LyRx (y)|y=xi

.

Clearly, ψi (x) ∈ W 3
2 [0, 1]. Now, let 〈u (x) , ψi (x)〉 = 0, i = 1, 2, ..., for each

fixed u (x) ∈ W 3
2 [0, 1]. That is, 〈u (x) , L∗ϕi (x)〉 = 〈Lu (·) , ϕi (·)〉 = Lu (xi) =
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0. Note that {xi}∞i=0 is dense on [0, 1], therefore Lu (x) = 0. It follows that
u (x) = 0 from the existence of L−1. So, the proof of the Theorem is complete.

Lemma 3.1 If u (x) ∈W 3
2 [0, 1], then there exists M1 > 0 such that

||u(x)||C2[0,1] ≤M1 ||u(x)||W 3
2
,

where ||u (x)||C2 = max
x∈[0,1]

|u(x)| + max
x∈[0,1]

|u′(x)| + max
x∈[0,1]

|u′′(x)|.

Proof. For any x, y ∈ [0, 1], we have u(x) = 〈u(y), ∂xRx(y)〉W 3
2
. By the expres-

sion form of Rx(y), it follows that ‖∂xRx(y)‖W 3
2
≤M1.

Thus, |u(x)| =
∣∣∣〈u (x) , ∂xRx(x)〉W 3

2

∣∣∣ ≤ ‖∂xRx(x)‖W 3
2
‖u(x)‖W 3

2
≤M1 ‖u(x)‖W 3

2
.

Hence, ||u (x)||C2 ≤M1 ‖u(x)‖W 3
2
.

Lemma 3.2 If ‖un − u‖W 3
2
→ 0, xn → x, (n → ∞) and F (x, y, z, w) for

x ∈ [0, 1] , y, z, w ∈ (−∞,+∞) is continuous with respect to x, y, z, w, then
F (xn, un−1(xn), u′n−1(xn), Tun−1(xn)) → F (x, u(x), u′(x), Tu (x)) as n→ ∞.

Proof. Since |un (xn) − u (x)| = |un (xn) − un (x) + un (x) − u (x)| ≤ |un (xn)−
un (x)|+|un (x) − u (x)| . By reproducing property ofRx (y) , we have un (xn) =
〈un, Rxn (·)〉 and un (x) = 〈un, Rx (·)〉 . Thus, |un (xn) − un (x)|= |〈un, Rxn (·)−
Rx (·) 〉W 3

2
| ≤ ‖un‖W 3

2
‖Rxn (·) − Rx (·)‖W 3

2
→ 0 as soon as xn → x, n→ ∞.

On the other hand, by Lemma 3.1, we know that un (x) is convergent uniformly
to u (x). Thus, for any x ∈ [0, 1] , it holds that |un (x) − u (x)|C2 → 0 as soon as
||un (x) − u (x)||W 3

2
→ 0 as n → ∞. Therefore, un (xn) −→ u (x) in the sense

of ‖·‖W 3
2

as xn → x and n→ ∞. Thus, by means of the continuation of Tu(·),
it is obtained that Tun (xn) → Tu (x) as n → ∞. Hence, by the continuity of
F , we have F (xn, un−1(xn), u′n−1(xn), Tun−1(xn)) → F (x, u(x), u′(x), Tu (x))
as n→ ∞.

4 Numerical Algorithm

In this section, it is explained how to deduce the exact solution from the
orthogonal basis

{
ψ̄i (x)

}∞
i=0

in W 3
2 [0, 1].

Theorem 4.1 The exact solution of (2.5) can be expressed by

u (x) =
∞∑
i=1

i∑
k=1

βikF (xk, u(xk), u
′(xk), Tu(xk)) ψ̄i (x) . (4.1)

Proof. The exact solution u (x) can be expanded to a Fourier series in terms of

orthonormal basis
{
ψ̄i (x)

}∞
i=0

in W 3
2 [0, 1] as u (x) =

∞∑
i=1

〈
u (x) , ψ̄i (x)

〉
ψ̄i (x).
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Since the space W 3
2 [0, 1] is Hilbert space so the series

∞∑
i=1

〈
u (x) , ψ̄i (x)

〉
ψ̄i (x)

is convergent in the norm of ‖·‖W 3
2
. Also, note that 〈w (x) , ϕi (x)〉 = w (xi) for

each w (x) ∈W 1
2 [0, 1]. Hence, we have

u (x) =
∞∑
i=1

〈
u (x) , ψ̄i (x)

〉
W 3

2
ψ̄i (x) =

∞∑
i=1

i∑
k=1

βik 〈u (x) , ψk (x)〉W 3
2
ψ̄i (x)

=
∞∑
i=1

i∑
k=1

βik 〈u (x) , L∗ϕk (x)〉W 3
2
ψ̄i (x)

=
∞∑
i=1

i∑
k=1

βik 〈Lu (x) , ϕk (x)〉W 1
2
ψ̄i (x)

=
∞∑
i=1

i∑
k=1

βik 〈F (x, u(x), u′(x), Tu(x)) , ϕk (x)〉W 1
2
ψ̄i (x)

=
∞∑
i=1

i∑
k=1

βikF (xk, u(xk), u
′(xk), Tu(xk)) ψ̄i (x) . (4.2)

The n−truncation approximate solution un (x) of (2.5) can be obtained by

un (x) =
n∑

i=1

i∑
k=1

βikF (xk, u(xk), u
′(xk), Tu(xk)) ψ̄i (x) , (4.3)

which is n−truncation Fourier series of the exact solution u(x) in (2.5) .

Remark If Eq. (2.5) is nonlinear, then the n−truncation approximate solu-
tion un (x) of Eq. (2.5) can be obtained using the following iteration formula.

We construct the iterative sequences un (x) , putting

⎧⎪⎨
⎪⎩

∀ fixed u0(x) ∈W 3
2 [0, 1],

un (x) =
n∑

i=1

Aiψ̄i (x) ,
(4.4)

where the coefficients Ai of ψ̄i (x), i = 1, 2, ..., n are given as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 = β11F (x1, u0 (x1) , u
′
0 (x1) , Tu0(x1)) ,

A2 =
2∑

k=1

β2kF
(
xk, uk−1 (xk) , u

′
k−1 (xk) , Tuk−1(xk)

)
,

...

An =
n∑

k=1

βnkF
(
xk, uk−1 (xk) , u

′
k−1 (xk) , Tuk−1(xk)

)
,

(4.5)
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Lemma 4.1 {un}∞n=1 in Eq. (4.4) is monotone increasing i the sense of the

norm of W 3
2 [0, 1] .

Proof. By Theorem 3.1,
{
ψi

}∞
i=1

is the complete orthonormal system in the
space W 3

2 [0, 1] . Hence, we have

‖un‖2
W 3

2
= 〈un (x) , un (x)〉W 3

2
= 〈

n∑
i=1

Aiψ̄i (x) ,
n∑

i=1

Aiψ̄i (x) 〉W 3
2

=
n∑

i=1

(Ai)
2 .

Therefore, ‖un‖W 3
2

is monotone increasing.

Lemma 4.2 Lun (xj) = F
(
xj , uj−1 (xj) , u

′
j−1 (xj) , Tuj−1 (xj)

)
, j ≤ n holds.

Proof. The proof will be obtained by induction as follows. If j ≤ n, then

Lun (xj) =
n∑

i=1

AiLψ̄i (xj) =
n∑

i=1

Ai

〈
Lψ̄i (x) , φj (x)

〉
W 1

2

=
n∑

i=1

Ai

〈
ψ̄i (x) , L

∗φj (x)
〉

W 3
2

=
n∑

i=1

Ai

〈
ψ̄i (x) , ψj (x)

〉
W 3

2
.

The orthogonality of
{
ψ̄i (x)

}∞
i=1

yields that

j∑
l=1

βjlLun (xl) =
n∑

i=1

Ai 〈 ψ̄i (x) ,
j∑

l=1

βjlψl (x) 〉W 3
2

=
n∑

i=1

Ai

〈
ψ̄i (x) , ψ̄j (x)

〉
W 3

2

= Aj =
j∑

l=1

βjlF
(
xl, ul−1 (xl) , u

′
l−1 (xl) , Tul−1 (xl)

)
.

Now, if j = 1, then Lun (x1) = F (x1, u0 (x1) , u
′
0 (x1) , Tu0 (x1)) .

If j = 2, then β21Lun(x1) + β22Lun(x2) = β21F (x1, u0 (x1) , u
′
0 (x1) , Tu0 (x1))

+β22F (x2, u1 (x2) , u
′
1 (x2) , Tu1 (x2)) .

So, Lun (x2) = F (x2, u1 (x2) , u
′
1 (x2) , Tu1 (x2)). Hence, by induction, we have

that Lun (xj) = F
(
xj , uj−1 (xj) , u

′
j−1 (xj) , Tuj−1 (xj)

)
.

Theorem 4.1 If {xi}∞i=0 is dense on [0, 1] and ||un||W 3
2

is bounded, then un (x)

in the iterative formula (4.4) is convergent to the exact solution u (x) of Eq.
(2.5) in W 3

2 [0, 1] and

u (x) =
∞∑
i=1

Aiψ̄i (x) ,

where Ai is given by Eq. (4.5).

Proof. (1) First, we will prove the convergence of un (x). By Eq. (4.4), we
have

un+1(x) = un(x) + An+1ψ̄n+1 (x) . (4.6)
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From the orthogonality of
{
ψ̄i (x)

}∞
i=1

, it follows that

||un+1||2W 3
2

= ||un||2W 3
2

+ (An+1)
2 = ||un−1||2W 3

2
+ (An)2 + (An+1)

2

...

= ||u0||2W 3
2

+
n+1∑
i=1

(Ai)
2. (4.7)

From Lemma 4.1, the sequence ||un||W 3
2

is monotone increasing. Due to the

condition that ||un||W 3
2

is bounded, ||un||W 3
2

is convergent as n → ∞. Then,

there exists a constant c such that
∞∑
i=1

(Ai)
2 = c. It implies that

Ai =
i∑

k=1

βikF
(
xk, uk−1 (xk) , u

′
k−1 (xk) , Tuk−1 (xk)

) ∈ l2, i = 1, 2, ...

Let m > n, for (um − um−1)⊥(um−1 − um−2)⊥...⊥(un+1 − un), it follows that

||um(x) − un(x)||2W 3
2

= ||um(x)−um−1(x)+um−1(x)−...+un+1(x)−un(x)||2W 3
2

≤ ||um(x) − um−1(x)||2W 3
2
+...+ ||un+1(x) − un(x)||2W 3

2

=
m∑

i=n+1

(Ai)
2.

Consequently, as n,m→ ∞, we have ||um(x)−un(x)||2W 3
2
→ 0 as

m∑
i=n+1

(Ai)
2→0.

Considering the completeness of W 3
2 [0, 1], there exists a u (x) ∈W 3

2 [0, 1] such
that un (x) → u(x) as n→ ∞ in the sense of ||·||W 3

2
.

(2) Second, we will prove that u (x) is the solutions of Eq. (2.5). From
Lemma 4.2, since {xi}∞i=0 is dense on [0, 1], for any x ∈ [0, 1], there ex-
ists subsequence

{
xnj

}
, such that xnj

→ x as j → ∞. It is clear that

Lu
(
xnj

)
= F

(
xnj

, unj−1 (xk) , u
′
nj−1 (xk) , Tunj−1 (xk)

)
. Hence, let j → ∞,

by the continuity of F , we have Lu (x) = F (x, u (x) , u′ (x) , Tu (x)). That is,

u (x) is the solution of Eq. (2.5), where u (x) =
∞∑
i=1

Aiψ̄i (x) and Ai is given by

Eq. (4.4).

Theorem 4.2 Assume that u (x) ∈ W 3
2 [0, 1] is the solution of Eq. (2.5) and

rn (x) is the difference between the approximate solution un (x) and the exact
solution u (x). Then, rn (x) is monotone decreasing in the sense of the norm
of W 3

2 [0, 1]. i.e. rn → 0 as n→ ∞.



2156 Z. Altawallbeh, M. H. AL-Smadi and R. Abu-Gdairi

Proof. From Eqs. (4.1) and (4.3), it is obvious that

||rn (x)||2W 3
2

= ||u (x) − un (x)||2W 3
2

=

∥∥∥∥ ∞∑
i=n+1

n∑
k=1

βnkF
(
xk, uk−1 (xk) , u

′
k−1 (xk) , Tuk−1(xk)

)
ψ̄i (x)

∥∥∥∥
2

W 3
2

=

∥∥∥∥ ∞∑
i=n+1

Aiψ̄i (x)

∥∥∥∥
2

W 3
2

=
∞∑

i=n+1

(Ai)
2 ,

and ||rn−1 (x)||2W 3
2

=
∞∑

i=n

(Ai)
2. Thus, ||rn (x)||W 3

2
≤ ||rn−1 (x)||W 3

2
. Conse-

quently, the difference rn (x) is monotone decreasing in the sense of ‖·‖W 3
2
. So,

the proof of the theorem is complete.

5 Numerical Example

In this section, numerical examples are studied to demonstrate the accuracy of
the present algorithm. Results obtained by the algorithm are compared with
the analytical solution and are found to be in good agreement. The examples
are computed using Mathematica 7.0.

Example 5.1 [1] Consider the following linear Volterra IDE⎧⎨
⎩ u′′(x) −

x∫
0

e−s sin xu′(s)ds+ u(x) =
(

1
2
e−x sin 2x− sin x

)
, 0 ≤ x ≤ 1,

u(0) = −1, u(1) = sin 1 − cos 1.

The exact solution is u(x) = sin x − cosx. Using RKHS method, taking
xi = i−1

n−1
, i = 1, 2, ..., n. The numerical results at some selected nods for

n = 101 are displayed in Table 1.

Table 1. Numerical results for Example 5.1.
x Exact Sol. Approximate Sol. Absolute error Relative error
0.16 −0.827909 −0.8279086004757638 4.76286×10−7 5.75287×10−7

0.32 −0.634669 −0.6346681574629389 7.00003×10−7 1.10294×10−6

0.48 −0.425216 −0.4252150356389058 7.11599×10−7 1.67350×10−6

0.64 −0.204900 −0.2048997511869910 5.65335×10−7 2.75907×10−6

0.80 0.0206494 0.02064970692970153 3.25377×10−7 1.57572×10−5

0.96 0.2456716 0.24567164364805905 6.14195×10−8 2.50007×10−7

Example 5.2 [1] Consider the following nonlinear Volterra IDE⎧⎨
⎩ u′′(x) +

x∫
0

(u(s))2ds+
(

x
2
− sinh x− 1

4
sinh 2x

)
= 0, 0 ≤ x ≤ 1,

u(0) = 0, u(1) = sinh(1).
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The exact solution is u(x) = sinh x. Using RKHS method, taking xi = i−1
n−1

,
i = 1, 2, ..., n. The numerical results at some selected nods for n = 51 are
displayed in Table 2.

Table 2. Numerical results for Example 5.2.
x Exact Sol. Approximate Sol. Absolute error Relative error
0.16 0.160684 0.1606828700813321 6.70931×10−7 4.17548×10−6

0.32 0.325489 0.3254880335933262 1.33004×10−6 4.08627×10−6

0.48 0.498646 0.4986436927330889 1.81246×10−6 3.63477×10−6

0.64 0.684594 0.6845922814317368 1.94620×10−6 2.84285×10−6

0.80 0.888106 0.8881044338725901 1.54832×10−6 1.74339×10−6

0.96 1.114400 1.1144013728752382 4.20849×10−7 3.77645×10−7

As we mentioned earlier, it is possible to pick any point in [0, 1] and as
well the approximate solutions and all their derivatives up to order two will be
applicable. However, Table 3 has new numerical results for Example 5.2 which
include the absolute error at some selected gird nodes in [0, 1].

Table 3. Absolute error of Example 5.2.
x = 0.16 x = 0.48 x = 0.64 x = 0.96

u′51(x) 4.32658 × 10−6 2.1107 × 10−6 6.26721 × 10−7 9.76649 × 10−6

u′′51(x) 1.19349 × 10−5 1.33227 × 10−5 2.66454 × 10−5 1.55431 × 10−5

6 Conclusion

In this paper,we construct a reproducing kernel space in which each function
satisfies boundary value conditions of considered problems. In this space, a nu-
merical algorithm is presented for solving second-order IDEs of Volterra type.
The analytical solution is given with series form in W 3

2 [0, 1]. The approximate
solution obtained by present algorithm converges to analytical solution uni-
formly. The numerical results are displayed to demonstrate the validity of the
present algorithm.
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