
Automated Power Gating of Registers Using
CoDeL and FSM Branch Prediction

Nainesh Agarwal and Nikitas J. Dimopoulos

Department of Electrical and Computer Engineering
University of Victoria
Victoria, B.C., Canada

{nagarwal,nikitas}@ece.uvic.ca

Abstract. In this paper, we use the CoDeL hardware design platform
to analyze the potential and performance impact of power gating indi-
vidual registers. For each register, we examine the percentage of clock
cycles for which they can be powered off, and the loss of performance
incurred as a result of waiting for the power to be restored. We propose
a static gating method, with very low area overhead, which uses the in-
formation available to the CoDeL compiler to predict, at compile time,
when the registers can be powered off and when they can be powered on.
Static branch prediction is used in the compiler to more intelligently tra-
verse the finite state machine description of the circuit to discover gating
opportunities. We compare this static CoDeL based gating method to a
dynamic, time-based technique. Using the DSPstone benchmark circuits
for evaluation, we find that CoDeL with backward branch prediction
gives the best overall combination of gating potential and performance,
resulting in 22% bit cycles saved at a performance loss of 1.3%. Com-
pared to the dynamic time-based technique, this method gives 52% more
power gated bit cycles, without any additional performance loss.

1 Introduction

To keep up with the requirements of miniaturization and long battery life for
portable devices, it is essential to reduce power consumption in the VLSI circuit
components of such devices. To reach this objective, the most effective method
is to lower the supply voltage. As the voltage is reduced, by scaling the CMOS
technology past sub 100nm, an exponential growth in subthreshold leakage cur-
rent is seen [1]. As this trend continues, the leakage current will become the
dominant source of total power dissipation in CMOS circuits.

To reduce leakage, power gating has been shown to be an effective technique
[2]. Power gating relies on the detection of idle periods in the circuit. During these
idle periods, the supply voltage can be switched off to the appropriate circuit
component to conserve leakage power. At the end of the idle period, the supply
voltage is restored to resume normal operation. Power gating approaches rely
on trying to predict idle periods for either storage structures (SRAMs, registers)
[3, 4] or functional units [5, 6].

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 294–303, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357609776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Automated Power Gating of Registers 295

Here we examine how power gating techniques can also be used effectively for
the reduction of leakage power in low level design. To allow us to efficiently detect
and utilize idle periods we use the CoDeL design platform. CoDeL (Controller
Description Language) [7, 8] is a rapid hardware design platform that allows
circuit description at the algorithmic level. Since CoDeL implements a design
as a state machine it has sufficient information on the usage of registers and
functional units to predict idle times and allow efficient power gating.

In [9] we examine the potential of power gating registers using a time-based
technique and show that a CoDeL assisted technique can significantly increase
gating efficiency. However, a CoDeL assisted time-based technique can be ex-
pensive in terms of logic area. In the work reported here, we explore a set of
purely static gating techniques, which require very little area overhead. These
techniques use static branch prediction to increase gating efficiency by reduc-
ing mispredictions of future register usage. In addition, here we use CoDeL to
predict when a “wakeup” is needed, reducing the performance penalty incurred
while waiting for the supply voltage to be restored to a register.

2 Power Gating

Power gating of a circuit block is performed by using an appropriate header or
footer transistor [6]. To begin power gating, a “sleep” signal is applied to the
gate of this transistor to turn off the supply voltage to the circuit block. To
revive the block for use, the “sleep” signal is de-asserted and power is restored.

In the case of memory elements, such as registers, multi-threshold CMOS
(MTCMOS) [10] retention registers can be used (see figure 1). During normal
operation, there is no loss in performance and during power-down mode the
register state is saved to a “balloon” latch, which has a high voltage threshold
resulting in minimal leakage. Using a MTCMOS register, all reads can be per-
formed from the balloon latch. It is only when a write is necessary that we need
to power up the high-performance low-threshold flip-flop.

In figure 2 we present the supply voltage and the various phases of a circuit
component as it is power gated1. From time T0 to T1 the circuit component is
busy and thus can not be gated. This period is Tbusy. At time T1, the component
becomes idle. It takes the control logic from T1 to T2 (Tidledetect) to make the
decision to engage gating. From T2 the supply voltage begins to drop. At T3
the aggregate leakage power savings equals the overhead of switching the header
transistor on and off. The period, Tbreakeven, from T2 to T3, is the minimum
power gating duration to achieve net leakage power savings. During the period
Tsleep, from T3 to T4 the device is asleep and we accumulate net power savings. At
T4 the control logic needs to reactivate the component. From T4 to T5 the voltage
rises. During this period, Twakeup, a performance penalty may be incurred if the
pending operation needs to wait for the power to be restored. Finally, at T5 the
power is fully restored and the circuit can resume normal operation.

1 Our model here follows the description presented in [6].

296 N. Agarwal and N.J. Dimopoulos

Regular
Flip-flop
(Low Vth)

CLK SLEEP

State
saving

‘balloon’
latch

(High Vth)

D Q

VSLEEPVDD

Fig. 1. MTCMOS register

TIDLEDETECT TBREAKEVEN TSLEEP TWAKEUP TBUSY

Power gating in effect

TBUSY

T0 T1 T5T4T3T2

Fig. 2. Voltage during power gating phases

3 Gating Methods

3.1 Time-Based Power Gating

A simple technique to power gate circuit components is to dynamically observe
their state and initiate power gating when a sufficient number of idle cycles are
detected. Techniques such as this have been used for cache memories [3] and
show significant leakage savings with minimal performance impact.

To implement this technique, each circuit component needs to have state
machine logic similar to the one shown in figure 3. Normally the component
is in the IDLE DETECT or BUSY state. As long as the component is being
used, the state remains BUSY. Once the component becomes idle we enter the
IDLE DETECT state. When the consecutive idle cycle count increases beyond
Tidledetect, the component enters the POWER DOWN state. Here it waits for
period Tbreakeven to allow for the voltage supply to reduce. If at any time the
component is needed, a signal is generated causing the component to enter the
WAKEUP state. Otherwise, after Tbreakeven cycles, the SLEEP state is entered.
When the circuit component is next needed, the WAKEUP state is entered where
a waiting period of Twakeup cycles is required to restore the supply voltage. Once
the component is powered up, the BUSY state is entered. When the circuit
prematurely goes from the POWER DOWN state to the WAKEUP state, the
component may not be fully powered down. Thus, for restoring the power it will
not take the full Twakeup cycles. However, we conservatively penalize the full
Twakeup cycles in this case. Further, we only consider the savings while in the
SLEEP state. There may be some additional power savings in the WAKEUP
state, which we conservatively do not include.

According to this framework, we see that our results are dependent on three
parameters: Tidledetect, Tbreakeven, and Twakeup. Tbreakeven is the time it takes
to overcome the energy overhead of gating a unit. Twakeup is the overhead of
restoring the power to a unit. The parameters Tbreakeven and Twakeup are a
function of the VLSI technology and thus can not be controlled by circuit design.

Automated Power Gating of Registers 297

IDLE
DETECT

Cycle_Count < T_idledetect

POWER
DOWN

Cycle_Count ==
T_idledetect

Cycle_Count <
T_breakeven

SLEEPCycle_Count == T_breakeven

No Write Detect

WAKEUP

Write Detect

Cycle_Count <
T_wakeup

Cycle_Count == T_wakeup

Write Detect

BUSY

Unit busy
Unit idle

CoDeL initiated
SLEEP mode

CoDeL initiated
WAKEUP

CoDeL initiated
WAKEUP

Fig. 3. Gating logic. The short dashed line is used for time-based gating. The long
dashed transition line is used for CoDeL initiated power gating. Both dashed lines are
used for CoDeL assisted time-based gating.

The Tidledetect parameter, however, can be controlled to effect the aggressiveness
of the power gating mechanism.

To implement this scheme each register would require a controller to count
the idle cycles, and logic to detect a new value being written to the register.
This logic is expensive in terms of area and power, and therefore motivates an
alternative method of initiating power gating.

3.2 CoDeL Initiated Power Gating

The CoDeL platform [8] uses a sequential machine to determine the sequence of
operations and data transfers in and out of registers. Because of this sequential
machine, we know the exact time of the events, and we can anticipate them.
For each register, at compile time, CoDeL iterates through each state of the
state machine implementation of the circuit and looks ahead Tidledetect states to
determine if there are any potential writes to the register. If there is no write to
the register in the next possible Tidledetect states, a power off (SLEEP) suggestion
is noted for the gating control logic. If during the next Tidledetect possible states
the register is written, a power off suggestion is not made. As with the time-
based technique, the Tidledetect parameter is chosen a priori, and is the same for
all registers of the circuit under design.

298 N. Agarwal and N.J. Dimopoulos

To more efficiently wake up the registers, CoDeL performs a look ahead and
prematurely powers up the register in anticipation of a write. This reduces the
performance penalty normally incurred in waiting for a power up. For each
register, at compile time, CoDeL examines each state of the state machine
implementation of the circuit and looks ahead Twakeup states to determine if
there are any potential writes to the register. If there is a write to the reg-
ister in the next possible Twakeup states, a power on (WAKE) suggestion is
noted. Otherwise, a power on suggestion is not made. For example, referring
to figure 4(a), for Tidledetect = 3 and Twakeup = 1, a sleep suggestion will be
generated at state S2, while a WAKE suggestion will be generated at state
S10.

CoDeL initiated gating corresponds to a static environment where only sug-
gestions made by CoDeL can initiate power gating (long dashed line in figure 3).
The wakeup mechanism is triggered by a CoDeL suggestion or a detected write.

To implement this static gating scheme only combinational logic is needed.
The current state is used to generate the desired SLEEP and WAKE signals to
power down and power up the register. Some sequential logic may be needed to
generate the AWAKE signal, which indicates that the register is powered up and
ready for use. This allows CoDeL to stall the register write until the AWAKE
signal is asserted.

3.3 CoDeL Assisted Time-Based Power Gating

In CoDeL assisted time-based gating, the decision to initiate gating is still de-
pendent on a streak of idle cycles as in the time-based technique (short dashed
line in figure 3). In many cases, however, based on CoDeL’s suggestion (long
dashed line in figure 3), gating can be initiated prematurely without waiting
for the full Tidledetect cycles2. Also, based on CoDeL’s suggestion, wakeups are
initiated in anticipation of a register write to reduce the performance penalty.

The implementation of this gating scheme is the most complex as it requires
the circuit features of the static and dynamic gating methods.

4 FSM Branch Prediction

CoDeL’s gating and wakeup suggestions are dependent on a look-ahead search
of the FSM description of the circuit to determine whether a register write is
performed in the next Tidledetect or Twakeup possible states. In performing this
search, branches in the state machine are handled in three different ways. The
first method uses no branch prediction (figure 4(a)), and therefore searches all
possible state paths. The second method uses static forward branch prediction
and assumes that a branch to the furthest state forward is taken (figure 4(b)).
The third method uses static backward branch prediction and assumes that a
branch to the furthest state backward is taken (figure 4(c)).

2 The value of Tidledetect used for the CoDeL and time-based parts is the same.

Automated Power Gating of Registers 299

S2

S3

S4 S10

S5 S2 S11

Level 0

Level 1

Level 2

Level 3

Write in State 11

(a) No branch prediction

S2

S3

S10

S11

Level 0

Level 1

Level 2

Level 3

(b) Forward

S2

S3

S4

S2

Level 0

Level 1

Level 2

Level 3

(c) Backward

Fig. 4. States look-ahead to determine possible writes. Tidledetect = 3.

5 Evaluation Framework

To evaluate the power gating methods we use the the DSP kernel benchmarks
from the DSPstone suite [11]. All kernels from the suite are implemented using
CoDeL and compiled to generate synthesizable VHDL. To perform the required
arithmetic operations, we have used a single cycle 16 bit fixed point unit (FXU)
written in VHDL using the fixed point package obtained from [12]. It is inter-
faced by the CoDeL implemented kernels to perform the required arithmetic
operations. For data storage, a single port memory is implemented in VHDL for
simulation. Any registers in the FXU or the memory are not gated. All clock
cycle results presented are based on trace data obtained from VHDL simulation
of the kernel circuits.

6 Results

We examine the effects of Tidledetect, Tbreakeven and Twakeup on the power gating
ability and performance of the circuit. The power gating effectiveness is deter-
mined by the percentage of bit cycles in the SLEEP state. It is computed as

∑N
i=0 len(Ri) · (cycles in SLEEP state)i

total cycles executed ·
∑N

i=0 len(Ri)
· 100%, (1)

where N is the number of registers, Ri is the ith register and len(Ri) is the bit
width of the ith register. The performance impact of gating is computed as the
number of additional clock cycles needed when power gating is introduced. This
is computed as

total cycles executed without gating
total cycles executed with gating

· 100%. (2)

The results presented here are an arithmetic average of the results obtained
for the 14 DSPstone kernels.

300 N. Agarwal and N.J. Dimopoulos

0

5

10

15

20

25

30

0 5 10 15 20 25 30
Tidledetect

%
 b

it
cy

cl
es

 in
 S

LE
EP

Time
CoDeL
Time+CoDeL

(a) No branch prediction.

0

5

10

15

20

25

30

0 5 10 15 20 25 30
Tidledetect

%
 b

it
cy

cl
es

 in
 S

LE
EP

Time
CoDeL
Time+CoDeL

(b) Forward prediction.

0

5

10

15

20

25

30

0 5 10 15 20 25 30
Tidledetect

%
 b

it
cy

cl
es

 in
 S

LE
EP

Time
CoDeL
Time+CoDeL

(c) Backward prediction.

Fig. 5. Gating effectiveness with Twakeup = 2. Results averaged over Tbreakeven =
5, 10, 15, 20.

Figure 5 presents the gating effectiveness using the three methods presented
and the different branch prediction schemes. From figure 5(a) we see that when
no branch prediction is used, the CoDeL based gating schemes perform poorly for
larger values of Tidledetect. This is because since all possible branches are searched
to find a write, many more writes are predicted than actually occurring resulting
in missed gating opportunities. This is exacerbated in the case of only CoDeL
initiated gating, since there is no help from time-based gating to reclaim some
of the lost gating opportunities.

Examining the branch prediction schemes (figures 5(b) and 5(c)) we see that
the CoDeL based and the CoDeL assisted time-based schemes significantly out-
perform the time-based technique. For Tidledetect = 30, the CoDeL schemes pro-
vide 59% more gated bit cycles than the time-based technique. It is interesting
to note that for Tidledetect ≥ 5, both CoDeL based schemes exhibit the same
savings. This means that the dynamic decision criteria in the CoDeL assisted
time-based technique presents no new gating opportunities in comparison to the
purely static CoDeL scheme.

Comparing the forward and backward branch prediction schemes we find that
the backward prediction results in more gating opportunities resulting in 8%
more gated bit cycles. This means that more backward branches are taken in
our designs than the forward branches.

Figure 6 shows the performance impact for different values of Twakeup. Back-
ward branch prediction is used here for the CoDeL schemes since it provides

Automated Power Gating of Registers 301

60

65

70

75

80

85

90

95

100

0 5 10 15 20 25 30
Tidledetect

Pe
rf

or
m

an
ce

 Im
pa

ct
 (%

)

Time
CoDeL
Time+CoDeL

(a) Twakeup = 2

60

65

70

75

80

85

90

95

100

0 5 10 15 20 25 30
Tidledetect

Pe
rf

or
m

an
ce

 Im
pa

ct
 (%

)

Time
CoDeL
Time+CoDeL

(b) Twakeup = 8

Fig. 6. Performance impact (see equation 2). Backward branch prediction used for
CoDeL schemes. Results averaged over Tbreakeven = 5, 10, 15, 20.

the best gating potential as compared to forward and no branch prediction.
In all cases, we see that the CoDeL schemes outperform the time-based tech-
nique for lower values of Tidledetect (less than 15), while for larger Tidledetect, the
time-based technique dominates. This is because the time-based technique gates
registers less frequently for larger Tidledetect, and thus results in fewer wakeup
procedures resulting in lower performance loss. Even for these larger Tidledetect

values, however, the difference in performance for the time-based and CoDeL
schemes is very small (less than 3%). But the number of sleep cycles gained
with the CoDeL method far exceeds those of the time-based method by more
than 60%. Comparing the two CoDeL schemes we see they provide roughly the
same performance. Expectedly, as the value of Twakeup increases, performance
decreases as more cycles are spent in waiting for the power to be restored.

In figure 7 we are able to more clearly see the entire design space consisting
of the various techniques. We have also included the CoDeL based scheme used
in [9] for comparison. The solid curves indicate results using a static gating
method where the area overhead is extremely low. The dashed curves are for
methods which employ a dynamic scheme resulting in significant overhead.

Common in all performance results, we see that lower values of Tidledetect

cause significant performance loss. This means that although there are a large
number of short idle periods which can benefit from gating, the performance
degrades since this causes a large increase in the number of cases where the
circuit needs to wait for a power up to occur.

We see that the time-based technique provides very poor overall gating ef-
fectiveness and performance. Comparing the branch prediction schemes, we see
that the performance loss of the CoDeL scheme with no branch prediction is
the lowest, but it also results in the poor gating potential. The backward branch
prediction provides better performance than the forward branch prediction since
it is more accurately able to predict wakeups.

We find that CoDeL, with backward branch prediction, is able to provide an
excellent compromise of high gating effectiveness and low performance loss. For
Tidledetect = 15 we find that the CoDeL scheme with backward branch prediction
provides 52% more bit cycles in SLEEP mode than the time-based technique for

302 N. Agarwal and N.J. Dimopoulos

0

5

10

15

20

25

30

0 5 10 15
Performance Loss (%)

%
 b

it
cy

cl
es

 in
 S

LE
EP

Time
CoDeL: No
CoDeL: Forward
CoDeL: Backward
CoDeL: [9]
CoDeL: [9] (Static)

Fig. 7. Gating effectiveness vs performance loss for Tbreakeven = 10 and Twakeup = 2.
Tidledetect varies from 30 to 0 from left to right.

the same approximate performance loss of 1.3%. CoDeL with forward branch
prediction provides a relatively poor combination of gating effectiveness and
performance. This is due to the high rate of misprediction with this method.
CoDeL with no branch prediction provides lower gating effectiveness but provides
excellent performance for larger values of Tidledetect, and thus may be useful in
cases where high performance is critical.

In figure 7 we provide two results based on the CoDeL scheme presented in [9].
The dynamic scheme (“CoDeL: [9]”) is a CoDeL assisted time-based technique
with no branch prediction and no “wakeup” prediction. Since we have not fac-
tored in overhead, we see that it performs quite well. Due to the dynamic nature
of this method, however, it entails significant overhead. Assuming a three bit
counter to count the elapsed idle cycles, our preliminary results suggest that the
overhead reduces the SLEEP mode bit cycles by 18% (below what is indicated
in figure 7). This overhead considerably reduces the apparent effectiveness of all
dynamic techniques presented (dashed curves). The static version of this scheme
(“CoDeL: [9] (Static)”) is a modified version of the method presented in [9]. This
method is the same as the “CoDeL: No” method without “wakeup” prediction.
We see that the lack of “wakeup” prediction causes increased performance loss.

7 Conclusion

Test circuits, implemented using the CoDeL platform, were examined to deter-
mine the expected savings that can be achieved from power gating individual
registers, and the associated performance impact. It was found that a CoDeL
initiated power gating scheme with static backward branch prediction provides
an overall superior combination of high gating effectiveness and low performance
loss. For high performance applications, CoDeL with no branch prediction (full
state space exploration) is the best choice. In both these methods, since the

Automated Power Gating of Registers 303

gating decisions are made at compile time, there is very little circuit area over-
head. We are currently investigating other branch prediction schemes (including
dynamic prediction) which may help in further reducing mispredictions, and thus
improve performance without degrading gating effectiveness.

Here, we have introduced a methodology for implementing efficient power
gating using the CoDeL platform. Using the ideas presented we hope to enhance
the CoDeL design environment and fully automate the process of power gating in
VLSI circuits. We are also working on more accurately defining the power gating
overhead needed. This will allow more accurate break even analysis, and thus
allow us to determine the minimum register size that should be power gated.

References

1. Kim, N.S., Austin, T., Blaauw, D., Mudge, T., Flautner, K., Hu, J.S., Irwin, M.J.,
Kandemir, M., Narayanan, V.: Leakage current: Moore’s law meets static power.
Computer 36(12), 68–75 (2003)

2. Powell, M., Yang, S.H., Falsafi, B., Roy, K., Vijaykumar, T.N.: Gated-vdd: a circuit
technique to reduce leakage in deep-submicron cache memories. In: ISLPED 2000,
pp. 90–95. ACM Press, New York (2000)

3. Flautner, K., Kim, N.S., Martin, S., Blaauw, D., Mudge, T.: Drowsy caches: simple
techniques for reducing leakage power. In: ISCA 2002, pp. 148–157. IEEE Com-
puter Society Press, Los Alamitos (2002)

4. Liao, W., Basile, J.M., He, L.: Microarchitecture-level leakage reduction with data
retention. IEEE Transactions on VLSI Systems 13(11), 1324–1328 (2005)

5. Rele, S., Pande, S., Onder, S., Gupta, R.: Optimizing static power dissipation by
functional units in superscalar processors. In: Horspool, R.N. (ed.) CC 2002 and
ETAPS 2002. LNCS, vol. 2304, pp. 261–275. Springer, Heidelberg (2002)

6. Hu, Z., Buyuktosunoglu, A., Srinivasan, V., Zyuban, V., Jacobson, H., Bose, P.:
Microarchitectural techniques for power gating of execution units. In: ISLPED ’04,
pp. 32–37. ACM Press, New York (2004)

7. Sivakumar, R., Dimakopoulos, V., Dimopoulos, N.: CoDeL: A rapid prototyping
environment for the specification and automatic synthesis of controllers for multi-
processor interconnection networks. In: SAMOS III, pp. 58–63 (July 2003)

8. Agarwal, N., Dimopoulos, N.: Power efficient rapid hardware development using
CoDeL and automated clock gating. In: ISCAS 2006 (May 2006)

9. Agarwal, N., Dimopoulos, N.: Towards automated power gating of registers using
CoDeL. In: ISCAS 2007 (May 2007)

10. Mutoh, S., Douseki, T., Matsuya, Y., Aoki, T., Shigematsu, S., Yamada, J.: 1-
v power supply high-speed digital circuit technology with multithreshold-voltage
cmos. IEEE Journal of Solid-State Circuits 30(8), 847–854 (1995)

11. Zivojnovic, V., Martinez, J., Schläger, C., Meyr, H.: DSPstone: A DSP-oriented
benchmarking methodology. In: ICSPAT 1994 (October 1994)

12. Bromley, J.: Synthesizable vhdl fixed point arithmetic package (2006),
http://www.doulos.com/knowhow/vhdl designers guide/models/fp arith/

http://www.doulos.com/knowhow/vhdl_designers_guide/models/fp_arith/

	Automated Power Gating of Registers Using CoDeL and FSM Branch Prediction
	Introduction
	Power Gating
	Gating Methods
	Time-Based Power Gating
	CoDeL Initiated Power Gating
	CoDeL Assisted Time-Based Power Gating

	FSM Branch Prediction
	Evaluation Framework
	Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

