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This paper concerns an analytical and experimental investigation into the dynamics of
an automatic dynamic balancer (ADB) designed to quench vibration in eccentric rotors.
This fundamentally nonlinear device incorporates several balancing masses that are free
to rotate in a circumferentially mounted ball race. An earlier study into the steady state
and transient response of the device with two balls is extended to the case of an arbitrary
number of balls. Using bifurcation analysis allied to numerical simulation of a fully
nonlinear model, the question is addressed of whether increasing the number of balls is
advantageous. It is found that it is never possible to perfectly balance the device at
rotation speeds comparable with or below the first natural, bending frequency of the
rotor. When considering practical implementation of the device, a modification is
suggested where individual balls are contained in separate arcs of the ball race, with rigid
partitions separating each arc. Simulation results for a partitioned ADB are compared
with those from an experimental rig. Close qualitative and quantitative match is found
between the theory and the experiment, confirming that for sub-resonant rotation
speeds, the ADB at best makes no difference to the imbalance, and can make things
substantially worse. Further related configurations worthy of experimental and
numerical investigation are proposed.

Keywords: Jeffcott rotor; imbalance; autobalancer; bifurcation; vibro-impact;
multistability

1. Introduction

Imbalance in rotating machinery is a common source of vibration in many
applications. Owing to the centre of mass of the rotating component not being
located at the centre of rotation, such eccentric rotors undergo periodic
oscillation known as whirl (Jeffcott 1919). To limit this vibration, rotors are
typically balanced by either using fixed static masses added to the rotor, or
conversely by machining away small mass from the rotor, during the
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manufacturing process. However, such balancing cannot compensate for changes
in imbalance that occur post-production or as a result of operating conditions.
Thus, frequent field balancing is required in many applications. Furthermore,
this addition (subtraction) of static mass cannot account for a dynamic
imbalance. One example of a dynamic imbalance is found in a washing machine,
i.e. one cannot predict, a priori, where the washing will accumulate during the
wash cycle (Adolfsson 2001).

Such dynamic imbalance has inspired the use of self-compensating, automatic
dynamic balancing (ADB) mechanisms for eccentric rotors. The principal idea
behind the ADB is that the balancing balls are subjected to a driving force
caused by an apparent centripetal force acting from the offset centre of mass to
each ball. When the speed of rotation is below the first resonance, this driving
force pushes the balls towards the imbalance, thus moving the centre of mass
away from the centre of rotation. However, when the speed of rotation is greater
than the first resonance, the driving force pushes the balls to the opposite side of
the rotor than the imbalance, thus moving the centre of mass towards the centre
of rotation. Viscous damping in the ball race causes energy dissipation, allowing
the balls to come to rest in asymptotically stable steady-state positions.

The ADB first received attention as early as 1904, with the first theoretical
investigation, accompanied by some experiments, undertaken by Thearle (1932).
In this paper, there is also a discussion on why an ADB consisting of a fluid, in
place of solid weights, would not work. Further theoretical investigations can be
found in Sharp (1975) and Majewski (1987), in which the results of a linear
stability analysis show that complete balance is possible for sufficiently high
rotation speeds. Moreover, Ryzhik et al. (2004a) showed that even if partial
balance can only be achieved, an ADB increasingly reduces vibration as the
rotation speed is increased. There are several commercial implementations of
ADBs, with a number of patents granted from 1961 onwards (see Lee & Van
Moorhem 1996). Applications include optical disc drives, in which the aim is to
achieve higher operating speeds without losing tracking performance (Kim &
Chung 2002; van de Wouw et al. 2005), and balancing of machine tools, such as
lathes, angle grinders and cutting tools (Rajalingham & Rakheja 1998).
However, the ADB idea has not been more generally adopted, not least because
the problem is fundamentally nonlinear, and is extremely sensitive to
perturbation. Thus, while the ADB can completely quench whirl oscillations at
some rotation speeds and for some initial conditions, it can also make the
imbalance significantly worse.

Only recently have fully nonlinear analyses of the autobalancer been
undertaken. Based on a Lagrangian description of the equations of motion,
steady-state bifurcation studies were carried out by Chung & Ro (1999) and by
Adolfsson (2001), who identified regions in parameter space where stable
rotating states, whether balanced or not, are possible. By moving to a rotating
frame, Green et al. (2006a) carried out a detailed nonlinear investigation in the
case of two balls, by computing both isolated branches of periodic solutions and
those emanating from Hopf bifurcations of the equilibrium states. Significant
regions of bistability were found between these steady and periodic states,
chaotic states and states in which the balls rotate at a different angular
frequency than the rotor. Furthermore, perturbations were shown to result in a
large growth in the vibration before subsequent transient decay. This prompted
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the study by Green et al. (2006b), where the authors used the concept of
pseudospectra to analyse this sensitivity to perturbation. It was found there
that while the completely balanced state becomes increasingly stable for high
rotation frequencies, it also becomes increasingly sensitive to perturbation, with
an increasingly larger transient response before settling to the steady state.

Experimental investigations into the use of ADBs can be found in Lee & Van
Moorhem (1996), Huang et al. (2002) and van de Wouw et al. (2005). One of the
crucial issues is to design a releasing mechanism for the balancing masses that
overcomes a global instability identified in Green (2005), in which the constant
speed of the balancing masses lags that of the rotor. This may be partially
overcome by clamping the balls in fixed positions until the desired, constant
speed of rotation is reached. The balls could then be released at the same speed
as the rotor. van de Wouw et al. (2005) investigated a different mechanism with
many balls in which the energy is dissipated through frictional forces between the
balls and the race, which encourages the balls to remain approximately in phase
with the rotor. However, a non-zero force is produced when the balls come to
rest. Consequently, the steady-state positions are not discrete but instead are
found over small ranges of the race. This phenomenon is known as stiction. Thus,
compared to the viscous damping case, this multiplicity of equilibria is harder to
analyse and is more likely to produce a non-zero radial vibration when the balls
come to rest.

The aim of this paper is to look at the practical issues associated with an
implementation of the ADB on a large-scale rotor. We first consider the effect of
using more than two balancing masses. In particular, we show how the stability
regions found in Green et al. (2006a) for the two-ball case change for three and
four balls. We have also designed and built an experimental rig inspired by some
of the previous experimental results. To overcome some of the observed
instabilities, we propose a novel design consisting of a partitioned ball race.
However, for our chosen design, we found that the dramatic increase in radial
vibration meant that it was not practically possible to break through the first
resonance. This setback was also identified in Lee & Van Moorhem (1996).
Therefore, in this paper, our experimental investigations will be confined to the
case of low rotation speeds.

The rest of the paper is organized as follows. In §2, we recall the equations of
motion derived by Green et al. (2006a) of an eccentric rotor fitted with an ADB
consisting of an arbitrary number of balancing balls. From direct analysis of the
equations, we identify all possible steady-state solutions, whether balanced or
not, and show that the balanced state has a translational degeneracy for more
than two balls. Next, in §3 we perform a full nonlinear bifurcation analysis for
an ADB with three and four balancing balls, mapping out regions of stable
equilibria as parameters in the problem are varied. This is complemented by
simulation results obtained by numerical integration. In §4, we introduce the
partitioned ball race model and show the results of numerical simulations. In
§8§5 and 6, we describe our experimental set-up and present results which are
compared with numerical simulation results for the corresponding parameter
values, where only the experimental viscous damping coefficient has to be
identified through fitting. Finally, in §7 we draw conclusions and suggest
avenues for future work.
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Figure 1. Schematic of an automatic dynamic balancer with a partitioned race (see text for
explanation of symbols).

2. Automatic dynamic balancer

An automatic dynamic balancer consists of two or more balancing masses (balls)
that are free to move in a ball race that is mounted at a fixed radial distance R
from the centre of rotation of a rotor. A rotating disc with an eccentric mass
centre, fitted with a partitioned ADB is shown schematically in figure 1 for the
case of three balls, where for the time being we shall ignore the presence of the
boundaries between partitions Py, (i=1, 2, 3).

The race is positioned at a fixed distance from the centre of rotation of the disc
and contains a small amount of viscous fluid. The point Cy; represents the centre
of mass of the disc without the balancing masses. It is located at a distance
(eccentricity) e from the centre of rotation Cg. The whole rig (rotor plus ADB) is
assumed to be isotropically suspended and to rotate at a constant angular
velocity w. For a study into anisotropic support, we refer to Ryzhik et al. (2004b).
Furthermore, all movement is assumed to be constrained to the horizontal
(X, Y)-plane, and due to centrifugal forces, the balls are assumed to remain in
contact with the race.

(a) FEquations of motion

The equations of motion describing the ADB can be derived using a
Lagrangian approach, with generalized coordinates,

(Xa Y)¢17¢2)“'7¢n)7 (21)

describing the motion of the rotor in the (X, Y)-plane and the angular position of
the ith ball, respectively. With the addition of a simple Rayleigh dissipation
function representing directly proportional viscous damping in both the ball race
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and the rotor suspension system, one obtains

MX — Mew® cos wt + Z m{X — Ré; sin(wt + ¢;) — R(w + ¢;)* cos(wt + ¢,)}
i=1

+ kX =—cX, (2.2)

MY — Mew?® sin wt + Z m{Y + Ré; cos(wt + ¢;) — R(w + ¢;)” sin(wt + ¢,) }
) i=1

+kY =—cY (2.3)

and . . o .
—mR[X sin(wt + ¢;) — Y cos(wt + ¢;)] + mR*¢p; = —D¢,. (2.4)
In this formulation, it is assumed that all balls in the balancer have the same
mass m and they all exert the same viscous drag D. The rotor, of mass M and
radius R, is assumed to be driven at a constant angular velocity w and to be
isotropically mounted with spring constant £ and damping coefficient c. We note
that the viscous forces D¢, acting on the balls have no equal and opposite
reaction on the rotor. These viscous forces are insignificant compared with the
centripetal forces acting on the rotor due to the balls, and hence are neglected.

(b) Dimensionless form in a rotating frame

In dimensionless form, the parameters describing the system are: the rotation
speed Q; the external damping ratio {; the internal damping (; the mass ratio u;
and the eccentricity 6. These are given as

) c D m
o, ) C 9 /——kM7 ﬁ mRan , M an R ( )
where w,, is the natural frequency of the system, given b
k
=4/—. 2.
W, m (2.6)

We note that, when deriving the following equations of motion, the
displacements x and y were rescaled with respect to the radius R, and time
rescaled with respect to the natural frequency w,,.

Our final transformation converts the equations of motion to autonomous
equations. We move the frame of reference to the rotating frame using the
following substitutions:

X = x cos(Qt) — y sin(Qt) (2.7)
and

Y = zsin(Qt) + y cos(Qt). (2.8)
This leads to the following autonomous dynamical system describing the motion
of the rotor and ADB in the z and y directions,

l+nu 0 A 20 2001+ (4
0 1+nu/\¥y 2Q(1+ nu) 2L Yy
K —2Q¢\ /«z 0Q? (Q+¢,)? ¢ cos¢;
* (29: K ) <y> - ( ) M;( — . (Q+¢i)2> (Sin‘f’i) 2
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and the motion of the ith ball,
b+ Bp; — (i — Q*x—2Qi)sing; + (i — Q*y + 2Qi)cos p, =0, (2.10)

where ¢, measures the angular position of the ith ball from the line of eccentricity
(Cr—Cy in figure 1), i=1, ..., n. Furthermore, K =1—Q?(1+ nu) represents the
effect of centripetal acceleration. This reduces the effective stiffness of the system
and is often called ‘spin softening’ or ‘centripetal softening’. For a full derivation,
including the procedure of making these equations dimensionless, we refer to
Green et al. (2006a).

(c) Steady-state analysis

Green et al. (2006a) provides a detailed bifurcation analysis of steady states
and periodic solutions found in an ADB with two balancing balls. In this paper
we consider an ADB with three and four balls showing how this affects the
potential stability of the system.

The steady-state solutions are obtained by setting the time derivatives in (2.9)
and (2.10) as zero. The steady-state solution can be categorized as balanced
when r=y/2? + y> =0 or unbalanced when r= /2> + y?> # 0 but the balls come
to rest.

A balanced steady state corresponds to the centre of mass of the system being
located at the centre of rotation, and satisfies

n 6 n
r=y=0, Y cos¢;=—— and Y sing, =0. (2.11)
i=1 H i=1

When n>2, there exist infinitely many solutions to (2.11). We will refer to these
solutions as the sets of balanced state 1.
As is the case for two balls, unbalanced steady states are found when

Y—tang, i=1,..,n, (2.12)
xr

with solutions
bi=¢ +km, i=2,...n k€7 (2.13)

Without loss of generality, we consider k,=0 or 1. When k,=0, the first and the
ith ball coincide and when k;=1, the first and the ith ball are found on opposite
sides of the race to each other, in line with the centre of rotation Cr. We note
that in this analysis, collisions between balls are neglected. Physically, this could
be realized by considering a multiple ball race (Hwang & Chung 1999).

When all balls coincide (k;=0), solutions, in terms of ¢, are

KQ?(nu cos ¢y + 0) + 2nuQ3¢ sin ¢,
x =
K? + (2Q¢)*

and (2.14)

nKuQ’sing; —2Q%(6Q° + nuQ’cosg,)
K? + (207)*

9
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where

—2nuQf

—K
—arctan(—), ¢, =¢1, 1 =2,...,n.
v/ K2 + (2Q7)? 20¢ 2.15)

In what follows, we will refer to (2.14) and (2.15) as the coincident state 27 .
When (n—m) balls lie opposite from m coincident balls (k;=1 for some i), we
find solutions

¢, = tarccos

. KQ*((2m—n)u cos ¢y +0) +2(2m—n)uQ3¢ sin ¢y )
a K? + (2Q0)°
and (2.16)
_ (2m— n) K uQ%sing; —2Q¢(6Q% + (2m — n)uQ?cosg,)
Y K? + (207)? ’
where
—2(2m —n)uQ¢ <—K>
¢, = tarccos —arctan| —— |, ¢, = ¢4,
5v/ K2 + (2Q7)? 2497 (2.17)

1=2,...,m, ¢;=¢+m j=m+1,...,n

In what follows, we will refer to (2.16) and (2.17) as the (n—m) in-line states
3(n—m)™.

Again, we refer to Green et al. (2006a) for an analysis of two balls, i.e. n=2
and consequently, in (2.16) and (2.17), m=1. Here we consider three and four
balancing balls.

For n=3, we can either have m=1 or 2. However, as the balls are identical so
are these states, i.e. at any one time we have one separate and two coincident balls.
The sign of (2.17) determines the region where the separate (or the coincident)
ball(s) are with respect to the imbalance. Hence we refer to the in-line states, with
three balls, simply as 3T.

For n=4, we have three situations, one where two balls are coincident (m=2)
and one where three balls are coincident (m=3). (The latter state being identical
to m=1.) We will refer to these four-ball, in-line states as 3A and 3B*,
respectively.

(d) Conditions for existence of steady states
Analogous to the two-ball case, (2.11) implies that, for a balanced state 1 to exist,

)
B e i=—. (2.18)
n
In other words, to achieve balance, the combined mass of the balls must be large
enough to cope with the eccentricity 0. Note that when equality is reached, this
corresponds to the coincident states 2F.
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The coincident states 2¥ exist only if the modulus of the argument of the
inverse cosine of (2.15) is less than unity, i.e.

K?> (2Q7)? <(%>2 - 1). (2.19)

As for the two-ball case, when u <., the states 2% always exist.
Likewise, from (2.17), the in-line states 3(n—m)™ exist if

K*> (29:)%(@)2 — 1). (2.20)

In other words, they exist for u < é(2m—n).

The existence of the coincident and the in-line states, above the critical values
of u, depends on the other parameters 6, { and @ in a non-trivial way. To
investigate this, we turn to numerical bifurcation techniques.

3. Numerical results for multiple balls

In this section we investigate the stability of the steady states identified in §2c¢
using numerical bifurcation techniques. Namely, we compute the boundaries
between solutions with differing stability using the continuation package
MaTtconT (Dhooge et al. 2004). In this way, a detailed map is produced showing
how regions of stability change as parameters are varied. These results will be
backed up by direct simulation of the equations of motion.

In each case, where appropriate, the fixed parameters are given as

B=06=¢=001 and u=0.05. (3.1)

These parameters were chosen to allow direct comparison with the two-ball ADB
study of Green et al. (2006a).

(a) Steady-state bifurcation diagram for n=23

We start by investigating the ADB with three balancing balls. Figure 2a—d
shows two-parameter bifurcation diagrams for Q versus u, 6, { and §, respectively.
The dark shaded regions of figure 2 indicate regions of parameter space in which
the balanced state 1 is stable. The lighter shaded regions correspond to parameters
at which one of the coincident states 2% is stable. The unshaded regions
correspond to regions of instability. Solid lines correspond to bifurcations of states
1 and 2%, while dashed lines correspond to bifurcations of states 3. The curves
are labelled as Hopf bifurcations ‘H’ (oscillatory instabilities) which occur when a
pair of pure imaginary eigenvalues cross the imaginary axis and saddle-node
bifurcations ‘SN’ (steady-state instabilities), which due to symmetry are actually
pitchfork bifurcations for some of the states. In the latter case, a real eigenvalue
crosses the imaginary axis (Kuznetsov 1997). Furthermore, as there are infinitely
many balanced states, we fix ¢3=m when analysing the bifurcations of state 1.
This is equivalent to computing bifurcations of state 1 for the two-ball case with a
different 6 to that used by Green et al. (2006a). Likewise, the coincident states may
be compared to a two-ball case where the masses of the balls are increased, and
the in-line states to the case where each ball has a different mass.
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Figure 2. Two-parameter bifurcation diagrams of steady-state solutions in the three-ball ADB.
(Solid lines, saddle-node bifurcations SN and Hopf bifurcations H of states 1 and 2+ ; broken lines,
bifurcations of state 3; dark shaded regions, stable state 1; lighter shaded regions, stable state 27 .)
When fixed, the parameters are 6= ={=0.01 and u=0.05. The varying parameters are (a) Q versus u,
(b) Q versus 6, (¢) Q versus £ and (d) Q versus 3.

It is clear from these bifurcation diagrams that for low rotation speeds the
coincident states 2% are stable. Specifically, it can be shown that this is state 2~
While for high rotation speeds the balanced state 1 is shown to be stable.
Furthermore, figure 26 shows a region of stability, for high eccentricity d, of the
balanced state 1, close to the resonant rotation speed Q=1. This is our first
indication that the addition of more balancing balls changes the stability
properties. We recall that in Green et al. (2006a), the two-ball ADB was shown
to exhibit a small region of stability close to this resonant speed in all parameter
planes. Moreover, it was shown that this small region of stability was accessible
only through a very limited range of initial conditions. In other words, for
intermediate rotation speeds, and random initial conditions, the system is likely
to be drawn into unstable, possibly chaotic dynamics. However, the three-ball
ADB shows less stability close to the resonant speed, for the parameter range
under consideration. Finally, in the (2, u)-plane and for low values of u, the
coincident states 2% are stable. Again, it can be shown that this is state 2.
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Moreover, for each of the parameter sets under consideration, and starting
within a region of balanced equilibrium (dark shading), the following scenario
holds: for decreasing Q, the balanced state 1 is destabilized in a Hopf bifurcation
H1. The dynamics then enter a region of non-steady-state behaviour, containing
periodic oscillations through to chaotic motion. Decreasing Q further sees a
saddle-node bifurcation SN2+. At this point, the two coincident states 2+ are
born. Again, we have that the state 27 is stable, while the state 27 is unstable.

Figure 2¢ shows that the region of stability of the balanced state 1 in the (2, d)-
plane is small. This is again in stark contrast with the two-ball case, in which this
region of stability was seen to cover approximately half of the parameter plane
under consideration. This shows that increasing the number of balancing masses
has a detrimental effect on whether or not stability can be achieved for the range of
parameters under consideration. Physically, this implies that the three-ball ADB
cannot achieve balance when the rotor damping ¢ is too high. We note that the
bifurcation diagram in the (Q, ()- plane is practically identical to the two-ball case.

Like the two-ball case, the states 3* were found to be always unstable. However,
it is involved in an 1nterest1ng bifurcation scenario. Figure 3a—c shows one-
parameter bifurcation diagrams, for the three-ball ADB, for u=0.05, 0.005 and
0.0025, respectively, i.e. for an 1ncrea51ng rotor mass to ball mass ratio. For large u,
figure 3a shows that the four states 2% and 3% are born in two separate saddle-node
bifurcations. These occur at the left and right edges of the ‘v’-shaped curves SN2+
and SN3 4, as shown in figure 2a. Decreasing u sees one pass the base of the ‘v’
representing the saddle-node curve SN3+ while still inside the v-shaped curve
SN2+ (figure 2a). F1gure 3bshows a one-parameter transmon at such a value of u,
namely u=0.005. It is clear that the two sets of states 2% are still born i in two
separate saddle-node bifurcations SN2 1. However, the two sets of states 3 have
now merged into two curves; a lower curve on Wh1ch one ﬁnds the state 3% and an
upper curve on which one ﬁnds the state 37. The states 3% now exist for all Q.
Finally, figure 3¢ shows that by decreasing u further to u=0.0025 we pass the base
of the ‘v’ representing the saddle-node curve SN2 + (again see figure 2a). Similar to
the case for the states 3¥, the sets of states 2 merge together. They form an upper
curve consisting of state 2 and a lower curve con81st1ng of state 2. Subsequently,
for low values of u, both the states 2% and 3F exist for all Q.

(b) Steady-state bifurcation diagram for n=4

Figure 4a—d shows two-parameter bifurcation diagrams for the four-ball ADB.
The notation used is the same as for the three-ball diagrams of figure 2. The
exception being that the in-line state 3 now comes in two varieties: 3A and 3B™
(recall §2¢). Again, as there are infinitely many balanced states 1, we fix ¢3=m and
¢4,= —m when computing bifurcations of state 1. Once more, the balanced state 1 is
shown to be stable for high rotation speeds, while the coincident state 2™ is stable for
low rotation speeds or low mass ratios u. Interestingly, however, the region of
stability around the resonant speed (2= 1), identified for the two-ball ADB in Green
et al. (2006a) but shown to disappear for the three-ball ADB in figure 2a, reappears
for the four-ball ADB. In fact, figure 4b shows that this region of stability now occurs
for both low and high values of é. It is clearly seen that all regions of stability of state
1 are connected to the Hopf curve H1. (In fact, the regions of stability of state 1 are
connected by this curve for large values of u in figure 4a-d.)
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Figure 3. One-parameter bifurcation diagrams for the three-ball ADB. Diagrams for Q versus ¢, for
(a) ©=0.05, (b) ©u=0.005 and (¢) w=0.0025. (Solid lines, stable states; broken lines, unstable
states; the numbers indicating the type of state). Saddle-node bifurcations are denoted by crosses
and Hopf bifurcations by asterisks.

Figure 4c¢ shows that upon increasing the number of balls, the region of
stability of state 1 in the (Q, ¢)-plane shrinks further. Moreover, the region of
stable operation of state 27, for low rotation speeds, is also shown to decrease in
size. The unshaded region of instability is shown to dominate the (Q, d)-plane.
Finally, again, figure 4d shows little quantitative change in the stability structure
of the (2, B)-plane. However, the large region of stability of state 1 does move
further to the right. In other words, increasing the number of balls is again shown
to increase the size of the region of instability.

We note that the states 3A and 3BT are always unstable. The interesting
bifurcation scenario outlined in figure 3 occurs again for the four-ball ADB.

(¢) Numerical simulation results

We now present results obtained by numerical integration of the system (2.9)
and (2.10). We restrict ourselves to the case of three balls only, in order to
illustrate the extra complexity of having degenerated equilibria when n>2. Our
aim is merely to show the different steady states identified in §2. A complete
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Figure 4. Bifurcation diagrams of steady-state solutions in the four-ball ADB. (Solid lines, saddle-
node bifurcations SN and Hopf bifurcations H of states 1 and 2 +; broken lines, bifurcations of state
3; dark shaded regions, stable state 1; lighter shaded regions, stable state 27.) When fixed, the
parameters are §=06={=0.01 and u=0.05. The varying parameters are (a) Q versus u, (b) Q
versus 6, (¢) Q versus £ and (d) Q versus §.

transient analysis, including multistability between steady states and possible
periodic states, emanating from the Hopf bifurcations identified above, is beyond
the scope of this study.

Figure 5 shows the time evolution of the radial vibration r = /2% + 4? (figure 5a)
and the angular position of each of the three balancing balls ¢, 5 5 (figure 5b). Initial
conditions were taken such that one ball was launched directly opposite to the
imbalance, with the other two launched from symmetric positions at an angular
distance of 7/3 from the imbalance, namely ¢1(0) =7/3, ¢o(0)=m and ¢3(0)=57/3.
Note that if the balls were clamped in this way during an acceleration phase, they
would not add to the imbalance. Parameters were fixed at 2=2.5,{=0.01, 6=0.01,
6=0.01 and £=0.05. As identified in figure 2 the radial vibration is seen to reduce to
zero. In other words, the ADB has balanced the eccentric rotor.

Figure 6 shows the time evolution of r and ¢, » 5 for 2=0.5, {=0.01, 6=0.01,
6=0.01 and ©=0.05. Again the balls were initially fixed at ¢1(0)=m/3, ¢2(0)==
and ¢3(0)=5m7/3. It is clearly seen that, for these parameters, the balls converge
to the same angular position. This is the coincident state predicted in figure 2.
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Figure 5. Time evolution of an ADB with three balls for 2=2.5. Other parameters were fixed at
£=0.01, $=0.01, 6=0.01 and u=0.05. (a) The radial vibration r= /2?4 ¢ and (b) the ball
positions ¢q 2 3 against time ¢. Initial conditions were fixed at z=y=1o= =0, b1 =y=p3=0,
¢1=7/3, po=m and ¢3=>57/3.

Finally, figure 7 shows the dynamics for Q=1.6. All other parameters and initial
conditions remain unchanged. For this value of Q, figure 2 predicts no stable
dynamics. This is clearly seen in figure 7. The radial vibration r exhibits chaotic
dynamics (figure 7a), while the angular position of each ball is seen to continually
decrease; a constant rotation modulo 27 (figure 7b). The speed of the imbalance has
exceeded the average speed of each ball. In fact, as well as reaching a speed which lags
that of the rotor, the positions of the balls are also undergoing chaotic motion. This is
akin to the instability identified in Green (2005). We note that with two or more balls,
one or more may undergo this instability while the rest maintain pace with the speed
of the rotor (see fig. 9(d) of Green et al. (2006a)).

(d) Discussion on optimal number of balls

The results obtained so far suggest that there is little advantage in increasing
the number of balls in the ADB, purely in terms of the size of the parameter
region in which the balanced state 1 is stable. For rotors whose rotation speeds
are sufficiently beyond the fundamental resonance Q=1, this issue is not so
crucial and it is more important to assess the sensitivity of the balanced state to
perturbations, and the size of its basin of attraction. Without repeating the
detailed analysis by Green et al. (2006b), this aspect of the problem is not so clear
for more balls, but preliminary computations suggest that the problem is more
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Figure 6. Time evolution of an ADB with three balls 2=0.5. Other parameters were fixed at
£=0.01, 8=0.01, 6=0.01 and p=0.05. (@) The radial vibration r=+/2%>+ ¢ and (b) the ball
positions ¢, » 3 against time ¢. Initial conditions were fixed at z=y=1= =0, d1=y=3=0,
¢1=m/3, po=m and ¢3=>57/3.
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Figure 7. Time evolution of an ADB with three balls for 2=1.6. Other parameters were fixed at
£=0.01, 8=0.01, 6=0.01 and pu=0.05. (@) The radial vibration r=+/2>+ ¢ and (b) the ball
positions ¢y 2 3 against time t. Initial conditions were fixed at z=y=1=y=0, d1=¢y=3=0,
¢1=7/3, po=m and ¢3=>57/3.
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robust, i.e. the basin of attraction is larger, for high rotation speeds with an
increased number of balls. Thus, at this stage, there is no general conclusion
possible on the optimum number of balls and the choice would depend on the
specific details of the implementation of the ABD.

4. Partitioned ball race

Once the dynamics converge to the rotating state identified in figure 7, one cannot
attain stability for higher rotation speeds simply by ramping up the speed. This
instability may easily be reached through an acceleration phase, as identified by
Green (2005), i.e. by increasing the rotation frequency through the resonant speed,
which causes the balls to slip and thus have a speed less than that of the rotor. One
solution to this problem would be to clamp the balls in fixed positions until the desired,
constant speed of rotation is reached (Ernst 1951). The balls could then be released at
the same speed as the rotor. Another solution, which we introduce here for the first
time, is to place partitions in the ball race, dividing the race into sectors of equal arc-
length, with one ball in each partition. During a rapid acceleration phase, the balls
would be forced to rest against their lagging partition. After the acceleration, the balls
would have the same speed as the rotor (from an external observer’s point of view).

Intuitively, in order to achieve a balanced state it would seem necessary to have
at least three partitions. In the case of two balls, there is no degeneracy (internal
degree of freedom) in the balanced equilibrium state. Hence, for certain positions of
imbalance, the fixed partitions will not allow the balls to migrate to this equilibrium
position. For three or more balls, we have an internal degree of freedom that allows
balance to be achieved (at appropriate parameter values for which the state 1 exists)
no matter where the partitions are placed with respect to the imbalance. Hence, in
what follows we shall consider the case of three partitions exclusively.

A partitioned ball race has other potential advantages. Firstly, the coincident
equilibrium state is not possible. This equilibrium results in an increased
imbalance when it is stable, which is general for subcritical rotation speeds. The
elimination of this state might lead to more favourable subcritical behaviour.
Another advantage is that collisions between balls (an effect we have not
included in our model) cannot occur. Instead, we have collision between balls and
partitions only, which can be designed to have specific desired properties leading
to impacting behaviour with either high or low coefficients of restitution.

Figure 1 shows a schematic of an ADB with such a partitioned race with three
partitions Py;y,; (i=1, 2, 3). Here subscript b denotes the back (lagging) face and f
the front (leading) face of a partition with respect to the direction of rotation.
The equations of motion governing this system are the same as (2.9) and (2.10),
together with the following impact law, modelling the collisions of the balls with
their respective partitions:

it ¢, =a+M+Tb or ¢, =a+2ﬂ—rb,
n n (4.1)

then ¢;,—>—ep;, e€[0,1], i=1,...,n.

Additional parameters include 7, the angular diameter of the ball; «, the angle
to the first partition from the line of imbalance (Cr to Cyp); and a coefficient of
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Figure 8. Time evolution of a partitioned ADB with three balls for Q=0.5. Other parameters were
fixed at £=0.01, =0.01, 6=0.01 and u=0.05. (@) The radial vibration r= \/2z? + y* and (b) the
ball positions ¢, .3 against time ¢. Initial conditions were fixed at r=y=1=75=0,
b1=o=3=0, py=7/3+n,, pa=n+n, and p3=57/3+7,.

restitution e. In other words, this law states that when a ball impacts with its
partition, its direction of motion is reversed and its speed is multiplied by e.

To show that the dynamics are consistent with those identified in §3¢, figure 8
shows the evolution of the radial vibration r=\/2?+ 4? (figure 8a) and the
angular positions of the balls (figure 8b) for 2=0.5. After an acceleration phase,
the initial conditions of the balls were fixed at ¢,(0) =7/3+ ry,, ¢2(0)=n+r, and
#3(0)=5m/3+n,; n,=0.14. Parameters were fixed to coincide with those used in
§3¢, namely £=0.01, 3=0.01, 6=0.01 and u=0.05. Additional parameters were
fixed at a=m/3 and e=0.001. This small value of e was chosen to model the
impact between the ball and the grub screw; the actual contact taking place near
the top of the ball. In figure 8b, the partitions are marked by grey dashed lines
and the position of the imbalance by a solid (grey) line (at ¢;=2m). For this low
rotation speed, it is clear that the balls want to move to the coincident states 2%
identified in figure 6. However, the partitions impede their progress. As expected,
this results in a lower radial vibration of 7=0.032 when compared with r=0.056
(recall figure 6a).

Figure 9 shows the dynamics for @=1.6. At this rotation speed, figure 7 identified
the instability in which the speed of the balls lags that of the rotor. The partitions
obviously stop such dynamics. Instead, the balls continuously impact between their
leading and lagging partitions in a periodic manner. However, this bouncing motion
has an alarming effect on the radial vibration, which increases above r=1.

Finally, figure 10 shows the dynamics for Q=2.5. The system is clearly seen to
balance; the radial vibration r goes to zero, while, after one impact with their
respective leading partitions, the balls come to rest away from their partitions.
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Figure 9. Time evolution of a partitioned ADB with three balls for @=1.6. Other parameters were
fixed at £=0.01, $=0.01, 6=0.01 and u=0.05. (a) The radial vibration r = /2% + y* and (b) the
ball positions ¢; .3 against time ¢. Initial conditions were fixed at z=y=1=9y=0,
P1=¢y=¢3=0, ¢p=7/3+1,, po=m+n, and ¢3=57/3+n,.
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Figure 10. Time evolution of a partitioned ADB with three balls for =2.5. Other parameters were
fixed at {=0.01, $=0.01, 6=0.01 and u=0.05. (a) The radial vibration r=+/2%+ y* and (b) the
ball positions ¢123 against time ¢ Initial conditions were fixed at z=y=2=y=0,
$1=¢s=h3=0, ¢1=7/3+n,, po=7+n, and ¢3=57/3+n,
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Interestingly, the time it takes for the ADB to balance the rotor is far shorter
than for the unpartitioned case (compare with figure 5).

5. Experimental results

In an attempt to verify our numerical results, we designed and built an eccentric
rotor fitted with an ADB (figure 11). This consisted of an aluminium rotor hub
with a radius of 155 mm into which a steel ball race centred at a radial distance
of 105 mm was machined. The total mass of the hub was 10 kg. Steel balls with
30 mm diameter, 0.110 g mass were used as balancing masses. These balls were
visible through a perspex covering, into which grub screws were sunk in order to
form the partitions. An imbalance was added by attaching bolts to the extremity
of the hub. The rotor was fitted midway along a silver steel shaft of 30 mm
diameter. The effective length of the shaft could be varied by moving bearing
supports situated above and below the rotor. The whole set-up was mounted
vertically (so that gravitational effects could be neglected) and was driven by a
variable speed DC motor, through a flexible coupling, fitted above the shaft.

In the results presented here, a 100 g bolt was used as an imbalance. The
bearing supports were fitted to provide an effective shaft length of 1.305 m.
Furthermore, the ball race was coated with a thin layer of hydraulic fluid to
provide some resistance to the movement of the balls against the race.

At rest, a modal analysis was performed using LMS TEsT LAB software to estimate
the first resonance of the entire system. This was found to be w,,=29.5 Hz. Using this
first resonance, a half-power bandwidth method gave the external damping
coefficient of the system as ¢=0.052 Nsm ™', while the spring coefficient of the
shaft and rotor system was calculated as k=3.436X10° N m ™~ '. During rotation, a
Polytec Doppler laser vibrometer was used to measure the vibration of the rotor and
record the vibration spectra. Furthermore, a strobe light (figure 11) and a video
camera were used to visualize and record the ball positions. The speed of the rotor and
the frequency of the strobe light were controlled using DSPACE software.

(a) Steady-state ball configurations

During our experimental investigations, in addition to the situation in which
the balls were fized in a symmetric configuration, so as to not add to the
imbalance, we identified two further coexisting configurations in which the balls
came to rest in the ADB.

Figure 12 shows these two configurations for a frequency of 10 Hz (2 =0.339).
The partitions are highlighted by diamonds and the imbalance by a square. The
positions of the balls are highlighted by large dots.

Figure 12a shows the first configuration, which we will refer to as free. Here the
ball closest to the imbalance moves furthest from its lagging partition Ps;,. While
the other two balls both move away from their lagging partitions; the ball directly
opposite to the imbalance moves furthest. Both balls come to rest in the ball race.
This free-ball configuration was seen to be stable up to a rotation frequency of
approximately 11.5 Hz (2=0.390). Furthermore, it was shown to be robust against
external perturbation, namely striking of the shaft or the underside of the rotor.

For frequencies above approximately 11.5 Hz, the free-ball configuration was
destabilized. The resulting position of the balls is shown in figure 12b. It is clear
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Figure 11. Experimental rig.

that the balls move as far as possible towards the imbalance, as would be
expected for subcritical rotation speeds. This results in the ball closest to the
imbalance coming to rest between the lower two partitions of figure 12, with the
other two balls coming to rest against these two partitions. This configuration is
analogous to the coincident steady states 2% identified in §2¢ and shown in
figure 8. Hence, we will refer to this as the coincident-ball configuration.

(b) Experimental bifurcation diagrams

Figure 13 shows the result of our experimental investigations. The average
displacement, taken from the maximum of the first peak of the vibration spectra,
averaged over nine runs, is shown versus the rotation frequency. This peak
corresponds to the speed of rotation, also known as the ‘synchronous response’.
The circles correspond to measurements in which the balls were fixed; the
squares correspond to measurements in which the balls were free (figure 12a);
and the crosses correspond to measurements after the free configuration
destabilized resulting in the coincident configuration (figure 12b).

Quantitative similarities exist between each experimental run. Namely, for the
lowest frequencies considered, the free-ball configuration resulted in the least vibration,
followed by the coincident and fixed configurations. By increasing the frequency of
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Figure 12. Steady-state ball configurations. Three-ball steady-state configurations: (a) free and (b)
coincident. The dots highlight the position of the balls; the diamonds, the position of the partitions;
and the square, the position of the imbalance. Rotation is in the anticlockwise direction.

displacement (x 1075 m)
~

frequency (Hz)

Figure 13. Synchronous response versus speed of rotation. Maxima of the first peak of the averaged
vibration spectra showing fixed-ball positions (circles), free-ball positions (squares) and coincident-
ball positions (crosses). The ends of the error bars correspond to the maximum and minimum
deviations from the mean measurements.

rotation, interestingly, the free-ball configuration continues to result in a lower
vibration than the fixed-ball configuration for a short range of frequencies. However,
the fixed-ball configuration is eventually shown to result in the least vibration for higher
frequencies. The free-ball configuration is still stable at these higher frequencies, finally
becoming unstable at approximately 11.5 Hz (2=0.390). The balls move to the
coincident configuration after this instability. As expected, the coincident configu-
ration results in the greatest vibration at all frequencies.

6. Numerical bifurcation diagrams
We now compare the experimental results with those obtained using numerical
techniques. Namely, we numerically integrate equations (2.9), (2.10) and (4.1),

computing bifurcation diagrams for increasing Q. Parameters were chosen to
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correspond to the experiment, namely 6=0.0148, u=0.011, {=1.4027X10"7,
17,=0.14 and e=0.001. Furthermore, as § is an uncertain quantity, we perform
this analysis for different values of §.

Figure 14a-c shows numerical results computed with MATLAB for §=0.1, 0.3 and
1.0, respectively. Event detection routines were used to model the collisions of the
balls with the partitions. After a long initial transient period of ¢=10 000,
the extrema of the radial vibration = /2% + > have been plotted against the
rotation speed Q. Apart from the initial conditions at 2=0 (see below), the initial
conditions for each value of Q were obtained from the immediately preceding value.
For a given value of Q, a single point corresponds to a steady state and a finite
number of points corresponds to a periodic vibration. The greater the distance
between these points, the greater the amplitude of the oscillation.

In each panel, the fized-ball configuration is indicated by circles. Here the
balls were fixed at ¢1(t)=mn/3+mn,, ¢p2(t)=n+mn, and ¢3(t)=4n/3+n,, for all t>
0. The coincident configuration is indicated by crosses. Here the initial positions
of the balls at Q=0 were chosen to already lie close to the coincident
configuration, i.e. ¢1(0)=m/3+mn,, ¢2(0)=>57/3—n, and ¢3(0)=2m. These initial
conditions were chosen because, experimentally, the balls reach these positions
after instability at a high speed. Moreover, the configuration persists as the
speed is subsequently reduced. Therefore, in our simulations, when increasing
the speed from zero, we must start the balls close to this coincident
configuration. Finally, a free-ball configuration is indicated by squares. Here
the initial positions of the balls at Q=0 were fixed at ¢;(0)=m/3+ry,, ¢2(0)=
w4+, and ¢3(0)=>5m/3+r,. These initial positions were chosen to model the
experimentally observed positions of the balls immediately after the motor was
turned on. After the long transient period of t=10 000, the balls are seen to
stabilize in a free-ball configuration with steady-state positions ¢ =m/3+ 1,
¢pa=m+ 1, and ¢p3=27— 1. In other words, the first two balls come to rest at a
small distance away from their lagging partitions, while the third ball comes to
rest against its leading partition. This is slightly different from what was
observed experimentally, where the first two balls were shown to stay close to,
but move slightly away from, their lagging partitions with the third ball coming
to rest at ¢p3=2mw. We believe that, in the experiment, the balls may be subject
to additional stiction forces (van de Wouw et al. 2005). Such effects are not
incorporated in our current model.

After the long transient period, the vibration results shown in each panel are
qualitatively the same. The coincident-ball configuration (squares) is shown to
produce the most vibration, followed by the free- and fixed-ball configurations,
respectively. Both the free- and fixed-ball configurations are seen to undergo
instabilities (highlighted by a number of points for a given value of Q) as Q is
increased. Interestingly, this instability is shown to occur at increasingly higher
values of Q as ( is increased.

In our experiments, we observed that the free-ball configuration became
unstable at a rotation frequency of approximately 11.5 Hz. Given that the
resonant frequency was measured to be 29.5 Hz, this corresponds to an instability
at 2=0.39; thus suggesting that the internal damping in our experiments
corresponds to a value of § of order one. Furthermore, in experiments, after this
instability the balls moved to the coincident-ball configuration. This is not
observed in our numerical investigations. Instead, the free-ball configuration is
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Figure 14. Numerical bifurcation diagrams showing extrema of the radial displacement versus
rotation speed. Bifurcation diagrams obtained by numerical integration showing the extrema 7y,
of the radial vibration r=\/2?>+ 1? against rotation speed Q. Parameters were fixed at
£=1.4027X10"", 6=0.0148 and u=0.011; and (a) §=0.1, (b) $=0.3 and (¢) =1.0. (Circles,
fixed-ball configuration; squares, free-ball configuration; and crosses, coincident-ball configu-
ration.) Note that Q€&[0,0.5] corresponds to a physical rotor speed of w&|[0,14.75] Hz.

shown to destabilize to more complex dynamics which still do not reach the level
of vibration of the coincident-ball configuration. Specifically, these dynamics
correspond to each ball repeatedly impacting its front and back facing partitions.

7. Conclusions

The aim of the this paper has been to take the earlier bifurcation studies of
Chung & Ro (1999), Adolfsson (2001) and Green et al. (2006a) and draw
practical conclusions. To this end, we have designed and built an experimental
rig. This rig is capable of assessing the suitability of automatic dynamic
balancers at improving the vibration characteristics of eccentric rotors that are
below their fundamental resonance frequency. The experiments repeatedly
identified two steady-state configurations of the balls. One configuration was
shown to add as much mass as was possible, subject to the partition constraints,
to the imbalance. This configuration was analogous to the coincident steady state
of the ADB without the partitions. The second configuration corresponded to all
balls coming to rest away from a partition. This was shown to slightly add to the
imbalance for the majority of rotation speeds. However, measurements
repeatedly showed a reduction in the imbalance, and a lower radial vibration
than for a fixed-ball configuration, for the lowest rotation speeds investigated.
Bifurcation diagrams obtained by numerical integration of the equations of
motion describing this impacting system revealed similar results. In particular,
numerical simulation confirmed the existence of a free-ball configuration, similar
to the one identified in the experiments. We believe that the discrepancies
between our numerical and experimental results are due to stiction forces, which
are not currently incorporated into our model.

The simplest conclusion from these results is that, despite the existence of
various equilibrium positions of the balls which could improve the eccentric
vibrations in theory, the ADB does not help for such rotation speeds. While this
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conclusion may appear somewhat negative, there are several important steps we
have established in understanding the consequences of the nonlinear dynamical
analysis on the design of ADBs.

First, we have investigated the effects of using more than two balls. The
results are mixed. Increasing the number of balls increases the number of possible
equilibrium states and also the number of internal degrees of freedom within the
perfectly balanced state. Intuitively, these extra equilibria may give rise to more
robustness and larger basins of attraction of the balanced state, and we have
found some evidence to support this. However, increasing the number of balls
appears to decrease the range of parameter values at which balance is possible.
Further detailed comparison would be necessary for particular rotor geometry
and operating rotation speeds to ascertain how many balls would be optimal.

Second, we have established the advantages of the use of partitioned ball
races, with one ball in each partition. This simple modification to the simplest
design obviates the need for complex release mechanisms that clamp the balls to
the rotor until a desired rotation speed is reached.

Third, we have established partial agreement between our experimental
results and simulations of the numerical model. Note that bifurcation studies of
the problem containing partitions are not straightforward due to the presence of
non-smooth impacting behaviour. Future work may use recently developed
bifurcation software for impacting systems which will allow the detection of non-
smooth bifurcations (Budd et al. 2005) in addition to steady-state and Hopf
bifurcations that occur in the smooth system.

It has been beyond the scope of this paper to investigate all possible nonlinear
dynamics of the ADB with more than two balls, either with or without partitions.
Green et al. (2006 a,b) have shown the necessity of these studies in understanding the
actual behaviour of the system, including transient effects and multistability
between competing stable states. These studies are likely to be especially important
for supercritical rotors (for which Q> 1) which we have shown are likely to be the
only kinds of system for which an ADB might be effective. The building of a
lightweight, low bearing stiffness, experimental rig would appear to be pressing,
since our current experimental set-up is not able to access such rotation speeds.

Another important issue worthy of further study is to look at the combined
effects of viscous damping, stiction and impacts with partitions in the ball race. It
is probable that stiction could in fact be playing a role in the experiments
described in this paper, resulting in some of the differences with the numerical
simulations. Other geometries are also possible for the implementation of the
balancing masses, e.g. pendula or paddles mounted at separate axial positions on
the shaft (Horvath & Flowers 2005). It is clear from the bifurcation studies that
ball race damping is one of the key parameters governing the existence and
robustness of the stable balanced state and more modelling effort needs to put
into on characterizing how this damping arises in practice.

Finally, we have looked only at the use of ADBs to balance eccentric rotors.
Work in progress is looking at using multiple ADB discs which might also correct
for vibrations due to couple imbalance.
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