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Abstract

Bayesian inference provides a natural framework for combining experimental data with
prior knowledge to develop chemical kinetic models and quantify the associated uncertain-
ties, not only in parameter values but also in model structure. Most existing applications
of Bayesian model selection methods to chemical kinetics have been limited to comparisons
among a small set of models, however. The significant computational cost of evaluating pos-
terior model probabilities renders traditional Bayesian methods infeasible when the model
space becomes large. We present a new framework for tractable Bayesian model inference
and uncertainty quantification using a large number of systematically generated model hy-
potheses. The approach involves imposing point-mass mixture priors over rate constants
and exploring the resulting posterior distribution using an adaptive Markov chain Monte
Carlo method. The posterior samples are used to identify plausible models, to quantify rate
constant uncertainties, and to extract key diagnostic information about model structure—
such as the reactions and operating pathways most strongly supported by the data. We
provide numerical demonstrations of the proposed framework by inferring kinetic models
for catalytic steam and dry reforming of methane using available experimental data.

Keywords: Bayesian inference, chemical kinetics, model selection, Markov chain Monte
Carlo, adaptive MCMC, online expectation maximization

1. Introduction

A detailed elementary chemical kinetic model is a critical component of simulation tools in a
wide range of applications, including combustion, catalysis, electrochemistry, and biochem-
istry. The development of kinetic models for surface reactions, charge transfer reactions, and
biological reactions is particularly challenging, because there is typically little understand-
ing about the operating reaction pathways and often no knowledge about rate parameter
values in these settings. For instance, there exist a number of competing hypotheses about
H2 and CO oxidation mechanisms for a solid-oxide fuel cell (Hanna et al., 2014). The
standard approach to building models in such a case is to postulate reaction models and
to compare them based on their ability to reproduce indirect system-level experimental
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data. Data-driven model comparison thus involves defining a metric of fit, e.g., the sum
of squared residuals, and selecting a model that minimizes this metric, e.g., least-squares
or regularized least-squares fitting (Hanna et al., 2014; Vogler et al., 2009; Yurkiv et al.,
2011). The principal limitation of the least-squares fitting approach is that it only identifies
a single “best” model and yields point estimates of the underlying parameter values, with-
out providing a meaningful description of the uncertainty among competing models and in
their parameters. In addition, the estimated parameter values are usually only local optima
of the fitting metric, although methods that base model comparison on global optima do
also exist (Feeley et al., 2006).

Bayesian model inference overcomes the limitations of a least-squares fitting approach by
providing a rigorous method for fusing available experimental data with prior knowledge, to
yield a fuller description of model and parameter uncertainties (Bernardo and Smith, 2000;
Gelman et al., 2004; Sivia, 2006). The application of Bayesian model inference to chemical
kinetics, however, presents a significant computational challenge. Model discrimination in
Bayesian analysis is based on computing model probabilities conditioned on available data,
i.e., posterior model probabilities. Rigorous computation of posterior model probabilities
requires evaluation of a high-dimensional integral for each model. A number of methods
exist in the literature for this purpose (Chib and Jeliazkov, 2001; Friel and Pettitt, 2008;
Kass and Raftery, 1995; Newton and Raftery, 1994), but they are computationally taxing.
Applications of these methods to chemical kinetics have been pursued in combustion mod-
eling and systems biology when the number of competing models is small (Braman et al.,
2013; Vyshemirsky and Girolami, 2008; Vyshemirsky et al., 2006; Willkinson, 2011; Xu
et al., 2010; Zechner et al., 2014). When the number of competing models becomes large,
however, the above methods become computationally infeasible. Yet a more systematic ap-
proach to model inference naturally requires appraising a combinatorially large number of
models: instead of a few model hypotheses, one might start with a list of proposed reactions,
for example, and form a collection of plausible models by considering all valid combinations
of the proposed reactions.

In this paper, we present a systematic Bayesian inference framework for the development
and uncertainty quantification of chemical kinetic models, one that systematically generates
and compares a comprehensive set of model hypotheses. The framework makes use of the
following observation. Reacting flow or process models with chemical kinetic subcomponents
almost always yield outputs that are nonlinear functions of the reaction rate parameters.
Nevertheless, if the rate of each elementary reaction is described by the law of mass action,
e.g.,

Rate = −k[X][Y ], (1)

where k is the reaction rate constant and [X] and [Y ] are reactant concentrations in appro-
priate units, it is possible to eliminate a reaction from a kinetic model simply by setting the
corresponding rate constant to zero. Thus, given a set of proposed reactions, one can switch
between kinetic models by setting the appropriate rate constants either to zero or nonzero
values. Then, using a sampling scheme to explore the model space enables the estimation
of posterior model probabilities, in proportion to the frequency of model visits.

Computations in our new framework are based on recent work in the statistics literature
by Ji and Schmidler (2013), which proposes an efficient numerical approach to the nonlinear
Bayesian variable selection problem. Effectively, our framework proposes to treat the kinetic
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model inference problem as a particular form of variable selection. We impose point-mass
mixture priors on the rate constants of all proposed elementary reactions and use an adap-
tive Markov chain Monte Carlo (MCMC) method to efficiently explore the model space,
along with the rate parameter values (Ji and Schmidler, 2013; Mitchell and Beauchamp,
1988). MCMC is a class of sampling methods that enables exploration of complex multi-
dimensional probability distributions using an easily-sampled proposal distribution coupled
with an accept-reject step (Robert and Casella, 2004). The efficiency of posterior explo-
ration, and in turn the quality of model probability and parameter value estimates, is
directly linked to how well the proposal distribution approximates the posterior distribu-
tion. Following Andrieu and Moulines (2006), we use an adaptive independence MCMC
algorithm based on online expectation maximization (EM) for posterior exploration. Both
online EM and the adaptive MCMC method of Ji and Schmidler (2013) use a stochastic
approximation method to continually update proposal parameters using posterior samples.
While the algorithm in (Ji and Schmidler, 2013) relies on Monte Carlo estimates of gra-
dients, the online EM approach adopts the two-step procedure of first updating estimates
of posterior summaries (E-step) and then adapting parameters via simple analytical ex-
pressions (M-step). A related sampling approach, reversible-jump MCMC (Green, 1995),
has recently been used to infer kinetic models in systems biology (Oates et al., 2012). But
designing effective proposal distributions for between-model moves in a reversible-jump al-
gorithm can be quite difficult in practice (Green and Hastie, 2009). In contrast, coupling
our nonlinear variable selection framework with an adaptive MCMC algorithm provides an
easy-to-use and efficient inference methodology.

Note that the modeling of species interactions in our work contrasts with an approach
commonly used in systems biology (Friedman and Koller, 2003; Sachs et al., 2002, 2005),
where the relationships between species are described probabilistically using Bayesian net-
works. In the latter approach, interactions between species (i.e., edges in the Bayesian net-
work) are modeled using Gaussian or multinomial probability distributions; this assumption
makes the calculation of individual posterior model probabilities analytically tractable. By
contrast, the interactions between species in our work are modeled using systems of differen-
tial equations defined by the law of mass action. These equations can be further embedded
into differential equation models that describe convective and diffusive transport, surface
interactions, and other physical phenomena that affect experimental observations.

This paper is divided into six sections. In Section 2, we discuss different approaches for
model inference and highlight advantages of the Bayesian methodology. Section 3 details our
new Bayesian formulation for the inference of chemical kinetic models. Section 4 describes
the adaptive MCMC methodology used for efficient exploration of the posterior distribution
in this model inference approach. In Section 5, we apply our approach to examples involving
the catalytic reforming of methane, with both real and synthetic data sets. The final section
provides a brief summary and conclusions.

2. Model inference

Model inference can be defined informally as the assessment of models to ascertain the
degree to which each is supported by available data. A prerequisite for model inference
is the availability of (i) plausible models and (ii) relevant data to discriminate among the
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models. It is important at this stage to distinguish model inference from the common
practice of model reduction in chemical kinetics (Bhattacharjee et al., 2003; Oluwole et al.,
2006). Model reduction refers to a systematic reduction in the size of a large kinetic model
so as to reproduce model outputs within a specified tolerance. Such a procedure, however,
assumes that an accurate model (i.e., the full kinetic model) is already known and fixed.
And, crucially, it does not take experimental data into account during reduction.

2.1. What is a model?

A model of a physical process describes a specific collection of input-output relationships.
In particular, a model describes how some pre-specified quantities of interest are related to
input variables. As a result, a model may preclude the description of quantities for which it
has not been specifically built. Figure 1 shows a typical chemically reacting flow model. This
model—consisting of governing equations expressing conservation laws, chemical reactions,
and thermo-kinetic parameters—may relate inputs such as concentration Cin, temperature
Tin, pressure P , and applied voltage ∆V to observables such as concentration Cout, ignition
delay τign, and current I.

Inputs

Cin/Tin/P/∆V

Reacting flow model:
governing equations

chemical kinetic model

parameters

Quantities
of interest

Cout/tign/I

Figure 1: Chemically reacting flow model

2.2. Classical approaches to model inference

Performing model inference purely on the basis of agreement between model predictions
and experimental observations runs the risk of fitting to noise in the data (Bishop, 2007;
Hastie et al., 2009), i.e., over-fitting. Because a more complex model can more easily adapt
to any available data, a suitable model inference criterion is one that rewards goodness of
fit but also penalizes model complexity. This guiding principle for the assessment of models
is encapsulated by Occam’s razor (Mackay, 2003).

A wide variety of methods have been suggested for model inference. Usually, the data
available in chemical kinetics settings are limited. Consequently, methods such as k-fold
cross validation, which work best when data are plentiful, are not suitable (Arlot and Celisse,
2010; Hastie et al., 2009); in a data-poor context, the cross validation metric is noisy and
its results can be highly variable. A method that explicitly incorporates an Occam’s razor
is more useful for the data-deficient case that one typically encounters in chemical kinetics.

Classical (i.e, non-Bayesian) model inference methodologies such as the Akaike infor-
mation criterion (AIC), Mallow’s Cp, and penalized least-squares (Akaike, 1974; Burnham
and Anderson, 2002; Mallows, 1973) impose an Occam’s razor by selecting models via the
following type of optimization problem:

M∗ = arg min
M

‖D −GM (kM )‖22 + αh(M), (2)
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where M∗ is the optimal model, ‖Y − GM (kM )‖2 is the data-model discrepancy with D
representing the available data and GM (kM ) the model predictions, h(M) is a measure of
model complexity, and α is the penalty on model complexity. These optimization approaches
tend to be ad hoc, as the results may depend strongly on the penalty parameter α and it
is unclear how to choose it systematically (Berger and Pericchi, 2001). Moreover, these
methods yield point estimates (i.e., they select a single model) and thus do not characterize
uncertainty in the model M .

The Bayesian approach to model inference, in contrast, contains an automatic Occam’s
razor and yields a full description of posterior model and parameter uncertainties (Mackay,
2003). The computed posterior model probabilities can directly be interpreted as the degree
to which different models are supported by available data (Berger and Pericchi, 2001). The
effective use of these model probabilities then depends on the application context or goals
at hand; subsequent decisions or modeling predictions could be based on the single model
with the highest probability, on a pool of high probability models, or on all the models
weighed according to their posterior probabilities (Hoeting et al., 1999).

2.3. Bayesian approach to model inference

Bayesian statistics provides a rigorous inferential framework for assimilating noisy and in-
direct data, a natural mechanism for incorporating prior knowledge from different sources,
and a full description of uncertainties in model structure and parameter values (Bernardo
and Smith, 2000; Gelman et al., 2004; Sivia, 2006). Inference is based on Bayes’ rule of
probability:

p(k|D) =
p(D|k)p(k)

p(D)
, (3)

where k is the parameter being inferred, p(k|D) is the posterior probability density of k
conditioned on available data D, p(D|k) describes the probability of observing D given the
parameter value k, and p(k) is the prior probability density of parameter k. The denomina-
tor p(D), commonly refered to as the evidence or marginal likelihood, is the probability of
the observed data. Sampling the posterior distribution yields a description of uncertainty
in the parameters and allows the estimation of posterior summaries such as the mean and
standard deviation. Posterior exploration by sampling is usually non-trivial and typically
carried out via a carefully designed MCMC procedure (Andrieu et al., 2003; Gilks et al.,
1996; Robert and Casella, 2004; Tierney, 1994). Examples of Bayesian parameter inference
applied to chemical kinetics are given in (Prager et al., 2013; Vahteristo et al., 2008, 2013).

The comparison of models in the Bayesian paradigm relies on the computation of poste-
rior model probabilities p(M |D). Applying Bayes’ rule to a collection of models {Mj}, the
posterior probability of model Mj is given by

p(Mj |D) ∝ p(Mj)p(D|Mj)

∝ p(Mj)

∫
p(D|k̄j)p(k̄j |Mj)dk̄j , (4)

where p(Mj) is the prior model probability, p(D|Mj) is the evidence of model Mj , and k̄j
is the vector of parameters in model Mj . The evidence p(D|Mj) incorporates an automatic
Occam’s razor that penalizes unnecessary model complexity; see Mackay (2003) for details.
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As discussed in Section 2.2, Bayesian model inference offers many advantages over other ap-
proaches. Yet a central challenge of applying the Bayesian methodology is its computational
cost. Comparisons based on an individual calculation of the evidence for each plausible
model—either by model-specific MCMC runs or by using numerical quadrature—quickly
become infeasible if the number of models becomes large. Chemical kinetics is particularly
prone to this difficulty since the number of possible models can grow exponentially with
N , the number of proposed reactions. Alternatives such as Laplace approximations and
the Schwarz criterion have been suggested (Burnham and Anderson, 2002; Mackay, 2003;
Schwarz, 1978), but they involve approximations of the posterior distribution. In general,
very little can be said about the quality of inference based on these approximate methods.
On the other hand, across-model sampling offers a solution in cases where the number of
models is large (Carlin and Chib, 1995; Dellaportas et al., 2002; Godsill, 2001; Green, 1995).
These methods work by making the MCMC sampler jump between models to explore the
joint space of models and parameters. Model probabilities are estimated from the number
of times the sampler visits each model. The prohibitively high cost of model comparisons
based on the computation of evidence for each model is avoided, as the sampler visits each
model in proportion to its posterior probability. The drawback of across-model sampling
schemes, however, is that they require extensive tuning or pre-existing knowledge of the
posterior distribution in order to achieve efficient exploration (Oates et al., 2012). The
method we use in this paper for posterior exploration is an adaptive across-model sampling
scheme, wherein the proposal distribution in the MCMC algorithm continuously adapts
based on previous posterior samples to avoid manual tuning (Ji and Schmidler, 2013).

3. Bayesian inference of chemical kinetic models

We now present the details of our new framework for systematic and rigorous inference of
chemical kinetic models. As we saw in Section 1, the law of mass action gives the rate of
a chemical reaction (say X + Y → Z) as the product of a reaction-specific rate constant k
with reactant concentrations [X] and [Y ]. The rate constant k is expressed in Arrhenius
form as

k = ATn exp

(
− Ea
RT

)
, (5)

where A is the pre-exponential factor, Ea is the activation energy, n is the temperature
exponent, R is the universal gas constant, and T is temperature. In this paper, we treat k as
the combined unknown parameter; it is also possible to infer A, Ea, and n separately (given
observations over a range of temperatures) but we leave such a treatment for subsequent
work.

In any chemically reacting process, the rates of the individual elementary reactions in the
kinetic model together determine the values of the observables. And reacting flow models
are seldom linear; that is, the model outputs depend nonlinearly on the elementary reaction
rates and on the rate constants. Nevertheless, the mass-action rate expression (1) enables a
reaction to be eliminated from the kinetic model simply by setting the corresponding rate
constant to zero. As a result, a sampling scheme over a parameter space of fixed dimension
can be employed to compute posterior model probabilities. For example, consider a setting
where we have N = 5 postulated elementary reactions with rate constants k1, k2, k3, k4,
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and k5. Assume, for simplicity, that the reacting flow model outputs can be produced from
the inputs via any of the five reactions. Thus we wish to compare 25−1 kinetic models that
are a priori plausible. The key idea is to recognize that switching from a model Mi (for
instance, comprising reactions 1, 2, and 5) to a model Mj (for instance, comprising reactions
3 and 4) requires that the parameter vector k̄ ≡ (k1, k2, k3, k4, k5) change from (a, b, 0, 0, c)
to (0, 0, d, e, 0), where a, b, c, d, and e are nonzero rate constants for each reaction.

The first step in developing a sampling scheme that turns reactions off and on is to
impose point-mass mixture priors on the rate constants ki (Ji and Schmidler, 2013; Mitchell
and Beauchamp, 1988). For simplicity, in the subsequent numerical demonstrations we will
take the priors to be independent in each dimension (i.e., for each reaction), such that
p(k̄) =

∏N
i=1 pi(ki). We note, however, that priors can certainly be designed to reflect any

additional information, i.e., knowledge that necessitates the joint inclusion and exclusion of
reactions. In any case, a point-mass mixture prior is given by

pi(ki) = w0,iδ(ki) + w1,i Ci(ki), (6)

where w0,i and w1,i = 1−w0,i are weights of the two prior components. δ(ki) is a probability
atom (a point with unity probability mass) at zero and Ci(ki) is the continuous component
of the prior distribution. The continuous component of the prior probability distribution
describes any prior information about the values that the rate constant can take and is
often elicited from experts. If no such information exists, Ci(ki) may be a uniform or
log-uniform distribution over all positive real numbers (an ‘uninformative’ prior). In any
case, Bayesian inference and indeed our framework allow the model developer significant
flexibility in setting the prior distribution based on his or her subjective belief or any pre-
existing information. The weights w0,i and w1,i are prior beliefs about reaction i being
included or excluded, respectively, from the inferred model. The model developer may use
these weights to impose prior information about the importance of this reaction in modeling
the reacting flow model output.

It is instructive to discuss two specific cases. First, if the model developer has no prior
preference for the inclusion or exclusion of a reaction, then an appropriate choice for the
weights is an indifference prior setting of w0,i = w1,i = 0.5. In contrast, if the model
developer believes that reaction i should definitely be part of the inferred model, then
he/she can set w0,i to zero and w1,i to one. Note that if all the reactions are assigned a
prior inclusion probability of w1 = 1.0, then the model inference framework reduces to the
familiar Bayesian parameter inference problem.

Letting D denote the available data, an application of Bayes’ rule to the parameter
vector k̄ yields

p(k̄|D) ∝ p(D|k̄)p(k̄). (7)

Here p(D|k̄) is viewed as a function of k̄: it is the likelihood function, which reflects the
discrepancy between the data D and the model prediction at the specified k̄. The precise
form of the likelihood function depends on the noise model used to describe the data. For
instance, in the examples of Section 5, we use an additive Gaussian model, yielding

D = G(k̄) + ε. (8)

Here G(k̄) is the prediction of the forward model (the chemically reacting flow model) at
the specified parameter value k̄, and ε reflects a combination of observational noise and
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model errors. We assume that every component of εj of ε is independent with mean zero
and variance σ2, εj ∼ N (0, σ2). Because the prior distribution on each ki is a point-
mass mixture (6), the resulting posterior distribution of k̄ is also a mixture distribution
over the product space of all reactions, where each component of the mixture contains a
different set of non-zero rate constants and thus represents a different model. Sampling
the posterior distribution of k̄ implies visiting posterior mixture components in proportion
to their probabilities. Therefore, a scheme that samples p(k̄|D) will not only provide a
full description of uncertainties in rate constant values, but will also yield estimates of the
posterior model probabilities proportional to the number of times each posterior mixture
component is visited.

4. Posterior exploration by Markov chain Monte Carlo

4.1. Sampling using an independence Metropolis-Hastings algorithm

The multi-dimensional posterior distribution of the parameter vector k̄ obtained in Section 3
cannot be sampled directly; because of the nonlinear forward model G(k̄), the likelihood
does not have a standard form and certainly is not conjugate to the prior distribution. How-
ever, simulating posterior samples is possible using the independence Metropolis-Hastings
(MH) algorithm (Robert and Casella, 2004; Tierney, 1994), which is a particular type of
MCMC sampling scheme. MCMC methods work by iteratively generating samples from
a Markov chain whose limiting distribution is the posterior distribution. This process in-
volves simulating a sample from a proposal distribution—a distribution that can be directly
sampled—and passing the proposed sample through an accept-reject step. In an indepen-
dence Metropolis-Hastings algorithm, the proposal distribution at each step is independent
of the current location of the chain. Algorithm 1 describes the independence sampler using
pseudocode. We note that another commonly-used class of MCMC algorithms, random-
walk Metropolis-Hastings, is not suitable for our problem because its chains will tend to
remain “stuck” in the point mass component of a parameter posterior unless the support
of the continuous component is very close to zero.

Algorithm 1 The independence Metropolis-Hastings algorithm

1: Given: Data D, prior density p(k̄), likelihood function p(D|k̄), proposal q(k̄), number
of steps T

2: Initialize k̄0

3: for t = 0 to T − 1 do
4: Sample u ∼ U[0,1]

5: Sample k̄∗ ∼ q(k̄∗)
6: if u < A(k̄t, k̄∗) = min

{
1, p(k̄

∗|D)q(k̄t)

p(k̄t|D)q(k̄∗)

}
then

7: k̄t+1 = k̄∗

8: else
9: k̄t+1 = k̄t

10: end if
11: end for
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The Metropolis-Hastings algorithm’s efficiency in exploring the posterior distribution
rests on the design of an effective proposal distribution. “Efficiency” in this context refers
to how effectively the Markov chain explores the posterior—i.e., how nearly independent its
states are—which translates directly into the Monte Carlo error of a sample-based posterior
estimate. A good proposal distribution will require fewer posterior density evaluations to
achieve a given error. Recall that computation of the posterior density p(k̄|D) for a proposed
parameter value involves evaluating the likelihood p(D|k̄), which in turn requires solving
the forward model. Restricting the number of forward model solves is especially important
in the present application context, because detailed models of chemically reacting flow are
computationally expensive.

Since the marginal posterior distribution of each parameter ki is a mixture of a point
mass and continuous components, the proposal distribution for each ki is taken to be an
independent point-mass mixture distribution of the form:

q(ki;ψi) = bi,0δ(ki) +
M∑
m=1

bi,mqm(ki; θi,m). (9)

In the above equation, δ(ki) is a point mass at zero, qm(ki; θi,m) are continuous compo-
nents of the proposal distribution, and ψ̄ ≡ (bi=1:N,m=0:M , θi=1:N,m=1:M ) comprises all the
parameters describing the proposal distribution. Recall that N is the number of proposed
reactions, and thus the dimension of the posterior distribution. The number of continuous
components M in each dimension is a choice left to the user. Increasing M can potentially
improve the approximation of the posterior by the proposal, especially if the continuous part
of the posterior distribution is itself multimodal. This is desirable, because a good proposal
distribution for independence Metropolis-Hastings is generally one that approximates the
posterior as closely as possible. But higher values of M increase the number of parameters
needed to describe the proposal distribution, which can affect the cost and convergence
rate of the proposal adaptation scheme discussed in Section 4.2. Choosing an independent
proposal distribution for each parameter ki means that the joint proposal distribution is
given by

q(k̄; ψ̄) =

N∏
i=1

q(ki;ψi). (10)

4.2. Adaptive MCMC by online expectation maximization

As noted above, efficient sampling suggests that we choose the proposal parameters ψ̄ so
that (10) closely approximates the posterior. Of course, the true posterior distribution is
not characterized a priori; its exploration is in fact the goal of MCMC. A useful strategy
for improving sampling efficiency is, then, to continuously adapt the proposal parameters
based on past samples from the MCMC chain. Algorithms of this kind are known as
adaptive MCMC and require additional theoretical analysis to guarantee convergence to
the target distribution (Robert and Casella, 2004). A commonly used adaptation criterion
is to tune the proposal parameters to minimize the Kullback-Leibler (KL) divergence from
the posterior distribution to the proposal distribution (Andrieu and Moulines, 2006; Ji
and Schmidler, 2013). We adopt this strategy here and detail the adaptive independence
Metropolis-Hastings algorithm as follows.
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Formally, the optimal proposal parameters are given by

ψ̄∗ = arg min
ψ̄

DKL
(
p(k̄|D)‖q(k̄; ψ̄)

)
= arg min

ψ̄

∫
p(k̄|D) log

(
p(k̄|D)

q(k̄; ψ̄)

)
dk̄. (11)

Since this objective function involves integration over the posterior distribution p(k̄|D),
finding a solution before exploring the posterior is difficult. An effective strategy is to use
a stochastic approximation method (Kushner and Yin, 1997; Robbins and Monro, 1951)
that couples posterior exploration with the solution of the minimization problem. A generic
stochastic approximation method for problem (11) involves iteratively (i) simulating a batch
of samples from the posterior distribution to estimate the KL divergence above, then (ii)
using those results to update the proposal parameters. Under conditions explained by
Andrieu et al. (2005), the proposal parameters converge to the optimal solution of (11)
asymptotically. Within this general procedure, one could consider two possible instantia-
tions. The first is stochastic gradient descent: simulate a finite number of samples from
the posterior distribution and use them to compute a noisy estimate of the gradient of the
objective in (11) with respect to ψ̄; then take a step in the negative-gradient direction to
update the parameters in each iteration. This approach is detailed in the paper by Ji and
Schmidler (2013). The second approach involves solving (11) using a method called online
expectation maximization (EM) (Andrieu and Moulines, 2006). Online EM alternately uses
posterior samples to update estimates of the expectation of the logarithm of complete-data
likelihood (E-step) and then directly adapts the proposal parameters using analytical ex-
pressions (M-step). We found the online EM approach to be more robust in practice, and
have thus adopted it for this work. (See Appendix A.3 for more details on the complete-data
likelihood.)

Here, we describe the expressions used to update the proposal parameters using the
online EM algorithm. A detailed derivation of the online EM algorithm applied to point-
mass mixture priors can be found in Appendix A. We consider the case where the reaction
rate parameter vector is N -dimensional, i.e., k̄ = (k1, k2, . . . , kN ), where T samples are
simulated from the posterior distribution p(k̄|D) between each proposal parameter update,
and where theM continuous components of the proposal distribution are Gaussian, resulting
in a proposal of the form:

q(ki;ψi) = bi,0δ(ki) +
M∑
m=1

bi,mNm(ki; θi,m). (12)

A non-adaptive component q̃ must also be added to the proposal distribution to satisfy
conditions for the convergence of the adaptive MCMC algorithm to the posterior distribution
(see Appendix A.3 for details). Thus, the overall proposal in each dimension is given by

qs(ki) = λiq̃(ki, ψ̃i) + (1− λi)q(ki;ψi), (13)

where 0 < λi < 1 and ψ̃i is a fixed set of proposal parameter values. At each step n of the
online EM algorithm:

1. Simulate T samples k̄1, k̄2, . . ., k̄T from the posterior p(k̄|D) using an independence
Metropolis-Hastings algorithm with the current proposal parameter values.
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2. Compute (for all parameters i = 1 . . . N)

For m = 0 to M :

Oi,m =
1

T

T∑
t=1

γ(zti,m),

For m = 1 to M :

Pi,m =
1

T

T∑
t=1
kti 6=0

γ(zti,m), Qi,m =
1

T

T∑
t=1
kti 6=0

γ(zti,m)kti , Ri,m =
1

T

T∑
t=1
kti 6=0

γ(zti,m)(kti)
2,

where

γ(zti,m) =


1 if kti = 0 and m = 0
0 if kti = 0 and m 6= 0
0 if kti 6= 0 and m = 0

bi,mN (kti ;µi,m,σ
2
i,m)∑M

m′=1 bi,m′N (kti ;µi,m′ ,σ
2
i,m′ )

if kti 6= 0 and m 6= 0.

(14)

3. Set ηn = 1/n and update the running posterior summaries as

S
Oi,m
n = S

Oi,m

n−1 + ηn(Om − S
Oi,m

n−1 )

S
Pi,m
n = S

Pi,m

n−1 + ηn(Pi,m − S
Pi,m

n−1 )

S
Qi,m
n = S

Qi,m

n−1 + ηn(Qi,m − S
Qi,m

n−1 )

S
Ri,m
n = S

Ri,m

n−1 + ηn(Ri,m − S
Ri,m

n−1 ). (15)

4. Solve for new proposal parameters:

bi,m =
S
Oi,m
n∑M

m′=0 S
Oi,m′
n

µi,m =
S
Qi,m
n

S
Pi,m
n

σ2
i,m =

µ2
i,mS

Pi,m
n − 2µi,mS

Qi,m
n + S

Ri,m
n

S
Pi,m
n

. (16)

4.3. Random-scan independence Metropolis-Hastings algorithm

A straightforward application of the adaptive independence MH algorithm described so
far has one important inefficiency. In the parameter sampling step of Algorithm 1, all
the parameters are proposed jointly and then passed through an accept-reject step. This
approach can lead to a very high rate of rejection that consequently renders the adaptation
ineffective. The alternative is to use a componentwise independent MH approach, wherein
only a single component (or a small block of components) of the parameter vector k̄ is
proposed at a time, and the resulting parameter vector is immediately passed through
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Algorithm 2 Model inference by the adaptive independence Metropolis-Hastings algorithm

1: Given: Data D, prior density p(k̄), likelihood function p(D|k̄), proposal distributions
qs(ki) = λiq̃(ki; ψ̃i) + (1 − λi)q(ki;ψi), number of proposal updates Niter, number of
samples T between proposal updates

2: Initialize starting point k̄0 and proposal parameters ψ̄0

3: for n = 1 to Niter do
4: for t = 1 to T do
5: Select the number of parameters l� N to be updated.
6: Randomly select l parameter indices: r1, r2,. . ., rl < N
7: Sample u ∼ U[0,1]

8: for p = 1 to l do
9: Sample k∗rp ∼ qs(k

∗
rp)

10: end for
11: Set k∗rp = kt−1

rp for rp \ {r1, r2, . . . , rl}
12: if u < A(k̄t−1, k̄∗) = min{1, p(k̄

∗|D)qs(k̄t−1)

p(k̄t−1|D)qs(k̄∗)
} then

13: k̄t = k̄∗

14: else
15: k̄t = k̄t−1

16: end if
17: end for
18: Update summary statistics S

O1:N,0:M
n , S

P1:N,1:M
n , S

Q1:N,1:M
n , and S

R1:N,1:M
n

19: Update proposal parameters ψ̄n: b1:N,0:M , µ1:N,1:M , and σ2
1:N,1:M

20: Store k̄1:T and reset k̄0 ← k̄T

21: end for

an accept-reject step. We use a random-scan variant of the componentwise MH scheme
which randomly selects a block of components to be updated. Updating only one or a few
components at a time also provides the practical benefit of a local search, since this amounts
to making small jumps in the model space. Small jumps in the model space, especially in
problems where the parameters retain their meaning across different models, often result
in significantly higher acceptance rates. Algorithm 2 summarizes the overall algorithm we
use to generate samples from the posterior distribution. In implementing this algorithm for
the following examples, we choose T = 1000 and l = 1 or 2.

5. Numerical demonstrations: catalytic reforming of methane

We demonstrate the approach formulated in the preceding sections on three example prob-
lems. In particular, we infer chemical kinetic models for steam and dry reforming of methane
catalyzed by rhodium. The first problem uses synthetic data to demonstrate the consis-
tency of the Bayesian model inference procedure, while the second and third examples use
experimental data drawn from the literature. Methane reforming is an important process
because it provides an effective route for the industrial production of syngas (CO+H2).
Catalytic reforming of methane has been studied previously, and a few kinetic models have
been proposed (Deutschmann et al., 2001; Hartmann et al., 2010; McGuire et al., 2009,

12



2011). The development of these models has proceeded by collecting possible elementary
reactions and making educated guesses about the appropriate pathways, with the selection
of rate parameter values based on existing literature or fits to experimental data.

One of the most common experimental configurations for studying catalytic reactions
is a stagnation flow reactor. Stagnation flow reactors provide favorable fluid-mechanical
properties that enable measurement of the gas-phase boundary layer near the catalytic sur-
face. Hence we use gas-phase measurements from stagnation flow reactors as data for our
inference procedure. Recall that experimental data enters the Bayesian inference formula-
tion through the likelihood function p(D|k̄) (Section 3). The likelihood function must also
therefore incorporate a detailed numerical model of the stagnation flow reactor in order to
compare the data with predictions based on any candidate kinetic model. We begin by
discussing this reactor model.

5.1. Stagnation flow reactor model

The boundary layer flow equations in a stagnation flow reactor (schematic in Figure 2) can
be modeled as a one-dimensional axisymmetric flow using similarity reduction (Kee et al.,
2003). The stagnation-flow reactor boundary layer equations have been used by a number of
authors in studies of catalytic surface reactions (Deutschmann et al., 2001; McGuire et al.,
2009, 2011). The governing equations are:

d(ρu)

dz
+ 2ρV = 0 (17)

ρu
dV

dz
+ ρV 2 = −Λr +

d

dz

(
µ
dV

dz

)
(18)

ρucp
dT

dz
=

d

dz

(
λ
dT

dz

)
−

Kg∑
α=1

ρYαVαcpα
dT

dz
−

Kg∑
α=1

hαWαω̇α (19)

ρu
dYα
dz

= − d

dz
(ρYαVα) +Wαω̇α, (α = 1 . . .Kg) (20)

ṡβ = 0, (β = 1 . . .Ks) (21)

p = ρRT

Kg∑
α=1

Yα
Wα

(22)

In the above equations, the axial spatial coordinate z is the independent variable, while the
axial velocity u, the scaled radial velocity V , the fluid temperature T , and the species mass
fractions Yα are the dependent variables. The pressure-gradient eigenvalue is

Λr =
1

r

dp

dr
. (23)

The perfect gas equation (22) relates the pressure p to the temperature T , density ρ,
and the species mass fractions at any point. In equations (17)–(21), µ is the fluid dynamic
viscosity, λ is the thermal conductivity, cp is the mixture specific heat, cpα are species
specific heats, hα are species specific enthalpies, and Wα are the molecular weights of the
species. ω̇α denotes the molar production rate of the gas-phase species indexed by α, and
ṡβ the production rate of the surface species, indexed by β. There are Kg gas-phase species
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and Ks surface species. A detailed chemical kinetic model is used to compute the species
production rates ω̇α and ṡβ.

N.E. McGuire et al. / Chemical Engineering Science 64 (2009) 5231 -- 5239 5233

Fig. 2. (a) Illustration of the stagnation-flow reactor. (b) Detail of the heated,
catalytically active stagnation surface positioned above the porous frit.

catalyst geometries, such as porous-foam or channel-monolith
structures. In the technologically practical geometries, the catalyst
surfaces are experimentally inaccessible. Because of small pores
and narrow channels, it is not practical to experimentally probe the
near-catalyst boundary layer structure. However, the fundamental
information gathered from stagnation-flow experiments can be
incorporated directly into models that provide quantitative design
insight for the practical configurations (Raja et al., 2000; Zhu et al.,
2007).

The catalyst is coated onto a castable ceramic (Cotronics Rescor
780) structure that has embedded 24-gauge Ni–Cr resistance heaters.
The integrated catalyst-heater structure is bonded into a removable
ceramic housing (Fig. 2a). Three embedded thermocouples measure
the catalyst surface temperature. A heater controller is used to main-
tain a specific catalyst surface temperature (typically between 665
and 800 ◦C).

Hot oil (approximately 130 ◦C) circulates through the reactor
housing to control wall temperature. It is important to prevent wa-
ter condensation on the reactor walls, especially for reforming ex-
periments that incorporate high steam concentrations.

The reactor is designed to operate at slightly sub-atmospheric
pressures. Reducing pressure tends to increase boundary-layer

Fig. 3. Process flow diagram of the experimental setup.

thickness, which facilitates resolving boundary-layer profiles. The
experiments reported in this paper are conducted at pressures of
40kPa (300Torr).

A microprobe (approximately 50!m opening) is used to sam-
ple species-composition profiles within the boundary layer below
the stagnation surface. As species react catalytically at the surface,
the boundary-layer profiles are affected. For example, consider steam
reforming of methane. Both steam and CH4 are consumed at the
surface, with H2 and CO being formed as reaction products. Because
species both diffuse and convect within the boundary layer, the
boundary-layer profiles are affected directly by the reaction chem-
istry at the surface. By measuring the profiles, a great deal can be
learned about the surface chemistry. This is especially the case when
computational models are used to assist in interpretation of the ex-
perimental observations.

2.4. Boundary-layer measurements

Fig. 3 is a process flow diagram illustrating major features of the
experiment. A steady flow of reactant gases is supplied from cylin-
ders at rates specified via mass-flow controllers. After mixing, wa-
ter is added to the gas stream with a precision milliGAT micropump
that dispenses water in the range of 0–100!L per minute. The fed
gases pass through a heated damping reservoir that is designed to
damp out any fluctuations associated with the water pump. Follow-
ing water introduction, heating tape is used to maintain all lines at
approximately 135 ◦C. The heated lines assure that all the H2O re-
mains in the vapor phase as it enters the reactor.

The quartz microprobe is used to sample gas composition within
the boundary layer. As gases enter the probe itself, they are expanded
rapidly to vacuum conditions which quench any further reaction.
Water vapor is removed from the sampled gases (Drierite desiccant)
before entering the mass spectrometer (SRS RGA 200).

The probe is positioned with a precision stepping motor. Be-
ginning at the stagnation surface, the probe is moved downward
through the boundary layer. Upon arriving at each new measure-
ment position, the probe is held stationary. The flow field achieves
steady state conditions after approximately 2min following probe
movement. Once the flow has achieved steady state, the gas-phase
composition is measured via the mass spectrometer. A boundary-
layer profile typically consists of eight measurement points, span-
ning approximately 5mm below the stagnation surface.

Once a boundary-layer profile is measured for a certain set
of operating parameters, the operating conditions are adjusted

Figure 2: Stagnation flow reactor; figure re-
produced from McGuire et al. (2009).

We assume that every candidate detailed chemi-
cal kinetic model involving N reactions among these
species can be represented in the general form

Kg+Ks∑
j=1

ν ′j,iXj ←→
Kg+Ks∑
j=1

ν ′′j,iXj , (i = 1 . . . N), (24)

where νj,i are integer stoichiometric coefficients and
Xj is the chemical name of the jth species. The
molar production rates ω̇α and ṡβ are summations
over all reactions:

ω̇α =
N∑
i=1

να,iqi, ṡβ =
N∑
i=1

νβ,iqi, (25)

where
να,i = ν ′′α,i − ν ′α,i, (26)

and similarly for νβ,i. The rate of progress qi of the ith reaction, which is assumed to obey
mass-action kinetics, is the difference between the forward and reverse reaction rates:

qi = ki,f

Kg+Ks∏
j=1

[Xj ]
ν′j,i − ki,b

Kg+Ks∏
j=1

[Xj ]
ν′′j,i . (27)

The form of the concentrations [Xj ] in (27) depends on whether the species is in gas phase
or on the surface. Also, it is known from earlier work (McGuire et al., 2011) that species
production rates due to purely gas-phase reactions are negligible at normal operating con-
ditions. Thus we omit purely gas-phase reactions when evaluating ω̇α in our differential
equation model.

The species diffusion velocities are computed using a multicomponent diffusion model
as

Vα =
1

XαW̄

Kg∑
j 6=α

WjDα,j
dXj

dz
− DT

α

ρYα

1

T

dT

dz
. (28)

Here Xα and Xj are the species mole fractions, W̄ is the mean molecular weight, Dα,j are
multicomponent diffusion coefficients, and DT

α are thermal diffusion coefficients. At the
reactor inlet, boundary conditions are

u = Uin, V = 0, T = Tin, Yα = Yα,in, (29)

and at the catalytic stagnation surface, the boundary conditions are

u = 0, V = 0, T = Ts, ρYαVα = Fcgω̇αWα. (30)
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The boundary condition in (30) states that the gas-phase species diffusion flux at the stag-
nation surface is balanced by species consumption by catalytic reactions. The boundary
condition also contains a parameter Fcg, which specifies the effective catalyst area. Since
the catalyst particles are dispersed in a porous medium, the effective catalyst area Acatalyst

is much greater than the geometric area Ageometric of the stagnation surface. The parameter
Fcg is defined as

Fcg =
Acatalyst

Ageometric
(31)

The steady-state stagnation flow axisymmetric boundary layer equations form a system
of ordinary differential equations. These equations are discretized using a finite difference
method and the resulting algebraic equations are solved using a combination of pseudo-
time marching and Newton’s method (Kee et al., 2003). We use the chemically reacting
flow software package Cantera 2.0.2 (Goodwin et al., 2013) to compute species production
rates and to solve the steady-state stagnation flow axisymmetric boundary layer equations.

5.2. Proposed elementary reactions

Beginning with the work of Hickman and Schmidt (1993), kinetic models for reactions of
methane on rhodium have been developed via a combination of theoretical methods, fits to
available experimental data, and previous analyses of related species. (Deutschmann et al.,
2001; Hartmann et al., 2010; McGuire et al., 2011). Activation energies for surface reac-
tions are often estimated using the semi-empirical unity bond index-quadratic exponential
potential (UBI-QEP) method. The determination of pre-exponential factors, however, has
largely relied on fits to observed data or the assignment of nominal values. The uncertainty
associated with these rate determination techniques and limited understanding of the asso-
ciated catalytic reaction pathways make this system a good candidate for Bayesian model
inference.

The set of proposed elementary reactions we use in our inference demonstrations is taken
from a comprehensive model proposed by McGuire et al. (2011) recently and is shown in
Table 1. The reaction set consists of 42 irreversible elementary reactions involving 12
surface-adsorbed species and gas-phase species. We retain the rate parameters given by
McGuire et al. (2011) as base values for all reactions, except the following two:

CO* + H* → HCO* + *

HCO* + * → CH* + O*

The pre-exponential factor of the first reaction above is changed from 5.0×1019 to 5.0×1018,
while that of the second reaction is changed from 3.7×1024 to 3.7×1023. These changes yield
minor improvements in agreement with data at the nominal parameter values. The pre-
exponential factors were previously assigned nominal values. The activation energies were
estimated by UBI-QEP method, which has an expected error of 1–3 kcal/mol (Hartmann
et al., 2010).

The surface reactions shown in Table 1 are of two different types: adsorption/desorption
of gas-phase species and reactions among surface intermediates. In this work, we do not
consider the adsorption/desorption reactions (Reactions 31–42) to be uncertain; rather,
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they are included in all models inferred. In the table, the adsorption/desorption reactions
are shaded pink, while the surface reactions we consider to be uncertain are shaded green.
In the three examples to be presented below, we treat the thermodynamic properties of the
surface species as fixed (i.e., not uncertain). Although the thermodynamic properties are
not precisely known, they are fixed indirectly through the individual forward and reverse
rate constants. The base values of the forward and reverse rate constants, kf and kb, were
originally established to satisfy approximate thermodynamic reversibility. Therefore, with
the thermodynamic properties fixed, we need only to specify the prior distribution and
apply the model inference framework on the forward reactions. The reverse rate constant
of each reaction is then

kb =
kf
Keq

=
k∗b
k∗f
kf , (32)

where Keq, the equilibrium constant of the reaction, is a function of the thermodynamic
properties of the species participating in the reaction. In the above equations, kf and kb are
the perturbed rate constants of the reactions while k∗f and k∗b are the base rate constants.

5.3. Setup of the Bayesian model inference problem

Before discussing the three model inference examples individually, we describe the choices
we make for the likelihood function and prior distribution in our Bayesian formulation. In
the following, we use k̃ to refer to the rate constants of the reactions that are treated as
uncertain and k̂ to denote the rate constants of reactions that are kept fixed. By “fixed,” we
mean that a particular reaction is always included in the model and that its rate constant
is not a target of the inference procedure.

5.3.1. Likelihood function

As described in Section 3, evaluating the posterior probability in the Bayesian approach
requires evaluating the likelihood function p(D|k̄), where D are the data and k̄ = (k̃, k̂) are
the reaction parameters. We employ an i.i.d. additive Gaussian model for the difference
between model predictions and observations; thus the data are represented as

D = G(k̃, k̂) + εn, (33)

where εn ∼ Nn(0, σ2In), n is the number of observations, In is an n-by-n identity matrix,
and G(k̃, k̂) is the prediction of the forward model at the given value of the reaction pa-
rameters. We let the noise standard deviation σ be 0.005. The deterministic predictions
G(k̃, k̂) are obtained with the stagnation flow reactor model explained in Section 5.1. The
likelihood function is thus given by

p(D|k̄) = Nn(D|G(k̃, k̂), σ2In)

=

n∏
t=1

N (D|G(k̃, k̂), σ2)

=
n∏
t=1

1√
2πσ2

exp

(
−(dt −G(k̃, k̂))2

2σ2

)
, (34)

where dt are components of the data vector D.
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Reaction A Ea Uncertainty applied†

1 H* + O* → OH* + * 5.0× 1022 83.7 log10 k = log10 k
∗ + U [−2, 2]

2 H* + OH* → H2O* + * 3.0× 1020 33.5 log10 k = log10 k
∗ + U [−2, 2]

3 OH* + OH* → H2O* + O* 3.0× 1021 100.8 log10 k = log10 k
∗ + U [−2, 2]

4 CO* + O* → CO2* + * 5.5× 1018 121.6 log10 k = log10 k
∗ + U [−2, 2]

5 CH4* + * → CH3* + H* 3.7× 1021 61.0 log10 k = log10 k
∗ + U [−2, 2]

6 CH3* + * → CH2* + H* 3.7× 1024 103.0 log10 k = log10 k
∗ + U [−2, 2]

7 CH2* + * → CH* + H* 3.7× 1024 100.0 log10 k = log10 k
∗ + U [−2, 2]

8 CH4* + O* → CH3* + OH* 1.7× 1024 80.34 log10 k = log10 k
∗ + U [−2, 2]

9 CH3* + O* → CH2* + OH* 3.7× 1024 120.31 log10 k = log10 k
∗ + U [−2, 2]

10 CH2* + O* → CH* + OH* 3.7× 1024 114.5 log10 k = log10 k
∗ + U [−2, 2]

11 CH* + * → C* + H* 3.7× 1021 21.0 log10 k = log10 k
∗ + U [−2, 2]

12 CH* + O* → C* + OH* 3.7× 1021 30.13 log10 k = log10 k
∗ + U [−2, 2]

13 C* + O* → CO* + * 5.2× 1023 97.9 log10 k = log10 k
∗ + U [−2, 2]

14 CO* + H* → HCO* + * 5.0× 1018 108.9 log10 k = log10 k
∗ + U [−2, 2]

15 HCO* + * → CH* + O* 3.7× 1023 59.5 log10 k = log10 k
∗ + U [−2, 2]

16 OH* + * → H* + O* 3.0× 1020 37.7 k = k∗16k1/k
∗
1

17 H2O* + * → H* + OH* 5.0× 1022 106.4 k = k∗17k2/k
∗
2

18 H2O* + O* → OH* + OH* 3.0× 1021 171.8 k = k∗18k3/k
∗
3

19 CO2* + * → CO* + O* 3.0× 1021 115.3 k = k∗19k4/k
∗
4

20 CH3* + H* → CH4* + * 3.7× 1021 51.0 k = k∗20k5/k
∗
5

21 CH2* + H* → CH3* + * 3.7× 1023 44.1 k = k∗21k6/k
∗
6

22 CH* + H* → CH2* + * 3.7× 1021 68.0 k = k∗22k7/k
∗
7

23 CH3* + OH* → CH4* + O* 3.7× 1021 24.27 k = k∗23k8/k
∗
8

24 CH2* + OH* → CH3* + O* 3.7× 1021 15.06 k = k∗24k9/k
∗
9

25 CH* + OH* → CH2* + O* 3.7× 1021 36.82 k = k∗25k10/k
∗
10

26 C* + H* → CH* + * 3.7× 1021 172.8 k = k∗26k11/k
∗
11

27 C* + OH* → CH* + O* 3.7× 1021 136.0 k = k∗27k12/k
∗
12

28 CO* + * → C* + O* 2.5× 1021 169.0 k = k∗28k13/k
∗
13

29 HCO* + * → CO* + H* 3.7× 1021 0.0 k = k∗29k14/k
∗
14

θ∗CO 50.0b

30 CH* + O* → HCO* + * 3.7× 1021 167.5 k = k∗30k15/k
∗
15

31 H2 + * + * → H* + H* 1.0× 10−2a 0.0 -
32 O2 + * + * → O* + O* 1.0× 10−2a 0.0 -
33 CH4 + * → CH4* 8.0× 10−3a 0.0 -
34 H2O + * → H2O* 1.0× 10−1a 0.0 -
35 CO2 + * → CO2* 4.8× 10−2a 0.0 -
36 CO + * → CO* 5.0× 10−1a 0.0 -
37 H* + H* → H2 + * + * 3.0× 1021 77.8 -
38 O* + O* → O2 + * + * 1.3× 1022 355.2 -

θ∗O -280.0b

39 CH4* → CH4 + * 1.9× 1014 25.1 -
40 H2O* → H2O + * 3.0× 1013 45.0 -
41 CO2* → CO2 + * 4.1× 1011 18.0 -
42 CO* → CO + * 3.5× 1013 133.4 -

θ∗CO -15.0b -
†Arrhenius rate expression for k∗(base value): k∗ = A exp(−Ea/RT )
aSticking coefficient
bCoverage-dependent activation energy
bForward-backward reaction pair I consists of reactions I and I+15

Table 1: Proposed reactions for reforming of methane
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5.3.2. Prior specification

The prior distribution in Bayesian analysis should encapsulate information about models
and parameters that is available before assimilation of the data presently at hand. Often
the priors come from known scientific principles and physical constraints on the parameters.
In the context of chemical kinetics, the continuous component of the prior distribution may
also derived from previous investigations of the reactions. Furthermore, as described in
Section 3, priors may also be shaped by expert elicitation (Garthwaite et al., 2005) or chosen
to reflect relative ignorance about the rate parameter values. In our demonstrations we will
choose relatively uninformative priors by allowing the rate constants k̄ to vary by two orders
of magnitude above and below their base values. Other prior choices, e.g., an exponential
distribution or a uniform distribution between zero and some positive upper bound, would
also be reasonable. In the same way, prior information about model structure—applied in
the form of prior weights on reaction inclusion or exclusion—can also be designed to reflect
an investigator’s belief about the role or importance of particular reactions in the chemical
process.

To illustrate the impact of the prior, we consider three different prior specifications in
our numerical demonstrations:

• Prior 1: p(ki,f ) = 0.2δ(ki,f ) + 0.8C(ki,f ),

• Prior 2: p(ki,f ) = 0.5δ(ki,f ) + 0.5C(ki,f ),

• Prior 3: p(ki,f ) = 0.8δ(ki,f ) + 0.2C(ki,f ),

The prior distributions above are imposed identically on each reaction. Since reaction rate
constants must be positive, while their uncertainties may multiple orders of magnitude,
we take the continuous component of each prior distribution to be a bounded uniform
distribution on the logarithm of the rate constant. Specifically, we set each C(ki,f ) to

C(ki,f ) : log10 ki,f ∼ U(log10 k
∗
i,f − 2, log10 k

∗
i,f + 2), (35)

where each k∗i,f above is the base value of the ith forward rate constant. For simplicity, the
priors used here are all of same family and width, but in general, one could certaintly endow
each of the 15 rate constants with distinct priors. One could even encode prior correlations
among the rate constants.

The three prior specifications above reflect different prior beliefs in the size and sparsity
of the reaction mechanism. Prior 1, with a weight of 0.8 on the continuous component,
has a tendency to favor kinetic models with more reactions. Prior 2 is the indifference
prior with no preference for inclusion or exclusion of reactions; it is equivalent to a uniform
prior distribution on the space of all 2N possible models, and thus allows the data to
completely determine the most probable set of reactions. Prior 3 favors smaller models, and
is an example of a sparsity-promoting prior. Such priors introduce additional parsimony in
model structure, over and above the penalty on model complexity automatically imposed
by the Bayesian Occam’s razor. By using priors that favor reaction exclusion, the posterior
distribution over models is biased towards simpler reaction network structures; this has the
potential of improving prediction accuracy over unobserved data (Hastie et al., 2009).
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5.4. Example 1: Steam reforming of methane with synthetic data

In this first example, we infer kinetic models for steam reforming of methane from data
generated using a known model. The goal of this example is to demonstrate the consistency
of the Bayesian model inference process and to examine the impact of varying amounts of
data. We create four synthetic (nested) data sets increasing in size from 10, 20, 40, to 60
points. The data are mole fractions of gas-phase species (H2, H2O, CH4, CO, and CO2)
measured at different locations inside the stagnation flow reactor, at up to three different
catalyst surface temperatures Ts. Data set 1 consists of mole fractions 0.1 mm and 0.7
mm from the catalyst surface, while data sets 2, 3, and 4 contain measurements performed
0.1 mm, 0.7 mm, 1.3 mm, and 2 mm from the catalyst surface. Further details on each
data set are given in Table 2. We generate the data using a kinetic model that contains
all the reactions shown in Table 1, except reaction pairs (4)–(19) and (6)–(21). Samples of
Gaussian noise with mean zero and standard deviation σ = 0.005 are added to these model
predictions to simulate noisy experimental observations. For the purpose of this example,
we allow only four reaction pairs to have uncertain parameters and to be candidates for
inclusion/exclusion. The other reactions are kept fixed at their base values for the likelihood
calculation. The uncertain reaction pairs are shown in Table 3.

Data set Number of data points Catalyst temperatures
1 10 740◦C
2 20 740◦C
3 40 740◦C, 790◦C
4 60 740◦C, 790◦C, 840◦C

Table 2: Synthetic data sets for Example 1.

Reaction pair† Reaction
1 (1)–(16) H* + O* ↔ OH* + *
2 (4)–(19) CO* + O* ↔ CO2* + *
3 (5)–(20) CH4* + * ↔ CH3* + H*
4 (6)–(21) CH3* + * ↔ CH2* + H*
†Reaction pair numbering in the leftmost column is specific to Example 1.

Table 3: Proposed reactions for inference in Example 1.

Because we consider only four reaction pairs to have inclusion/exclusion uncertainty,
the number of possible models in the present example is 24 = 16. We employ the indiffer-
ence prior (Prior 2) described in the previous section. 200 000 samples are then simulated
from the posterior distribution of k̃, using adaptive MCMC, for each of the four data sets.
We begin adaptation after generating the first 20 000 samples and discard the next 20 000
samples as burn-in, while the proposal parameters adapt. The most probable models and
their probabilities are computed using the remaining 160 000 samples; these are shown in
Table 4.
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Data set 1 Data set 2
Reaction pairs included Probability Reaction pairs included Probability

1, 3 0.281 1, 3 0.375
1, 4 0.256 1, 3, 4 0.197

1, 3, 4 0.165 1, 4 0.195
1 0.146 1 0.082

1, 2, 3 0.056 1, 2, 3 0.073

Data set 3 Data set 4
Reaction pairs included Probability Reaction pairs included Probability

1, 3 0.482 1, 3 0.525
1, 2, 3 0.316 1, 2, 3 0.253
1, 3, 4 0.122 1, 3, 4 0.152

1, 2, 3, 4 0.072 1, 2, 3, 4 0.070
1, 4 0.006 1, 4 0.001

Table 4: The five most probable models and their probabilities, from Example 1.

We see from the inference results that the data-generating model (i.e., the “true” model)
is selected with highest posterior probability for every data set. Although it is possible in
principle for the true model not to be assigned the highest posterior probability for finite
data (Bishop, 2007), we notice here that the true model is always preferred and moreover
that its probability increases with more data. This trend also demonstrates the diminishing
impact of the prior distribution as more data are included. Indeed, Bayesian model inference
is known to be asymptotically consistent, i.e., the posterior concentrates on the true model
given infinite data (Berger and Pericchi, 2001), provided that true model is within the set
of models being considered.

5.5. Example 2: Steam reforming of methane with real data

The second example considers inference of chemical kinetic models for steam reforming of
methane using real experimental data from a stagnation flow reactor apparatus (McGuire
et al., 2009). The operating conditions of the experiment are given in Table 5; further
specifics on the experimental data set (e.g., species and measurement locations) can be
found in McGuire et al. (2009).

In this example, we consider all three prior specifications (Section 5.3.2) imposed on
all 15 of the uncertain reaction pairs in Table 1. Using the adaptive MCMC procedure of
Section 3, we generate 200 000 samples from the posterior distribution of k̃ using the adap-
tive MCMC procedure explained in Section 3. Again, we begin adaptation after generating
the first 20 000 samples and discard the next 20 000 samples as burn-in. Posterior model
probabilities are estimated from the remaining 160 000 samples.

Table 6 shows the ten most probable models for each prior specification, and their cor-
responding frequency (in a total population of 160 000 samples). As expected, the sparsity
of the most probable models increases with the weight on the δ-component in the prior. In
the case of Prior 1, the model that includes all the reactions is strongly preferred. For Prior
2, the most probable model includes all the reactions except pairs 6–21, 12–27, and 14–29.
The exclusion of these three reaction pairs, particularly in the case of an indifference prior,
is an example of the Bayesian Occam’s razor in action. Prior 3 results in extremely sparse
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models. Reaction networks corresponding to the highest probability models for the three
prior settings are shown in Figure 3.

Condition Value
Inlet composition (by mole fractions) 4.3% CH4 and 5.9% H2O (balance Ar)

Inlet temperature 135◦C
Catalyst surface temperature 740◦C

Inlet velocity 1.3 m/s
Reactor pressure 300 Torr

Fcg 20

Table 5: Experimental operating conditions for Example 2, from McGuire et al. (2009).

We also show in Figure 4 the posterior marginal inclusion probability of each reaction
pair. Since the marginal inclusion probability of a reaction is the average of its inclusion
indicator over all possible models in the posterior, it provides a measure of how strongly an
individual reaction is supported by the available data. In all three panels of Figure 4, we
note that the posterior inclusion probability of reaction pair 3–18 is identical to its prior
inclusion probability. Reaction pairs 14–29 and 15–30 (reactions involving species HCO*)
also have a negligible difference between their prior and posterior inclusion probabilities.
These results suggest that the data are not informative about these reactions; in other words,
these reactions seem to have an insignificant effect on the level of agreement between model
predictions and the available data. Invoking a further principle of parsimony, it may thus
be prudent to exclude reaction pairs 3–18, 14–29, and 15–30 from the predictive model, or
to reassess their importance by collecting more data.

Figure 4 also shows that the posterior marginal inclusion probabilities of reaction pairs
1–16, 2–17, 4–19, and 13–28 remain close to one for each prior specification; these reactions
are thus the most strongly supported by available data. The inclusion of reaction pair 4–19
with probability one in all the inferred models is confirmation that the inference procedure
is working well, in that it does not exclude reactions that are absolutely necessary for pro-
duction of the observed product species. Among all the uncertain reaction pairs, reactions
4 and 19 are the only pair containing CO∗2, and their inclusion ensures that the model pro-
duces CO2 as one of the products. In general, the near-unity posterior probabilities suggest
that all four of these reaction pairs are critical to explaining the steam reforming behavior
of methane.

It is important to note, however, that the marginal inclusion probabilities shown in
Figure 4 do not capture correlations among the values of the reaction rate parameters
or patterns of joint inclusion/exclusion. The joint posterior probability distribution of
the rate parameters, which we have sampled using MCMC, in fact contains much more
information. In particular, it contains information about combinations of reactions and
how well particular combinations are supported by the current data.
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Figure 3: Reaction networks of the highest posterior probability models for steam reforming of methane (Ex-
ample 2), under different prior specifications. Edge thicknesses are proportional to reaction rates calculated
using posterior mean values of the rate parameters.
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Reaction prior probability Reaction prior probability Reaction prior probability
0.2δ(ki,f ) + 0.8C(ki,f ) 0.5δ(ki,f ) + 0.5C(ki,f ) 0.8δ(ki,f ) + 0.2C(ki,f )

Freq Excluded pairs† Freq Excluded pairs† Freq Excluded pairs†

16157 – 521 6, 12, 14 4221 3, 5, 7, 9, 12, 14, 15
4894 7 496 6, 8, 10, 12, 14 3533 3, 5, 9, 10, 12, 14, 15
4845 6 493 7, 11 3447 3, 5, 6, 7, 11, 14, 15
4545 12 477 7, 9, 11, 14 3379 3, 5, 6, 10, 11, 14, 15
4326 9 464 3, 6, 12, 14 3340 3, 5, 7, 9, 11, 14, 15
4237 10 457 3, 6, 10, 11, 14 3318 3, 5, 6, 7, 12, 14, 15
4168 11 454 6, 10, 12, 14 3153 3, 6, 8, 10, 12, 14, 15
3954 3 451 6, 12 3033 3, 7, 8, 9, 12, 14, 15
3908 15 451 7, 11, 15 2878 3, 5, 9, 10, 11, 14, 15
3902 14 441 6, 10, 11, 15 2640 3, 7, 8, 9, 11, 14, 15
†Reaction pairs are denoted here by the number associated with the forward reaction

Table 6: The ten models with highest posterior probability in Example 2, for each choice of prior.

One way of interrogating the joint information embedded in the posterior distribution is
to focus attention on particular pathways in the reaction network. Looking at the reaction
network in Figure 3a (which contains all the proposed reactions), it is possible to discern
three clear pathways for the conversion of reactants H2O and CH4 into products CO2, CO,
and H2. The first pathway includes both C* and HCO* species, the second pathway ex-
cludes HCO* and retains C*, and the third pathway excludes C* but retains HCO*. The
three possible reaction pathways are shown schematically in Figure 5. We use samples from
the joint posterior distribution to quantify the degree to which each of these pathways is
supported by available data. The posterior probability of each pathway is obtained by com-
puting the fraction of posterior samples (i.e., candidate models) that contain the pathway.
It is important to note that the probabilities obtained in this fashion correctly account for
uncertainties in the other reactions (i.e., reactions not part of the pathway under consid-
eration) by marginalizing over them. This contrasts with a method that simply compares
three models, one corresponding to each pathway, while arbitrarily fixing or excluding all the
other reactions. Given the data produced by the steam reforming experiments of McGuire
et al. (2009), the estimated posterior probabilities of the three pathways are shown in Table
7. We observe that the dominant pathway is the C* pathway. The HCO* pathway has
nearly zero probability. This conclusion supports the view commonly held in the literature
that steam reforming of methane operates through the C* pathway and that the inclusion
of HCO* in the kinetic model is superfluous (McGuire et al., 2009, 2011).

Pathway
Prior 1 Prior 2 Prior 3

Prior Posterior Prior Posterior Prior Posterior
1 (both C* and HCO* present) 0.536 0.643 0.177 0.249 0.026 0.039
2 (only C* present) 0.302 0.343 0.529 0.733 0.633 0.961
3 (only HCO* present) 0.162 0.010 0.294 0.012 0.340 0.000

Table 7: Prior and posterior pathway probabilities for steam reforming of methane, Example 2.
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(b) Prior: 0.5δ(ki,f ) + 0.5C(ki,f )
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(c) Prior: 0.8δ(ki,f ) + 0.2C(ki,f )

Figure 4: Posterior reaction inclusion probabilities of all reactions for the three prior specifications in Ex-
ample 2. The red line indicates the prior reaction inclusion probability.
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(c) Pathway 3

Figure 5: Reaction pathways for steam reforming of methane on rhodium (Example 2). Pathway 1 involves
both species C* and HCO*, Pathway 2 excludes HCO*, and Pathway 3 excludes C* species. All other
reactions that are treated as uncertain and that do not involve C* and HCO* are dotted. Reactions
involving gas-phase species are shown as regular lines.
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5.6. Example 3: Dry reforming of methane with real data

In the third application of our inference framework, we infer chemical kinetic models for
dry reforming of methane using experimental data from a stagnation flow reactor reported
in McGuire et al. (2011). Operating conditions for the experiment are given in Table 8, and
further specifics on the experimental data set (e.g., measured species and their locations) can
be found in McGuire et al. (2011). All three prior specifications discussed in Section 5.3.2
are again considered. As in the previous example, 200 000 posterior samples are simulated
from a distribution encompassing all 15 uncertain reaction pairs given in Table 1, for each
prior specification.

Table 9 shows the ten most probable models for each prior specification and their corre-
sponding frequencies in 160 000 posterior samples. The highest posterior probability model
obtained with Prior 1 includes all the reactions; as in the previous example, the weight spec-
ification of Prior 1 naturally favors larger models. With Prior 2, i.e., the indifference prior,
the posterior excludes many reactions, slightly more than in Example 2. This reduction
is again a demonstration of the penalty on model complexity built into evaluations of the
marginal likelihood. The sparsity-promoting prior (Prior 3) pushes the posterior towards
even smaller models, as seen the third column of Table 9. Reaction networks corresponding
to the highest-frequency models for the three prior settings are illustrated in Figure 6.

Condition Value
Inlet composition (by mole fractions) 10% CH4 and 15% CO2 (balance Ar)

Inlet temperature 25◦C
Catalyst surface temperature 800◦C

Inlet velocity 0.9 ms−1

Reactor pressure 300 Torr
Fcg 56

Table 8: Experimental operating conditions for Example 3 (McGuire et al., 2011).

Marginal posterior inclusion probabilities of all reaction pairs for the three prior speci-
fications are shown in Figure 7. We see that the posterior inclusion probabilities of all the
reactions deviate from their prior inclusion probabilities, in contrast to Example 2. This
suggests that the experimental data used for this dry reforming example is influenced by—
and thus contains information about—every single reaction pair. As in steam reforming, the
inclusion of reaction pair 4–19 with probability one confirms that the inference procedure
is working well.
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Reaction prior probability Reaction prior probability Reaction prior probability
0.2δ(ki,f ) + 0.8C(ki,f ) 0.5δ(ki,f ) + 0.5C(ki,f ) 0.8δ(ki,f ) + 0.2C(ki,f )

Freq Excluded pairs† Freq Excluded pairs† Freq Excluded pairs†

7616 – 537 1, 2, 5, 9, 11, 14 4635 1, 3, 5, 10, 11, 12, 13
4950 6 488 1 10, 11, 12 3507 1, 2, 9, 10, 11, 14, 15
4800 5 484 1, 5, 10, 11, 14 3314 3, 5, 6, 10, 11, 12, 13
2892 7 445 1, 2, 5, 11, 14 3245 1, 2, 5, 9, 10, 11, 12, 13
2559 2, 6 401 1, 2, 5, 11 2608 1, 2, 9, 10, 11, 12, 13
2393 1 396 5, 6, 7, 14 2428 1, 2, 9, 10, 12, 14, 15
2107 12 392 5, 6, 7, 11, 14 2370 3, 5, 9, 10, 11, 12, 13
2023 15 391 5, 6, 10, 12, 15 1607 1, 3, 5, 7, 12, 14, 15
1889 9 369 5, 6, 7, 11 1511 3, 5, 6, 7, 12, 14, 15
1884 14 365 5, 6, 7, 14, 15 1448 1, 3, 7, 8, 12, 14, 15
†Reaction pairs are denoted here by the number associated with the forward reaction

Table 9: The ten models with highest posterior probability in Example 3, for each choice of prior.

We also compute the posterior probabilities of the three distinct pathways shown in
Figure 8. Pathway 1 includes both C* and HCO*, pathway 2 excludes HCO* and retains
C*, and pathway 3 excludes C* and retains HCO*. The posterior probabilities of the
three pathways are shown in Table 10. Compared to the corresponding results for steam
reforming (Table 7), the present results suggest that the HCO* pathway is not unimportant
to dry reforming. In other words, it is possible that dry reforming of methane is realized
through the generation of HCO*. With an indifference prior, the HCO*-only pathway has
a posterior probability of 8%. With a sparsity promoting prior, the posterior probability of
pathway 1 decreases dramatically and the posterior places 23% of its mass on the HCO*-
only route. That said, the C* pathway remains very much the dominant pathway given
the current data. Pathway 1 also has strong support except in the case of the sparsity-
promoting prior, which effectively forces the posterior to “choose” between the two more
parsimonious options. A clearer conclusion can only result from collecting more data and
repeating this analysis.

Pathway
Prior 1 Prior 2 Prior 3

Prior Posterior Prior Posterior Prior Posterior
1 (both C* and HCO* present) 0.536 0.596 0.177 0.244 0.026 0.034
2 (only C* present) 0.302 0.347 0.529 0.677 0.633 0.732
3 (only HCO* present ) 0.162 0.056 0.294 0.080 0.340 0.234

Table 10: Posterior pathway probabilities for dry reforming of methane, Example 3.

5.7. Efficiency of posterior sampling

To verify the numerical results reported in the preceding sections, we performed three inde-
pendent MCMC runs for each example problem and each prior specification, with different
initial guesses for the rate parameters k̃ in each case. Overall, the three replicate runs
yielded very similar results; the independent chains were able to identify the high posterior
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Figure 6: Reaction networks of the highest posterior probability models for dry reforming of methane (Ex-
ample 3), under different prior specifications. Edge thicknesses are proportional to reaction rates calculated
using posterior mean values of the rate parameters.
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(c) Prior: 0.8δ(ki,f ) + 0.2C(ki,f )

Figure 7: Posterior reaction inclusion probabilities of all reactions for the three prior specifications in Ex-
ample 3. The red line indicates the prior reaction inclusion probability.
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Figure 8: Reaction pathways for dry reforming of methane on rhodium (Example 3). Pathway 1 involves both
species C* and HCO*, Pathway 2 excludes HCO*, and Pathway 3 excludes C* species. All other reactions
that are treated as uncertain and that do not involve C* and HCO* are dotted. Reactions involving gas-phase
species are shown as regular lines.
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Figure 9: Autocorrelation at lag s of the log-posterior of the MCMC chains.

probability models and accurately reproduce their probabilities. Yet the quality of these
posterior estimates, of course, depends on the number of posterior samples employed—i.e.,
the length of the MCMC chains. Because the forward models G(k̃, k̂) in this setting are
computationally expensive, it is practically important to limit the number of samples. As
described in Section 4.1, the variance of a posterior estimate for a fixed number of samples
depends on how well the chain is mixing (Andrieu et al., 2003; Robert and Casella, 2004).
The adaptive MCMC scheme employed here has been shown to significantly improve mix-
ing over non-adaptive schemes (Ji and Schmidler, 2013), but it is nonetheless important to
assess the quality of its sampling.

A useful diagnostic for the quality of MCMC mixing is the empirical autocorrelation
of the chain. In particular, we compute the correlation between samples as function of lag
time. A steep decay in this autocorrelation means that successive samples are less correlated
and more nearly independent. While one could compute the empirical autocorrelation for
each reaction parameter individually, we instead summarize MCMC mixing by computing
the autocorrelation of successive values of the log-posterior density. This is reported in
Figure 9, for Examples 2 and 3 with all three prior specifications.

The decay of the autocorrelation is relatively good in both cases, though the MCMC
chains mix more quickly in Example 2 than in Example 3. This difference can be ascribed
to differences in posterior structure. In Example 2, the C* pathway is largely dominant,
while in the dry reforming case of Example 3, both the C* and HCO* pathways have
appreciable posterior probabilities. The MCMC chain in Example 3 thus has to switch
between pathways more frequently, and each switch requires the inclusion and exclusion of
multiple reactions. Even with the present adaptive proposal distribution, this coordinated
inclusion and exclusion is a relatively “large” jump in the model space. Thus, while mixing
is adequate in the current example, a more computationally efficient approach—i.e., one
that could achieve similar results with fewer samples—might involve correlated proposal
mechanisms that can learn not just the marginal structure of the posterior in each parameter
direction but the joint structure of posterior. The design of such proposal mechanisms is a
topic of ongoing research.
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5.8. Posterior parameter uncertainties

Thus far, we have focused our analysis on the posterior description of uncertainties in model
structure. But the across-model Bayesian inference framework also automatically produces a
full description of uncertainties in rate parameter values. In other words, for every model in
the posterior distribution, MCMC samples describe the joint probability distribution of the
rate parameters that are included in that model (i.e., that are non-zero). Quantifying these
parameter uncertainties is important when developing a rigorous assessment of uncertainties
in model predictions.

Here we provide one example of the posterior parameter uncertainties obtained using
our inference framework. Figure 10 shows 1-D and 2-D marginal distributions of the rate
constants of the highest-probability model for steam reforming (Example 2), using Prior
3. This model includes 8 of the 15 possible reactions (as described in Table 6), and thus
the continuous distribution over rate parameter values is supported on an eight-dimensional
space. The diagonal of Figure 10 shows the marginal probability density function of one
parameter at a time, while the off-diagonal elements show the joint probability density of
each pair of parameters (marginalizing out the other six). The prior probability density was
uniform over each box, and thus the more focused contours indicate a significant reduction
in prior uncertainty. There is also some complex (and certainly non-Gaussian) structure
in each pairwise marginal. This is the uncertainty given the experimental data at hand.
Further reduction in parameter uncertainty would require the injection of additional data
into the inference process.

6. Conclusions

This paper has introduced a new Bayesian framework for the inference of chemical kinetic
models. This framework fuses experimental data with prior knowledge, incorporating a
detailed simulation of the relationship between the underlying chemical mechanism and
quantities that can be experimentally observed. Our approach quantifies uncertainty in the
chemical kinetic model by exploring a probability distribution over both model structures
(i.e., which reactions to include) and rate parameter values. This distribution results from
a systematic approach to model inference, one that begins with a large number of proposed
reactions and treats identification of the reaction network as a problem of nonlinear Bayesian
variable selection. The approach thus inherits the benefits of Bayesian model selection, in
that it avoids overfitting and includes an automatic Occam’s razor to penalize excessive
model complexity. But it also offers a computationally efficient means of comparing a
combinatorially large number of models, in contrast with other Bayesian approaches that
directly compute marginal likelihoods for a small handful of chemical models.

We demonstrate our approach through the inference of kinetic models for steam and
dry reforming of methane. A first example with synthetic data is used to show the consis-
tency of the model inference procedure. Subsequent examples use real experimental data
reported in the literature. We analyze the posterior distribution to quantify the degree
to which individual reactions are supported by the data; furthermore, we show how the
probabilities of particular multi-reaction pathways can be extracted from the posterior dis-
tribution. These pathways are competing hypotheses for how methane reforming proceeds
through chains of intermediate species (e.g., C* or HCO*), and their posterior probabilities
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Figure 10: 1-D and 2-D posterior marginals of the rate constants of the highest-posterior-probability model
for steam reforming (from Example 2), beginning with the prior p(ki,f ) = 0.8δ(ki,f ) + 0.2C(ki,f ). The
logarithms here are base 10.

quantify the extent to which each hypothesis is supported by the data. In all these analyses,
we consider three different prior specifications. Prior probability distributions, both on the
inclusion/exclusion of each reaction and its rate parameter value, provide a natural way of
encapsulating current knowledge or preferences about the process under study. One inter-
esting specification is the sparsity-promoting prior, which in the present examples yields
smaller mechanisms than the uninformative “indifference” prior. In general, the prior spec-
ifications introduced here are intended to be illustrative; more complex or nuanced priors
can easily be employed.

The key computational challenge raised by our Bayesian formulation is exploration of
the posterior distribution via sampling. To make posterior sampling tractable, we employed
an adaptive independence MCMC scheme, where adaptation of the point-mass mixture
proposal distribution was guided by an online EM algorithm. This scheme offers significant
gains in efficiency over non-adaptive samplers, but further improvements in the sampling
scheme would be desirable—particularly to enable larger model comparisons, the use of
more computationally intensive forward simulation models, and the inclusion of additional
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uncertain parameters. Posterior distributions resulting from the across-model inference
framework are intrinsically multi-modal, with complex correlations among the inclusion and
exclusion of certain reactions. Further research is needed to design MCMC proposals that
can quickly adapt to such posterior correlations and jump between well-separated posterior
modes, thereby improving chain mixing. The present Bayesian model inference scheme
can also be viewed as one component of a sequential experimental design procedure, where
inference is used to identify the most uncertain reactions or to isolate particular groups of
competing reaction pathways. New data, chosen via an experimental design criterion that
focuses on these reactions, could be then collected and introduced into subsequent Bayesian
model inference procedures.
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Appendix A. Online expectation-maximization for proposal adaptation

Here we present a derivation of the online EM algorithm applied to a general point mass
mixture proposal:

q(ki;ψi) = bi,0δ(ki) +

M∑
m=1

bi,mqm(ki; θi,m). (A.1)

The marginal proposal distribution q(ki;ψi) shown in (A.1) can also be rewritten as

q(ki;ψi) =
∑
zi

q(ki, zi; θi), (A.2)

and taking q(ki;ψi) to be independent for each ki, the joint proposal distribution for an
N -dimensional problem follows:

q(k̄; ψ̄) =
∑
z̄

q(k̄, z̄; ψ̄) =
N∏
i=1

∑
zi

q(ki, zi; θi). (A.3)

Here, zi is a latent variable that takes one of M + 1 values corresponding to the M + 1
components that could generate the posterior sample. q(k̄, z̄) is the joint distribution of z̄
and k̄ and is referred to as the complete-data likelihood. Expanding (A.2) by the product
rule of probability gives:

q(ki;ψi) =
∑
zi

q(ki|zi)q(zi)

= q(zi = 0)δ(ki) +

M∑
m=1

q(zi = m)qm(ki|zi = m; θi,m); (A.4)
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Comparing (A.4) to (A.1), we see that

q(zi = 0) = bi,0 and q(zi = m) = bi,m. (A.5)

After the steps for a general point mass mixture proposal have been established, we
will obtain specific expressions for the case when the continuous components of the above
proposal distribution (12) are all Gaussian.

Appendix A.1. KL divergence minimization yields a maximum likelihood problem

Recall that our goal is to update the proposal distribution q(k̄; ψ̄) iteratively based on
samples from the posterior distribution p(k̄|D) so as to minimize the KL divergence:

DKL(p(k̄|D‖q(k̄; ψ̄)) =

∫
p(k̄|D) log

(
p(k̄|D)

q(k̄; ψ̄)

)
dk̄ (A.6)

w.r.t. the proposal parameters ψ̄. Note that minimizing the KL divergence in (A.6) is
equivalent to maximizing the cross entropy

∫
p(k̄|D)q(k̄, ψ̄)dk̄. Thus the objective function

can be rewritten as

ψ̄∗ = arg max
ψ̄

∫
p(k̄|D) log(q(k̄; ψ̄))dk̄. (A.7)

The integral in (A.7) can be approximated by a Monte Carlo sum using T samples from
the posterior distribution p(k̄|D) as

I =
1

T

T∑
t=1

log(q(k̄t; ψ̄)) =
1

T
log

(
T∏
t=1

q(k̄t; ψ̄)

)
. (A.8)

Now, if we think of k̄t=1:T as pseudo-data and q(k̄t; θ) as a likelihood, cross entropy can be
interpreted as a log-likelihood under infinite data and (A.7) as a maximum (log-)likelihood
problem. Mathematically (A.7) can also be written as

ψ̄∗ = arg max
ψ̄

lim
T→∞

1

T
log

(
T∏
t=1

q(k̄t; ψ̄)

)
(A.9)

Appendix A.2. Classical EM algorithm

Suppose we are given T independent samples (k̄1, k̄2, . . . , k̄T ) distributed according to
p(k̄|D). The solution of the maximum log-likelihood problem

ψ̄∗ = arg max
ψ̄

1

T

T∑
t=1

log
(
q(k̄t; ψ̄)

)
(A.10)

can be obtained by taking the derivative of the log-likelihood and solving the resulting
nonlinear equations. The nonlinear equations thus obtained seldom have a closed-form
solution and thus are solved by numerical optimization.
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An alternative known as expectation-maximization algorithm exists for the solution of
the maximum log-likelihood problem (Bilmes, 1998; Dempster et al., 1977). The EM algo-
rithm often results in simple analytical expressions and avoids the difficulties of gradient-
based optimization approaches. The EM algorithm consists of two steps, known as the
E-step and M-step, that are solved iteratively to obtain the optimal parameter values under
mild regularity conditions (Wu, 1983). The two steps are given by

E-step

Q(ψ̄, ψ̄n−1) =

∫
log

(
T∏
t=1

q(k̄t, z̄t; ψ̄)

)(
T∏
t=1

q(z̄t|k̄t, ψ̄n−1)

)
dz̄1 . . . dz̄T

= Ez̄1...z̄T

[
log

(
T∏
t=1

q(k̄t, z̄t; ψ̄)

)]
(A.11)

M-step

ψ̄n = arg max
ψ̄

Q(ψ̄, ψ̄n−1) (A.12)

The E-step in the above equations evaluates the expectation of the logarithm of the complete-
data likelihood, where the expectation is taken with respect to the latent variables condi-
tioned on available (sampled) rate parameters. In the M-step, an updated set of parameter
values are computed by maximizing the expected log-likelihood from the E-step. The EM
algorithm as described in (A.11) and (A.12) is applicable if all the observed samples (k̄t=1:T )
are available a priori and the samples are independent.

Our problem is different from the above case since we are generating samples from p(k̄|D)
in batches. Moreover, the generated samples are not independent as they are coming from
an MCMC scheme. Thus we use a sequential variant of the EM algorithm known as the
online EM algorithm and specify conditions under which the resulting adaptive MCMC
algorithm converges to the posterior distribution, p(k̄|D).

Appendix A.3. Online expectation maximization

We begin our discussion of the online EM algorithm by assuming that the proposal distri-
bution q(k̄, z̄; ψ̄) can be represented in the form

q(k̄, z̄; ψ̄) = exp(〈s(k̄, z̄), φ̄(ψ̄)〉 − Ā(ψ̄)). (A.13)

Distributions that can be cast in the above form are known to belong to the exponential
family (Bernardo and Smith, 2000). Here, s(k̄, z̄) is a vector of sufficient statistics, φ̄(ψ̄)
refers to the natural parameters, and Ā(ψ̄) is the log base distribution. The operator 〈·〉
is the standard inner product. Plugging the above expression for q(k̄, z̄) into (A.11) and
(A.12), we get

E-step:
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Q(ψ̄, ψ̄n−1) =

∫ T∏
t=1

q(z̄t|k̄t; ψ̄n−1)

T∑
t=1

(
〈s(k̄t, z̄t), φ̄(ψ̄)〉 − Ā(ψ̄)

)
dz̄1 . . . dz̄T , (A.14)

M-step:

ψ̄n = arg max
ψ̄

Q(ψ̄, ψ̄n−1). (A.15)

The above expectation and maximization steps can be recast in terms of sufficient statistics
as

E-step:

STn =
1

T

T∑
t=1

Eψ̄T
n−1

[
s(k̄t, z̄t)|k̄t

]
, (A.16)

M-step:

ψ̄Tn = Γ{STn }, (A.17)

where Γ{STn } = arg max
ψ̄

(〈STn , φ̄(ψ̄)〉 − Ā(ψ̄)). Letting T →∞, the EM iterations are

E-step:

Sn = Ep(k̄|D)

(
Eψ̄n−1

[
s(k̄, z̄|k̄)

])
(A.18)

M-step:

ψ̄n = Γ{Sn} (A.19)

Thus our overall goal of solving (A.7) is equivalent to locating the solutions of

Ep(k̄|D)

(
EΓ{S}

[
s(k̄, z̄|k̄)

])
− S = 0 (A.20)

If we now take 1
T

∑T
t=1 EΓ{S}[s(k̄

t, z̄t)|k̄t] to be a noisy estimate of Ep(k̄|D)

(
EΓ{S}

[
s(k̄, z̄|k̄)

])
,

application of the Robbins-Monro stochastic approximation algorithm results in the online
EM algorithm (Andrieu and Moulines, 2006; Robbins and Monro, 1951). The online EM
iterations are given by

E-step:

Sn = (1− ηn)Sn−1 + ηn

(
1

T

T∑
t=1

Eψ̄n−1
[s(k̄t, z̄t)|k̄t]

)
(A.21)

M-step:

ψ̄n = Γ{Sn} (A.22)

ηn here is a sequence of decreasing positive step sizes and satisfies the following two condi-
tions:
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∞∑
n=1

ηn =∞ and
∞∑
n=1

η2
n <∞ (A.23)

We take ηn = 1/n in our work. We now return to the complete-data likelihood of the point-
mass mixture proposal distribution ((A.2, A.3)). Assuming that the continuous parts of the
proposal distribution for each rate parameter ki are Gaussian distributions with arbitrary
initial means and variances and recalling that the proposal for each ki is independent, we
obtain the complete-data log-likelihood as

log q(k̄, z̄|ψ̄) =
N∑
i=1

M∑
m=0

zi,m log bi,m +
N∑
i=1

M∑
m=1

zi,m logN (ki;µi,m, σ
2
i,m). (A.24)

It can be easily be shown that (A.24) can be cast in the form of (A.13) and that the corre-
sponding sufficient statistics are given by:

For i = 1 to N

For m = 0 to M :

Oi,m =
1

T

T∑
t=1

γ(zti,m),

For m = 1 to M :

Pi,m =
1

T

T∑
t=1
kti 6=0

γ(zti,m) Qi,m =
1

T

T∑
t=1
kti 6=0

γ(zti,m)kti Ri,m =
1

T

T∑
t=1
kti 6=0

γ(zti,m)(kti)
2

where γ(zti,m) = p(zti,m|kti ;ψi) is given by

γ(zti,m) =


1 if kti = 0 and m = 0
0 if kti = 0 and m 6= 0
0 if kti 6= 0 and m = 0

bi,mN (kti ;µi,m,σ
2
i,m)∑M

m′=1 bi,m′N (kti ;µi,m′ ,σ
2
i,m′ )

if kti 6= 0 and m 6= 0.

(A.25)

Thus the online EM iterations consist of the following two steps

E-step:

S
Oi,m
n = S

Oi,m

n−1 + ηn(Oi,m − S
Oi,m

n−1 )

S
Pi,m
n = S

Pi,m

n−1 + ηn(Pi,m − S
Pi,m

n−1 )

S
Qi,m
n = S

Qi,m

n−1 + ηn(Qi,m − S
Qi,m

n−1 )

S
Ri,m
n = S

Ri,m

n−1 + ηn(Ri,m − S
Ri,m

n−1 ) (A.26)
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M-step:

bi,m =
S
Oi,m
n∑M

m′=0 S
Oi,m′
n

µi,m =
S
Qi,m
n

S
Pi,m
n

σ2
i,m =

µ2
i,mS

Pi,m
n − 2µi,mS

Qi,m
n + S

Ri,m
n

S
Pi,m
n

(A.27)

We have thus arrived at the steps of an adaptive MCMC algorithm that involves simulat-
ing a batch of T samples from the posterior distribution in each iteration and updating
the proposal parameters based on (A.26) and (A.27). Because online EM adjusts proposal
parameters based on all the past samples, standard proofs that guarantee asymptotic con-
vergence of non-adaptive MCMC methods do not apply here. Andrieu and Moulines (2006)
provide rigorous technical conditions that guarantee a law of large numbers and a central
limit theorem for the online EM algorithm. These conditions also require that one include
a non-adaptive fixed component in the proposal distribution; we do so in our simulations
in the form of a multi-dimensional Gaussian with fixed parameters q̃(k̄; ψ̃). Roberts and
Rosenthal (2007), in contrast, develop simpler conditions that ensure convergence of the
adaptive MCMC scheme to the target distribution and provide a law of large numbers. The
first is known as diminishing adaptation, which requires that the magnitude of adaptation is
continuously decreasing. The online EM-based adaptive MCMC approach described above
satisfies this condition since the step size ηn → 0. The second condition, known as bounded
convergence, is satisfied as long as the non-adaptive component q̃(k̄; ψ̃) has sufficiently heavy
tails or the support of k̄ is compact (Ji and Schmidler, 2013).

43


	Introduction
	Model inference
	What is a model?
	Classical approaches to model inference
	Bayesian approach to model inference

	Bayesian inference of chemical kinetic models
	Posterior exploration by Markov chain Monte Carlo
	Sampling using an independence Metropolis-Hastings algorithm
	Adaptive MCMC by online expectation maximization
	Random-scan independence Metropolis-Hastings algorithm

	Numerical demonstrations: catalytic reforming of methane
	Stagnation flow reactor model
	Proposed elementary reactions
	Setup of the Bayesian model inference problem
	Likelihood function
	Prior specification

	Example 1: Steam reforming of methane with synthetic data
	Example 2: Steam reforming of methane with real data
	Example 3: Dry reforming of methane with real data
	Efficiency of posterior sampling
	Posterior parameter uncertainties

	Conclusions
	Acknowledgements
	Online expectation-maximization for proposal adaptation
	KL divergence minimization yields a maximum likelihood problem
	Classical EM algorithm
	Online expectation maximization




