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Abstract
This paper investigates the morphological stability of epitaxial films
growing heteroepitaxially on ultra-thin substrates. The misfitting strain
model is incorporated into the quasi-static mechanical equilibrium system.
The interfacial evolution equation between the vapour and film phases is
used to solve the film evolution. The perturbation method of normal modes
is used to derive the analytical form of the normal-mode growth rate.
Additionally, this paper investigates the dynamic behaviour of the
vapour–film interface. The results of the study show that a decrease in
substrate thickness tends to stabilize the system regardless of whether the
stiffness ratio, ρ (i.e. the ratio of film stiffness to substrate stiffness) is less
than, equal to or greater than unity. Furthermore, it is found that the effects
of a finite substrate thickness on the stability behaviour of the system are
quite profound, and that this is particularly true when the film thickness is
close to hc with values of stiffness ratio greater than unity.

1. Introduction

Applications of the ultra-thin wafer have now become
widespread with the development of more complex
miniaturized systems, which facilitate much denser three-
dimensional packaging [1]. Utilization of ultra-thin wafers
is beneficial since it improves certain operating properties,
including electronic properties [2, 3], mechanical properties
[4, 5] and thermal properties [5]. In research conducted by
Sriram and Smith [2], it was noted that these properties are
significantly influenced by the thickness of the substrate. It
is well-known that different morphologies are formed during
the growth of epitaxially deposited films on a substrate, and
that the transition of these morphologies is largely dependent
upon the presence of elastic stress and stress-relieving misfit
dislocations [6–8]. Furthermore, it can be demonstrated that
4 Author to whom any correspondence should be addressed.

as the substrate thickness decreases, the coupling of stress
states between the film and the substrate induced by lattice
mismatches assumes a more dominant influence. Clearly,
therefore, it is essential to develop an understanding of the
morphological instability induced by misfitting strain for
ultra-thin substrates.

The subject of stress-driven, morphological stability was
originally investigated by Asaro and Tiller [9]. In their study of
stress corrosion cracking of an elastic solid, they proposed the
use of the chemical potential to derive an evolution equation
of the solid surface, which took into account the effects of the
surface energy and the strain energy. Srolovitz [10] studied
the surface stability of stressed solids. In his investigation,
the surface evolution equation taken considered the effects of
evaporation/condensation and surface diffusion. Previously,
the instability of the interface between the two phases had been
investigated by considering the stress states of the film phase
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and the substrate phase separately. Grinfel’d [11] analysed
the second variation of energy in his theoretical study of
the instability of the separation boundary between a non-
hydrostatically stressed elastic body and a melt. Spencer et al
[6–8] investigated the stability of the vapour–film interface,
and focused particularly upon the role of misfitting strain
in inducing interface instability. In other words, the stress
states of the two phases, i.e. the film and the substrate, were
considered together. Junqua and Grillhé [12] used the two-
phase model and the surface dislocation model to investigate
the instability of epitaxial films in the case of sinusoidal
roughness at the film surface. Gao [13] studied the interface
instability for different surface morphologies, namely cusp-
like, cracked and flat surface geometries. Although all of
the studies mentioned above provided a profound contribution
to the understanding of surface instability under different
circumstances, they all considered a substrate of infinite
thickness. In the study performed by Ma et al [4], relating to
applications of ultra-thin substrates, the ratio of film thickness
(500 nm) to substrate thickness (25 µm) is very small. Hence,
it is necessary to consider a substrate of finite thickness.

The objective of this current study is to investigate
the morphological stability of an epitaxially strained film
growing heteroepitaxially or homoepitaxially on an ultra-thin
substrate. The misfitting strain, which arises due to differences
between the lattice constants of the film and the substrate,
is incorporated into the quasi-static mechanical equilibrium
system, and the interfacial evolution equation between the
vapour and the solid phases is established. The perturbation
method of normal modes is employed to generate the dynamic
behaviour of the vapour–film interface. The closed form
solution of the normal-mode growth rate, and the critical film
thickness, hc, are both obtained. Finally, this paper describes
and discusses the influence of a finite substrate thickness on
the stability characteristics of the system.

2. Mathematical formulation

The isotropic linear elastic, quasi-static model, consisting of
the film and the substrate, is presented in figure 1. As stated
previously, the misfitting strain model is applied to the film–
substrate interface. The associated boundary conditions are
formulated, and the time dependent interface between the
vapour and the film is modelled by using an evolution equation,
which takes into account the effects of vapour deposition and
surface diffusion.

2.1. Governing equations

(1) Strain–displacement relation:

Eij = 1
2 (∂jui + ∂iuj ) (1)

where Eij is the strain tensor and ui is the displacement
component.

(2) Constitutive equations:

(i) for the film:

T F
ij = 2µF

[(
νF

1 − 2νF

)
δijE

F
kk + EF

ij −
(

1 + νF

1 − 2νF

)
εδij

]
.

(2)
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Figure 1. Physical configuration.

(ii) for the substrate:

T S
ij = 2µS

[(
νS

1 − 2νS

)
δijE

S
kk + ES

ij

]
. (3)

In these two equations, Tij is the stress tensor; µ the shear
modulus; ν the Poission ratio; and δij is the Kronecker delta.
The superscripts F and S refer to the film and substrate phases,
respectively.

The presence of an extra term in equation (2), compared to
equation (3), is to be noted. This term arises from the misfitting
strain induced by lattice mismatches between the film and the
substrate. The misfitting strain is given by

ε = aF − aS

aS
(4)

where aF and aS are the lattice constants of the film and
substrate, respectively.

(3) Mechanical equilibrium equation. The film and the
substrate are both satisfied by the following equilibrium
equation:

∂jTij = 0. (5)

(4) Displacement equilibrium equation. The equilibrium
equation can be expressed in terms of displacement by
substituting the constitutive equations (1) and (2) into (5),
and then replacing the strain components with corresponding
displacement elements by means of the strain–displacement
relationship. The resulting equation is as follows:

(1 − 2ν)∂2
k ui + ∂i∂kuk = 0. (6)

It is to be noted that this equation is valid for both the film
and the substrate.

2.2. Boundary condition

A traction-free boundary condition is imposed at the upper
interface of the film. This simulates the condition where the
pressure of the surrounding vapour is very low, i.e.

T F
ij n

F
j = 0 on z = h (7)

241



J-M Lu et al

where z = h(x, y, t) is the time-varying film thickness; and nj

represents the unit normal to the film–vapour surface oriented
toward the vapour.

The continuity conditions of displacement and stress are
applied at the film–substrate interface, i.e.

uF
i = uS

i , T F
3i = T S

3i on z = 0. (8)

At the substrate–holder interface, the imposed boundary
condition must reflect the clamping situation which is actually
applied in practice. Within semiconductor manufacturing,
several methods exist for the clamping of the substrate to
the holder. These methods include the magnetic chuck, the
electrostatic chuck (E-chuck), the vacuum chuck and the
rinse/dryer chuck. Depending upon the particular method
employed, the attractive forces exerted between the substrate
and the holder may be produced by a magnetic force, an
electrostatic force, or a combined vacuum and mechanical
clamping force. The objective of the chuck force is to prevent
the substrate from shifting or deforming. This enables a more
precise manufacturing operation which yields improved film
properties during the exposure and deposition stages. In order
to prevent the substrate from shifting or deforming, the material
used for the holder must be stiffer than the material used for
the substrate. Hence, the deformation of the holder will be
relatively smaller than that of the substrate, and this enables
the assumption to be made that the holder is rigid. Therefore,
the displacement of the substrate base, which is the closest
substrate layer to the top of the holder, can be specified as being
equal to zero, i.e. a zero displacement boundary condition
is imposed at the substrate–holder interface. This condition
assumes that the substrate is perfectly attached to the holder,
and that the holder is perfectly rigid in comparison to the
stiffness of the non-deformed substrate, i.e.

uS
i = 0 on z = −H. (9)

The equations given above form a closed system which
can be used to solve a quasi-static equilibrium problem, and
which are used in this case to derive the basic state solution
component of the stability analysis. In order to investigate the
morphological instability of the film surface, it is necessary to
consider the evolution equation of the film surface.

The general evolution equation is derived from the
chemical potential [7, 8], and chiefly focuses upon the physical
mechanisms of surface diffusion and vapour deposition in the
evolution of the film. The simplified evolution equation is
given as:
∂h

∂t
= D(1 + |∇h|2)1/2∇2

S (E + γK) + V

on z = h(x, y, t) (10)

where ∇ is the gradient operator; ∇2
S the surface Laplacian

operator; |∇h|2 = h2
x + h2

y ; D the surface diffusivity, which
is dependent upon temperature; E(= (Eij − εδij )Tij /2) the
elastic strain energy density; γ the surface free energy of the
film; K the curvature of the film surface; andV is the deposition
rate of the vapour. It is noted that the value of K used in
the simulation is taken to be the measurement at atmospheric
pressure for the purposes of simplicity [7, 8]. Since the
temperature difference throughout the whole system is small,
a constant temperature is assumed, and as a consequence, a
constant value of surface diffusivity, D, is adopted.

3. Linear stability analysis

3.1. Basic state solutions

The film evolution given in equation (10) can be solved for
either the static or the dynamic case, depending upon the form
of the film thickness expression. In this study, only the static
film solution is considered, and hence the film thickness is
expressed as:

h̄ = h0 (11)

where h̄ represents the basic state solution of the static film.
The displacement field of the substrate corresponding to

the condition of zero strain is given as:

ūS
i = 0 for i = 1, 2, 3. (12)

The displacement field corresponding to a state of uniform
epitaxial strain in the z-direction is expressed as:

ūF
i = 0 for i = 1, 2, and ūF

3 = E0
33z (13)

where

E0
33 = ε

[
1 + νF

1 − νF

]
.

The biaxial stress associated with the strain fields in the
film is:

T̄ F
11 = T̄ F

22 = −2µFE0
33 = −2µFε

[
1 + νF

1 − νF

]
. (14)

3.2. Normal-mode perturbation

The perturbation method of the normal modes is employed to
study the linear stability of the strained film. The perturbation
is superimposed on the planar shape of the free surface
obtained from the basic solution. The perturbed solutions are
expressed as:

h = h̄(t) + ĥ(t)φ(x, y) (15)

uS
i = 0 + ûS

i (z, t)φ(x, y) for i = 1, 2, 3 (16)

uF
i = 0 + ûF

i (z, t)φ(x, y) for i = 1, 2 (17)

uF
3 = E0

33z + ûF
3(z, t)φ(x, y) (18)

Eij = Ēij + Êij (z, t)φ(x, y) (19)

Tij = T̄ij + T̂ij (z, t)φ(x, y) (20)

where φ(x, y) is given by

φ(x, y) = exp(iaxx + iayy) (21)

where ax and ay are the disturbance wave numbers in the x- and
y-directions, respectively. The bar symbols, ¯, over h, Eij and
Tij represent the basic state solutions of the related quantities.
The first term in the right-hand side of equations (15)–(20)
represents the basic state solution associated with the quantity
presented on the left-hand side. It should be noted particularly
that the perturbation is only expanded in the spatial domain
since the solution of the film thickness in the basic state is a
time dependent function already. However, the perturbation
of equation (21) still valid for the static film, i.e. for V = 0 in
equation (11).
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3.3. Perturbed displacement fields

The linear system of partial differential equations for
the disturbances is obtained by substituting the perturbed
equations (15)–(21) into the governing equations (6)–(9) and
then linearizing the disturbance quantities. The resulting
equations for the perturbed field are:

(1 − 2ν)(∂2
z − a2)û1 + iax(iaxû1 + iayû2 + ∂zû3) = 0 (22)

(1 − 2ν)(∂2
z − a2)û2 + iay(iaxû1 + iayû2 + ∂zû3) = 0 (23)

(1 − 2ν)(∂2
z − a2)û3 + ∂z(iaxû1 + iayû2 + ∂zû3) = 0 (24)

where a = (a2
x + a2

y)
1/2.

The linearized boundary conditions relating to the
perturbed quantities are:

−iaxĥT̄ F
11 + T̂ F

13 = 0 on z = h̄ (25)

−iayĥT̄ F
22 + T̂ F

23 = 0 on z = h̄ (26)

T̂ F
33 = 0 on z = h̄ (27)

ûS
i = ûF

i on z = 0 for i = 1, 2, 3 (28)

T̂ S
3i = T̂ F

3i on z = 0 for i = 1, 2, 3 (29)

ûS
i = 0 on z = −H for i = 1, 2, 3. (30)

Finally, the linearized evolution equation for the film
surface is obtained by substituting equations (15)–(21)
into (10), i.e.

∂ĥ

∂t
= Da2(Ê−γ K̂) (31)

where
Ê = 2µFE0

33(Ê
F
11+ÊF

22) on z = h̄ (32)

and
K̂ = a2(ĥ − ûF

3) on z = h̄. (33)

The general solution of equations (22)–(24) in the film is:

ûF
1 = α1 cosh az + β1 sinh az −

(
δ2iax

a

)
z cosh az

−
(

δ1iax

a

)
z sinh az (34)

ûF
2 = α2 cosh az + β2 sinh az −

(
δ2iay

a

)
z cosh az

−
(

δ1iay

a

)
z sinh az (35)

ûF
3 = α3 cosh az + β3 sinh az − δ1z cosh az − δ2z sinh az

(36)

where

δ1 =
[

1

3 − 4νF

]
(iaxα1 + iayα2 + aβ3) (37)

δ2 =
[

1

3 − 4νF

]
(iaxβ1 + iayβ2 + aα3) (38)

and the general solution of equations (22)–(24) in the
substrate is:

ûS
1 = α4 cosh az + β4 sinh az −

(
δ4iax

a

)
z cosh az

−
(

δ3iax

a

)
z sinh az (39)

ûS
2 = α5 cosh az + β5 sinh az −

(
δ4iay

a

)
z cosh az

−
(

δ3iay

a

)
z sinh az (40)

ûS
3 = α6 cosh az + β6 sinh az − δ3z cosh az − δ4z sinh az

(41)

where

δ3 =
[

1

3 − 4νS

]
(iaxα4 + iayα5 + aβ6) (42)

δ4 =
[

1

3 − 4νS

]
(iaxβ4 + iayβ5 + aα6). (43)

The twelve unknown constants, i.e. αi and βi

(i = 1, 2, 3, 4, 5, 6), are solved by incorporating the boundary
conditions given in equations (25)–(30). The twelve unknowns
will then be expressed in terms of ĥ. After eliminating the
dependent unknown constants by incorporating these boundary
conditions, two final independent equations, in terms of δ1 and
δ2, are obtained as,


1δ1 + �1δ2 = �1 (44)


2δ1 + �2δ2 = �2. (45)

Finally, expressions for δ1 and δ2 are obtained using
Cramer’s rule, i.e.

δ1 = �1�2 − �2�1



= ĥ

(

1




)
(46)

δ2 = 
1�2 − 
2�1



= ĥ

(

2




)
. (47)

The expressions for 
1, �1, �1, 
2, �2 and �2 are presented
in equations (A1)–(A6), while the expressions for 
, 
1 and

2 are given in equations (A7)–(A9). It is noted that the
parameter ρ, defined in equations (A1)–(A9), is an important
parameter, which measures the relative stiffness of the film to
that of the substrate, i.e. ρ = µF/µS, that will be referred in
the following section.

Once δ1 and δ2 have been solved, the elastic states of
the film and the substrate can be determined. Expressions
for ÊF

11 and ÊF
22, given in equation (32), are presented in

equations (A10)–(A13). Therefore, the perturbed evolution
equation can be expressed as follows:

∂ĥ

∂t
= ĥσ (48)
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where

σ = D{a3E0F(ah̄, aH) − a4γ [1 − K0G(ah̄, aH)]} (49)

E0 = 4µF(1 − νF)(E0
33)

2 = 4ε2µF

[
(1 + νF)2

1 − νF

]
(50)

K0 = E0
33 = ε

[
1 + νF

1 − νF

]
. (51)

The expressions for F(ah̄, aH) and G(ah̄, aH) are shown in
equations (A14) and (A15).

4. Results and discussion

The parameters used in the numerical calculation are listed in
table 1, and are the same as those presented previously in [6].
The parameters that are not presented in table 1, for example,
ρ, ah̄, and aH , are the variable dimensionless parameters
whose effects upon the stability characteristics are investigated
in the current study.

Figure 2 shows the relationship between the normal-
mode growth rate, σ , and the wave numbers, a, as derived
from equation (48). The curve determines the stability
characteristics of the static film. As may be seen in
equation (49), σ is represented by the subtraction of two terms,
and may be regarded to be the net result of two competing
energies, namely strain energy, which is proportional to a3,
and surface energy, which is proportional to a4. The results
shown in figure 2 indicate that strain energy tends to destabilize
the system, while surface energy has the opposite effect
providing that K0G(ah̄, aH) < 1. As may be surmised from
equation (51), this term is usually quite small, since K0 is

Table 1. Parameters for epitaxially strained films on a substrate with
finite thickness [6].

Parameter Value

ε 0.0418
γ 1.927 × 10−3 J m−2

νF 1
3

νS 1
3

µF 5.68 × 1010 J m−3

0
(1/m )

(1 /sec)

a c
a

σ

Figure 2. Typical plot of the normal-mode growth rate, σ , versus
the wave number, a.

small. The unstable region (σ > 0) is evident for small wave
numbers, and belongs to the category of long wave instability,
while the stable region (σ < 0) occurs for large wave numbers,
belonging to the short wave stability. The intersection of the
curve σ and the axis of the wave number represents the critical
wave number, ac (σ = 0).

The dimensional characteristic length l (= γ /E0) is
defined as the ratio of the surface energy density, γ , to the
basic-state strain energy density, E0. The dimensionless wave
number is defined as acl, the dimensionless film thickness
is defined as h0/l, and the dimensionless substrate thickness
is defined as H/l. In order to verify the validity of the
results formulated in this study, the solution from equation (49)
is reduced to the case of an infinite substrate thickness, and the
results are then compared to those provided by Spencer et al
[6]. As shown in figure 3, there is excellent agreement between
the two sets of results.

The discussion which follows considers the results
obtained for values of stiffness ratio greater than, equal to
and less than unity. Figure 4 shows the relationship between
the dimensionless wave number (acl) and the dimensionless
film thickness (h0/l) for different dimensionless substrate
thicknesses in the case of a stiffness ratio of ρ = 2. (Note that
in the remaining discussions, the relationship between the
dimensionless wave number and the dimensionless film
thickness will be referred to as the acl–h0/l.) The results
indicate that the stable region decreases as the substrate
thickness increases. In general, the influence of the substrate–
holder interface condition (i.e. zero displacement) is to
stabilize the system, since this condition tends to restrict the
motion of the substrate relative to the motion of the film.
Note that although the magnitude of the misfitting strain is
independent of the substrate thickness, the degree of restriction
imposed on the motion of the film does depend upon the
substrate thickness. It is found that the degree of constraint
on the film motion increases as the substrate thickness, or,
to express this in another way, the stable region decreases
as the substrate thickness increases. For a given substrate

0 .0 1 .0 2 .0 3 .0 4 .0

0 .0

0 .5

1 .0

1 .5

2 .0
S pence r e t a l.[8 ]
  P resen t S tudy

Stable

Unstable

a c
l

h 0/l
h c

ρ = 10

ρ = 0.5

ρ = 0.1

ρ = 1

ρ = 2

ρ = 0

Figure 3. The dimensional wave number, acl, versus the
dimensional film thickness, h0/l, for the case of the substrate
thickness approaching infinity, H → ∞.
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thickness, the system generally becomes more stable as the
film thickness increases, other than for smaller substrate
thicknesses. Furthermore, it can be seen that the stability of
the system is not influenced by the film thickness when the
dimensionless film thickness exceeds a value of 4. It will also
be noted that there is a wide variation of the neutral curves in
the region where the film thickness is close to hc. The results
presented in figure 4 indicate that the effects of finite substrate
thickness are significant, particularly when the film thickness
is close to hc, and that for a stiffer film (ρ > 1), the system
becomes more stable as the film thickness increases.

Figure 5 shows the acl–h0/l relationship for a stiffness
ratio of ρ = 1 in the case of homoepitaxial film growth.
The influence of the substrate thickness on the stability
characteristics of the system is similar to that reported
previously in figure 4. Compared to figure 4, it will be noted
that the system becomes more unstable as the film thickness

0.0 1.0 2.0 3.0 4.0

0.8

1.2

1.6

2.0

 H  / l
In fin ity
    4
    3
    2
  1 .5
    1

ρ = 2

S ta b le

U n sta b le

a c
l

h 0 / l
h c

>

Figure 4. The dimensional wave number, acl, versus the
dimensional film thickness, h0/l, for the case of the stiffness ratio,
ρ = 2.

0.0 1 .0 2 .0 3 .0 4 .0

0 .7

0 .8

0 .9

1 .0

1 .1

H / l
In fin ity
    4
    3
    2
    1

S ta b le

U n sta b le

a c
l

h 0 / l

ρ = 1

Figure 5. The dimensional wave number, acl, versus the
dimensional film thickness, h0/l, for the case of the stiffness ratio,
ρ = 1.

increases, i.e. the reverse of the results observed for a stiffness
ratio of ρ = 2. The chief constraint in this particular system
comes from the substrate–holder interface condition since in a
homoepitaxial case the same material is used in both the film
and the substrate. Therefore, as the film thickness increases the
constraint becomes weaker, and this results in a destabilizing
of the system.

Figure 6 shows the acl–h0/l relationship for a stiffness
ratio of ρ = 0.5. The results are similar to those presented in
figure 5. It is noted that for a softer film (ρ < 1), the system
becomes more unstable as the film thickness increases.

Figure 7 shows the acl–h0/l relationship for the case
of a rigid substrate, i.e. ρ = 0. The results indicate
that the substrate thickness has no influence on the stability
characteristics when the substrate is rigid. The physical
explanation for this might be that since the substrate is perfectly
rigid (ρ = 0), any disturbance mode only influences the
film and has no effect on the substrate. Thus, for any

S ta b le

U n sta b le

a c
l

h 0 / l
0.0 1 .0 2 .0 3 .0 4 .0

0 .0

0 .4

0 .8

1 .2

H / l
In fin ity

    4

    3

    2

  1 .5

    1

S ta b le
a c

l

h 0 / l

U n sta b le

ρ = 0.5

Figure 6. The dimensional wave number, acl, versus the
dimensional film thickness, h0/l, for the case of the stiffness ratio,
ρ = 0.5.

0.0 1 .0 2 .0 3 .0 4 .0

0 .0

0 .4

0 .8

1 .2

H / l
In fin ity

4
2
1

ρ = 0+

a c
l

h 0 / l

S ta b le

U n sta b le

h c

Figure 7. The dimensional wave number, acl, versus the
dimensional film thickness, h0/l, for the case of the stiffness ratio,
ρ = 0+.
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0 2 4 6 8 10

0.0

0 .5

1 .0

1 .5

2 .0

H / h 0

In fin ity
    4
    3
    2
    1

h 0 =  h c

Stable

Unstablea c
l

ρ

Figure 8. The dimensional wave number, acl, versus the stiffness
ratio, ρ, for the case of the basic state solution of film thickness
equal to the critical film thickness, i.e. h0 = hc.

substrate thickness, the critical height remains unchanged if
an assumption is made that the substrate is perfectly rigid. In
addition, it can be seen that there exists an absolutely stable
region when the film thickness is smaller than the critical
film thickness, hc. The value of hc is equal to AFl/2, and
is evaluated by L’Hôspital’s rule.

Figure 8 shows the dimensionless wave number versus the
dimensionless stiffness ratio for different dimensionless
substrate thicknesses, in the case where the fixed film
thickness is equal to hc. The results indicate that the system
becomes more unstable as the dimensionless stiffness ratio
increases, i.e. the system becomes more unstable for softer
substrates (ρ is larger).

5. Conclusions

This paper has investigated the morphological stability
of epitaxial films growing heteroepitaxially on ultra-thin
substrates. A finite substrate thickness has been included in
the physical model in order to derive the effects of substrate
thickness on the stability characteristics of the system. This
reflects the gradual decrease in substrate thickness used in
practice. The results presented below, which summarize the
principal conclusions of the current investigation, focus on the
influence of the finite substrate thickness effect on the stability
characteristics of the strained film, and therefore represent
findings which are not obtained when considering the infinite
substrate thickness addressed by Spencer et al [6].

(1) Decreasing the substrate thickness or increasing the
substrate stiffness has a stabilizing effect on the system.

(2) The effect on the system stability as the substrate thickness
is increased tends to be similar regardless of whether the
stiffness ratio of the film to the substrate is less than, equal
to, or greater than unity. The system tends to stabilize in
all cases.

(3) For a specific substrate thickness, increasing the film
thickness has a destabilizing effect upon the system, apart
from the case of smaller substrate thicknesses with a
stiffness ratio larger than unity. This result is similar to
that obtained for the infinite substrate thickness.

(4) A finite substrate thickness has no influence on the stability
behaviour of the system when a perfectly rigid substrate
is considered.

(5) The effect of a finite thickness substrate on the stability
behaviour of the system is significant when the stiffness
ratio is larger than unity, especially when the film thickness
is close to hc. However, a finite substrate thickness has no
effect upon the stability behaviour when the dimensionless
film thickness is larger than 4, regardless of the value of
the stiffness ratio.

It is noted that the conclusions provided above are based
on the assumption of a rigid holder. It is acknowledged that
this assumption may not truly reflect the case of a deformable
holder which might be encountered in practice. However, this
assumption is adopted in order to simplify the complicated
three-layer model required for a deformable substrate to a
two-layer model. This significantly reduces the computational
effort required to derive an analytical solution. It is recognized
that the results of the simplified two-layer model are not as
accurate as those of the three-layer model. However, the
results nevertheless provide an initial approximation of the
film evolution problem with a finite thickness substrate in
most cases, and this provides a preliminary understanding of
the stability characteristics of the film. The more accurate
solution of a three-layer model would involve the simultaneous
solution of three sets of governing equations associated with
the solid–solid and solid–vapour interfaces. This would
greatly complicate the analytical solution of the problem.
An alternative future approach would be to employ a semi-
analytical and numerical method to solve the problem.
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Appendix


1 = [AS(ah̄) + (BF + ρ)(aH) + AS cosh ah̄ sinh ah̄

+ (1 − ρ)(aH) cosh2 ah̄

− (BF + ρ)CS cosh aH sinh aH

+ (1 − ρ)CS(ah̄) sinh2 aH

− (1 − ρ)CS cosh2 ah̄ cosh aH sinh aH

+ (1 − ρ)CS cosh ah̄ sinh ah̄ sinh2 aH ] (A1)

�1 = [AFAS − (1 − ρ)(ah̄)(aH) + AS sinh2 ah̄

+ (1 − ρ)(aH) cosh ah̄ sinh ah̄ + AFCS sinh2 aH

+ (1 − ρ)CS(ah̄) cosh aH sinh aH

+ (1 − ρ)CS sinh2 ah̄ sinh2 aH

− (1 − ρ)CS cosh ah̄ sinh ah̄ cosh aH sinh aH ] (A2)

�1 = aE0
33ĥ[AS cosh ah̄ + (1 − ρ)(aH) sinh ah̄

− (1 − ρ)CS sinh ah̄ cosh aH sinh aH

+ (1 − ρ)CS cosh ah̄ sinh2 aH ] (A3)
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2 = [BFAS − (1 − ρ)(ah̄)(aH) + AS cosh2 ah̄

+ (BF + ρ)CS sinh2 aH

− (1 − ρ)(aH) cosh ah̄ sinh ah̄

− (1 − ρ)CS(ah̄) cosh aH sinh aH

+ (1 − ρ)CS cosh2 ah̄ sinh2 aH

− (1 − ρ)CS cosh ah̄ sinh ah̄ cosh aH sinh aH ] (A4)

�2 = [−AS(ah̄) − AF(aH) + AS cosh ah̄ sinh ah̄

− (1 − ρ)aH sinh2 ah̄ − AFCS cosh aH sinh aH

− (1 − ρ)CS(ah̄) sinh2 aH

− (1 − ρ)CS sinh2 ah̄ cosh aH sinh aH

+ (1 − ρ)CS cosh ah̄ sinh ah̄ sinh2 aH ] (A5)

�2 = aE0
33ĥ[AS sinh ah̄ − (1 − ρ)(aH) cosh ah̄

− (1 − ρ)CS cosh ah̄ cosh aH sinh aH

+ (1 − ρ)CS sinh ah̄ sinh2 aH ] (A6)


 = (
1�2 − 
2�1)

= − (2[AF + BFCF + 2(ah̄)2][AS + BSCS + 2(aH)2]

+ 4ρ{4AFAS(ah̄)(aH)

+ [BF − 2(ah̄)2][BSCS + 2(aH)2]}
+ 2ρ2[1 + 2(ah̄)2][C2

S + 2(aH)2] + 2[CF(AS + BSCS)

− 2ρBFBSCS − ρ2C2
S

+ 2(1 − ρ)(ρ + CF)(aH)2] cosh 2ah̄

+ 2CS[(AF + BFCF) − 2ρBFBS − ρ2CS

+ 2(1 − ρ)(1 + ρCS)(ah̄)2] cosh 2aH

+ CS(1 − ρ)(CF − ρCS) cosh 2a(h̄ − H)

+ CS(ρ + CF)(1 + ρCS) cosh 2a(h̄ + H))/8 (A7)


1 = − aE0
33(4ρAFAS(aH) cosh ah̄

+ 2[AS + BSCS − 2ρBSCS + ρ2C2
S

+ 2(1 − ρ)2(aH)2](ah̄) cosh ah̄

+ 2CS(1 − ρ)(1 + ρCS)(ah̄) cosh ah̄ cosh 2aH

+ 2[BF(AS + BSCS) + 2ρνFBSCS − ρ2C2
S

+ 2(1 − ρ)(ρ + BF)(aH)2] sinh ah̄

+ CS(1 − ρ)(BF − ρCS) sinh a(h̄ − 2H)

+ CS(ρ + BF)(1 + ρCS) sinh a(h̄ + 2H))/4 (A8)


2 = − aE0
33(−2AF[(3ρ − 5) − 2νS(5ρ − 6)

− 8ν2
S(1 − ρ) − 2(1 − ρ)(aH)2] cosh ah̄

− 2a{2AFASρH + h̄[(5 − 6ρ) − 4νS(2 + BS)

+ 4ρνS(2 + CS) + ρ2C2
S + 2(1 − ρ)2(aH)2]} sinh ah̄

+ AFCS(1 − ρ) cosh a(h̄ − 2H)

+ AFCS(1 + ρCS) cosh a(h̄ + 2H)

− CS(1 − ρ)(1 + ρCS)(ah̄) sinh a(h̄ − 2H)

− CS(1 − ρ)(1 + ρCS)(ah̄) sinh a(h̄ + 2H))/4 (A9)

where ρ is the stiffness ratio, i.e. ρ = µF/µS, which is an
important elastic parameter measuring the relative stiffness of
the film to that of the substrate. In addition, A = 2(1 − ν),
B = 1 − 2ν and C = 3 − 4ν. The subscripts F and S for A, B

and C refer to the film and to the substrate, respectively.

ÊF
11 = iaxû

F
1

=
(ax

a

)2
[(CFδ1 − aβ3) cosh ah̄ + (CFδ2 − aα3) sinh ah̄

+ δ2(ah̄) cosh ah̄ + δ1(ah̄) sinh ah̄]

=
(ax

a

)2
(

ĥ




)
[(CF
1 − B3) cosh ah̄

+ (CF
2 − A3) sinh ah̄ + 
2(ah̄) cosh ah̄

+ 
1(ah̄) sinh ah̄] (A10)

ÊF
22 = iayû

F
2

=
(ay

a

)2
[(CFδ1 − aβ3) cosh ah̄ + (CFδ2 − aα3) sinh ah̄

+ δ2(ah̄) cosh ah̄ + δ1(ah̄) sinh ah̄]

=
(ay

a

)2
(

ĥ




)
[(CF
1 − B3) cosh ah̄

+ (CF
2 − A3) sinh ah̄

+ 
2(ah̄) cosh ah̄ + 
1(ah̄) sinh ah̄] (A11)

where A3 and B3 are,

A3 = [(ah̄ + cosh ah̄ sinh ah̄)
1 + (AF + sinh2 ah̄)
2

− aE0
33
 cosh ah̄] (A12)

B3 = [−(−AF + cosh2 ah̄)
1 − (−ah̄ + cosh ah̄ sinh ah̄)
2

+ aE0
33
 sinh ah̄] (A13)

F(ah̄, aH) = [(CF
1 − B3) cosh ah̄ + (CF
2 − A3) sinh ah̄

+
2(ah̄) cosh ah̄ + 
1(ah̄) sinh ah̄]

×[2a(1 + νF)
E0
33]−1

= −(4{(ah̄)[AS + BSCS + 2(aH)2]

+2ρ[−BSCS(ah̄) + AFAS(aH) − 2(ah̄)(aH)2]

+ρ2(ah̄)[C2
S + 2(aH)2]}+2{CF[AS + BSCS + 2(aH)2]

−2ρBF[BSCS + 2(aH)2]−ρ2[C2
S + 2(aH)2]} sinh 2ah̄

+4CS(1 − ρ)(1 + ρCS)(ah̄) cosh 2aH

+CS(CF + ρ)(1 + ρCS) sinh 2a(h̄ + H)

+CS(1 − ρ)(CF − ρCS) sinh 2a(h̄ − H))/8
 (A14)

G(ah̄, aH) = [A3 cosh ah̄ + B3 sinh ah̄

−
1(ah̄) cosh ah̄ − 
2(ah̄) sinh ah̄][a
E0
33]−1

= −(2[BFCF + 2(ah̄)2][AS + BSCS + 2(aH)2]

−4ρ{[CF − 2(ah̄)2][BSCS + 2(aH)2]

+4AFAS(ah̄)(aH)}
+2ρ2[BF − 2(ah̄)2][C2

S + 2(aH)2]

+2BF[2(1 − ρ)(CF + ρ)(aH)2 + CF(AS + BSCS)

−2ρBFBSCS − ρ2C2
S] cosh 2ah̄

−2CS[2(1 − ρ)(1 + ρCS)(ah̄)2 + BFCF − 2ρCFBS

+ρ2BFCS] cosh 2aH

+BFCS(CF + ρ)(1 + ρCS) cosh 2a(h̄ + H)

+BFCS(1 − ρ)(CF − ρCS) cosh 2a(h̄ − H))/8
.

(A15)
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