
SAND2002-1488
Unlimited Release
Printed July 2002

Processor Allocation on Cplant: Achieving General

Processor Locality Using One-Dimensional

Allocation Strategies

Vitus J. Leung and Cynthia A. Phillips
Discrete Algorithms & Math Department

Jeanette R. Johnston
Scalable Computing Systems Department

Sandia National Laboratories

P. O. Box 5800
Albuquerque, NM 87185-1110

Esther M. Arkin, Michael A. Bender, and Joseph S. B. Mitchell

State University of New York
Stony Brook, NY 11794

David P. Bunde
University of Illinois

Urbana, IL 61801

Alok Lal
Tufts University

Medford, MA 02155

Steven S. Seiden
Louisiana State University

Baton Rouge, LA 70803

Abstract Follows

3

Abstract

The Computational Plant or Cplant is a commodity-based supercomputer

under development at Sandia National Laboratories. This paper describes

resource-allocation strategies to achieve processor locality for parallel jobs in

Cplant and other supercomputers. Users of Cplant and other Sandia supercom-

puters submit parallel jobs to a job queue. When a job is scheduled to run, it is

assigned to a set of processors. To obtain maximum throughput, jobs should be

allocated to localized clusters of processors to minimize communication costs

and to avoid bandwidth contention caused by overlapping jobs.

This paper introduces new allocation strategies and performance metrics

based on space-filling curves and one dimensional allocation strategies. These

algorithms are general and simple. Preliminary simulations and Cplant ex-

periments indicate that both space-filling curves and one-dimensional packing

improve processor locality compared to the sorted free list strategy previously

used on Cplant. These new allocation strategies are implemented in the new

release of the Cplant System Software, Version 2.0, phased into the Cplant

systems at Sandia by May 2002.

Acknowledgments

E. Arkin is partially supported by HRL Laboratories, NSF grant CCR-0098172, and
Sandia National Laboratories. M. Bender acknowledges support from HRL Labo-
ratories, NSF Grant EIA-0112849, and Sandia National Laboratories. D. Bunde is
supported in part by Sandia National Laboratories and NSF grant CCR-0093348.
J. Mitchell is supported in part by HRL Laboratories, NASA Ames Research, NSF
grant CCR-0098172, the U.S.-Israel Binational Science Foundation, and Sandia Na-
tional Laboratories. S. Seiden is supported in part by Sandia National Laboratories
and AFOSR grant No. F49620-01-1-0264.

We dedicate this report to the memory of Steve Seiden, who was killed in a tragic
cycling accident on June 11, 2002.

4

Contents

1 Introduction 6

1.1 Related Work . 7

2 Allocation Strategies 9

2.1 Baseline Cplant Allocation . 9
2.2 Transforming to One-Dimensional Allocation 9
2.3 One-Dimensional Allocation Strategies 10

3 Simulations 11

4 Experiments 13

5 Concluding Remarks and Future Work 17

List of Figures

1 Top: The average bounding cube divided by the smallest bounding
cube. Bottom: The average span of jobs. The x-axis plots the work
multiple, where we simulate the strategies on a range of workloads. . 13

2 The x-axis shows order of job release. The y-axis shows waiting time.
The baseline points use the default processor ordering. All other runs
are for the indicated algorithm with the Hilbert curve. Jobs of size 2,
5, and 25 are not represented since these would all be near the line
y = 0. 15

3 (a): Completion time as a function of the average number of commu-
nication hops between processors. (b): Completion time as a function
of span. Comparison of fragmentation metrics. These plots include
only 30-processor jobs across all allocation algorithms. (a) includes all
processor orderings. (b) is for Hilbert curve only. 16

List of Tables

1 Effect of allocation policy on the makespan of the test stream 14

5

1 Introduction

As part of the Accelerated Strategic Computing Initiative [32], the Department of
Energy Laboratories are purchasing a sequence of increasingly powerful custom su-
percomputers. In a parallel effort to increase the scalability of commodity-based
supercomputers, Sandia National Laboratories is also developing the Computational
Plant or Cplant [46, 24, 9, 42, 7, 8]. This paper describes resource-allocation algo-
rithms to optimize processor locality in Cplant and other supercomputers.

Although Sandia maintains a diverse set of computing resources, the tools for
managing these resources commonly rely on scheduling/queueing software such as
NQS [15] or PBS [36] to determine which of the available jobs should be run next.
These jobs are prioritized based on a variety of factors including computing resources
already allocated to the owners of the jobs, number of processors requested, running-
time estimates, waiting time so far, and even day of week and time of day. But this
decision is not based on the locations of the free processors. The scheduler simply
verifies a sufficient number of processors are free before dispatching a job.

When a job is selected to run, the processor allocator assigns it to a set of pro-
cessors, which are exclusively dedicated to this job until it terminates. To obtain
maximum throughput, the processors allocated to a single job should be physically
near each other to minimize communication costs and to avoid bandwidth con-
tention caused by overlapping jobs. Processor locality is particularly important in
commodity-based supercomputers, which typically have higher communication laten-
cies and lower bandwidth than supercomputers with custom networks.

Processor locality is an issue for Cplant. We have shown that if two high-
communication jobs are hand-placed on the machine so that their communication
paths overlap significantly, both jobs’ running times are approximately doubled. Sub-
ramani et al. [50] reach similar conclusions. The Cplant switches are usually connected
in a two or three-dimensional mesh topology. Most switches contain four proces-
sors. Thus, a good processor allocation includes all processors in a rough subcube of
switches.

For the problem addressed in this paper, we have no control over the scheduler.
Given a stream of jobs from the scheduler, we wish to allocate processors to maximize
processor locality. More precisely, we address the following problem. Each parallel
job j has an arrival time aj (the time when it is dispatched from the scheduler for
processor allocation), a requested number of processors pj, and a processing time (the
user submits an estimated processing time; the true processing time is known when
the job completes; the user’s job may get truncated if it does not complete by the
estimated processing time). The jobs arrive online, that is, job j is only known to
the allocator after the time aj when it is dispatched from the scheduler. Preemption
and migration are not allowed, that is, once a job is begun it must be executed to
completion on the same set of processors. The objective is to assign a set of processors
to each job to optimize some global measure of locality. For example, if the machine

6

is a mesh, we may choose to optimize the average expansion of the bounding box,
i.e. the ratio of the bounding box for the allocated processor set and the minimum
possible bounding box. Section 2.3 defines a new locality measure motivated by this
work.

The thesis of this paper is that processor locality can be achieved in massively
parallel supercomputers using simple, one-dimensional allocation strategies. This
approach is applicable even when the processors are connected by irregular, higher
dimensional networks. We accomplish this reduction using an space-filling curve
which imposes an ordering on the network of processors such that locations near each
other on the curve are also near each other in the network of processors.

In this paper we describe our experience applying this strategy to Cplant. In
Cplant supercomputers, the switches are usually connected by two or three-dimensional
meshs with toroidal wraps in one or more dimensions, but some of the oldest systems
have more highly-connected irregular topologies. We use Hilbert curves (also called
fractal curves) in two dimensions and have an integer program for general networks.
We present preliminary experimental results and motivating simulations for 2D and
3D meshes.

The remainder of the paper is organized as follows. The next subsection describes
related theoretical and simulation work. Section 2 describes our allocation strategies
given a processor ordering. Section 3 summarizes our simulations. Section 4 describes
our experimental results. Section 5 offers some concluding remarks.

1.1 Related Work

The simulation-based investigations of Subramani et al. [50] show that fragmentation
is necessary for high performance. Their work is directly motivated by the Cplant
system, though some of it can be applied to more general systems. They investigated
the effect on system throughput of a policy forbidding fragmentation, using trace
files from the Cornell Supercomputing Center. In their simulation, they queued jobs
until a set of contiguous processors were available, scaling the running times down
to indicate the benefit of contiguous allocation. They determined that fragmentation
must cause at least a factor-of-two slowdown in order for the benefit of completely
contiguous allocation to compensate for the loss of processor utilization. Thus, any
real system must allow for fragmentation.

Subramani et al. [50] also investigated a strategy that allows fragmentation, mo-
tivated by the buddy strategy for memory allocation. They considered 2D and 3D
meshes. The machine is subdivided geometrically. For example, two halves of the
machine are a buddy pair, two quarters within the half, etc. Jobs are allocated to
these predefined subblocks. Their system holds some jobs back rather than fragment-
ing them. This buddy approach does not directly apply to our problem because the
allocator cannot ever delay jobs.

A problem closely related to Cplant processor allocation is memory allocation. In

7

this problem there is an array of memory, and contiguous sub-arrays are allocated
and deallocated online [43, 44, 33]. One objective is to minimize the highest memory
address used and consequently the required memory size. Memory allocation differs
from processor allocation because memory allocators leave empty space to guarantee
contiguity and are allowed to refuse requests that do not fit contiguously.

Another related problem is online bin packing. In bin packing, the objective is
to pack a set of items with given sizes into bins. Each bin has a fixed capacity
and cannot be assigned items whose total size exceeds this capacity. The goal is
to minimize the number of bins used. The off-line version is NP-hard [22] and bin
packing was one of the first problems to be studied in terms of both online and
offline approximability [27, 28, 29]. Multi-dimensional bin packing, where the items
and bins are hyperrectangles, has also been studied. The seminal offline and online
results appear in [12, 14], while the latest results are in [47]. For a more detailed
review of bin packing, see the surveys [13, 18]. Bin packing results cannot be directly
applied to our problem since we have only a single “bin”. Also objects can leave the
system, creating multiple holes within this bin because jobs cannot migrate.

Our work adapts several of the algorithms for one-dimensional online bin packing.
A common feature of these algorithms is they keep a list of partially-filled bins.
Arriving objects may be placed in one of these bins (assuming they fit) or they may
be placed in a new bin, which is then added to the list. The First Fit algorithm [27]
places a new object in the first bin in which it fits. Best Fit [27] places a new object
in the bin whose remaining space will be smallest. When the bins and objects have
integral sizes, the more complicated Sum of Squares algorithm [17] is also available.
This algorithm bases its decisions on a vector N , where N(i) is the number of bins
with remaining size i. It places a new item in the bin which minimizes the resulting
value of

∑
N(i)2. This allocation policy encourages a variety of sizes of unallocated

regions. When the input comes from a discrete distribution, this algorithm has near-
optimal behavior [16].

Other researchers have used space-filling curves for a variety of problems. Orig-
inally, space-filling curves were introduced by Hilbert [26] and Peano [38]. Recent
presentations appear in [19] and [45]. Hilbert curves have been shown to preserve
several measures of ”locality” [35, 23]. An alternative with better performance in two
dimensions is given in [37]. Generalizations of Hilbert curves to higher dimensions
are given in [1]. Specific applications include matrix multiplication [11, 20], domain
decomposition [3, 25, 39], and image processing [2, 34, 4, 51, 31, 30]. They are also a
standard tool in the creation of cache-oblivious algorithms [21, 40, 5, 41, 6, 10], which
have asymptotically optimal memory performance on multilevel memory hierarchies
while avoiding memory-specific parameterization.

There is a large body of work on scheduling and online scheduling, in particular.
We do not attempt to review all this work here, but refer the reader to the survey of
Sgall [48].

8

2 Allocation Strategies

2.1 Baseline Cplant Allocation

Our test Cplant system is a 2D toroidally-wrapped mesh. The Cplant version 1.9
default allocator uses a sorted free list based on a left-to-right, top-to-bottom lin-
ear processor order. Even for the Cplant machines with non-mesh interconnection
topologies, the processors are physically placed on planes so that such an ordering
is possible. When a job j requiring pj processors is dispatched by the scheduler,
the allocator queries the system to determine which processors are free and gathers
these processors into a sorted list. Job j is allocated to the first pj processors in the
list. These processors may be far apart with respect to the linear order (and the real
machine), even if there is a contiguous piece of sufficient size available later in the
list.

We use the latest version 1.9 default Cplant system as our baseline against which
to measure improvement.

2.2 Transforming to One-Dimensional Allocation

As with the current Cplant node-allocation algorithms, we impose a linear ordering
on the processors. We use a Hilbert curve, rather than an arbitrary order or sorting
by row and column. We then allocate to obtain locality within this linear ordering.

The Hilbert curve only applies to grid topologies. We consider the problem of find-
ing good one-dimensional orderings for general parallel interconnection topologies and
formulate this problem as an integer program. (We omit the full formulation.) If two
processors’ ranks in the one-dimensional ordering differ by k, then their contribution
to the objective function (which we minimize) is a parameter w(k) times their distance
in the graph. The parameter w(k) decreases rapidly (e.g., inverse exponentially) with
k, so that close pairs in the linear order are coerced to be close physically. We can
also use this objective function to compare different curves for a given topology.

The above integer-programming problem for computing a good one-dimensional
ordering is NP-complete since it is a generalization of the Hamiltonian path (HP)
problem. This problem is HP if we set w(k) = 0 for all k > 1, and w(1) = 1. The
graph has a Hamiltonian path if and only if the integer program has a solution with an
objective function value of n−1 where n is the number of nodes in the graph. Though
the problem is NP-complete we may be able to solve particular instances optimally or
to within a provable instance-specific error tolerance using PICO (Parallel Integer and
Combinatorial Optimizer), a massively-parallel branch-and-bound code developed at
Sandia National Laboratories and Rutgers University. PICO includes a (branch-and-
cut) mixed-integer program solver. Though this computation may be time-consuming,
it is performed only once for any given physical machine and choice of w(k).

9

2.3 One-Dimensional Allocation Strategies

We modify existing memory-allocation and bin-packing algorithms for the Cplant
processor-allocation problem. The modification is not a straightforward generaliza-
tion because it is not required (although desirable) that processors be allocated con-
tiguously. We use analogs to bin-packing algorithms when processors can be allocated
contiguously. The intervals of contiguous free processors are analogous to free space
in unfilled bins. However, we must determine a different allocation strategy when
there is no contiguous interval of sufficient size.

Span Metrics Our one-dimensional processor-locality metric is motivated by a
linear or ring topology. Let rp be the rank of processor p in the linear ordering. This
will be an integer in the range 1, . . . , |P |, where P is the set of processors. Let Mj be
the set of processors assigned to job j. The linear span, s`

j is the number of processors
potentially involved in message propagation/delivery for job j if the processors are
connected only in a line. That is, s`

j is the maximum difference in rank between any
pair of processors assigned to job j (plus one): s`

j = maxp∈Mj
rp − minp∈Mj

rp + 1.
All processors with ranks between this minimum and maximum rank (including the
endpoints) are involved in routing a message between these two processors. These
are the processors “owned” by job j plus those “trapped” between pieces of job j.
The ring span sw

j is a measure of locality if the processors are connected in a ring,
again corresponding to the processors “owned” by job j and those “trapped” by these
segements. Computationally, it is easier to determine the size of the largest “free” set
of processors, accounting for the ring wraparound, and subtract it from the number
of processors. Let rj,i be the ith-smallest rank of a processor in Mj for i = 0 . . . pj −1.

Then we define sw
j = |P | − max(max

pj−2

i=0 rj,i+1 − rj,i − 1, |P | − 1 − rj,pj−1 + rj,0). In
this paper, we use ring span which we call span and denote sj for brevity. Span sj is
a measure of the processor locality of job j for more general topologies provided the
space-filling curve closely reflects processor locality. The integer program described
in Section 2.2 computes a processor ranking for ring span provided difference in rank
is computed as the minimum distance around the ring.

In this paper we test heuristic methods for span minimization. (Minimizing met-
rics based on span is computationally difficult. Examples of such metrics include the
sum of the spans of jobs (

∑n
i=1 si), the max of the spans of jobs (maxn

i=1 si), the sum
(resp. max) of the spans divided by the requested number of processors (

∑n
i=1 si/pi),

the sum (resp. max) of the spans weighted by the processing times (
∑n

i=1 siti), etc.)

Strategies When job j is dispatched, we determine if there is a contiguous inter-
val of free processors large enough to run job j. When a job cannot be allocated
contiguously, it is allocated across multiple intervals. We choose the allocation that
minimizes the span of the job. In a tie we start the job at the smallest rank possible.
When a job can be allocated contiguously, we choose which interval to use based on

10

adaptations of one-dimensional bin-packing algorithms. We consider three strategies:

• First-Fit Allocation – Allocate j to the first interval that is large enough.

• Best-Fit Allocation – Allocate j to the interval that minimizes the number of
unallocated processors remaining in the interval.

• Sum-of-Squares Allocation – For each interval to which j could be allocated,
determine the number of intervals of each size that would remain. Allocate j
to the interval that minimizes the sum of squares of these numbers of intervals.

All of these strategies are easy to implement and run quickly. The gains in system
throughput (described in Section 5) far outweigh the additional computation time of
the allocator.

3 Simulations

We built an event-driven Cplant simulator, which tests the allocation strategies from
Section 2.3 on space-filling curves. The objective of the simulator is to exhibit ten-
dencies rather than to predict running times precisely. Our simulations suggest that
one-dimensional allocation strategies coupled with space-filling curves yield processor
locality in higher dimensions. A variety of performance metrics gauge the processor
locality.

Trace Files The Cplant simulator was run on traces from October, November, and
December 2000. These trace files contain data about all jobs submitted to a Cplant
machine configured as a heavily augmented 2D mesh with 592 compute processors.
The trace file includes the times that the jobs were dispatched from the scheduler,
the number of processors requested, and the actual running times. These traces did
not contain the processors on which the job was actually run so we cannot compute
the fragmentation/runtime environment of these jobs.

From a trace it is hard to predict how the running time of the jobs would change
if the allocation were different. The difficulty is because the running times depend
on factors that are hard or impossible to model. These factors include the processor
allocation, the communication patterns of the jobs, the overlaps of the jobs, and the
properties of the communication network.

Rather than make potentially spurious estimates about the change in the running
time of the job with different allocations, our simulations hold the running times
constant and use metrics based on processor locality. The assumption is that increased
locality improves performance, but that the actual speed-ups should be determined
through experimentation.

We transformed the traces into many inputs that model different workloads. We
developed one parameterized set of inputs by increasing or decreasing the running

11

times of the jobs by a factor that we call the work multiple. All the jobs were
increased by this work multiple. Increasing running times makes processors busier
since jobs are in the system for a longer amount of time. Note that we do not change
release times so that the interaction between jobs are different. We developed a second
set of parameterized inputs by duplicating jobs and perturbing the arrival times; the
number of times that a job is duplicated is called the replication factor . The results
for both types of inputs were similar, so we report only the work-multiple results.

Metrics One-dimensional metrics include the average span and the average span
divided by the number of processors (stretch-span). Three-dimensional metrics in-
clude the average size of a bounding box (size of the region defined by the maximum
difference between the x, y, and z dimensions of the job allocation), the average sum
of the dimensions of the bounding box , the average size of the bounding cube, the
average number of connected components per job, as well as metrics based on the
maximum and sum-of-squares of these parameters as well as metrics weighted by the
running times or divided by the number of processors.

Simulator The simulator assumes a single 8x8x5 grid with one processor per vertex,
for a total of 320 processors. This topology is a simplification of the production Cplant
architecture at the time the traces were obtained.

Our simulator models the Cplant job queue and scheduler so that the workloads
are similar to those on Cplant. When a job arrives it is placed in a job queue. The
job queue is sorted first by number of requested processors and then by requested
processing time. (Thus, fairness between users and different night and day priorities
are not modeled.) Periodically, the scheduler polls to determine which processors are
free to execute jobs, and jobs are removed from the front of the queue.

Results Our results suggest that one-dimensional allocation strategies coupled with
space-filling curves yield processor locality in higher dimensions. We tested a variety
of performance metrics; for the sake of brevity, only a few representative results
appear in Figure 1.

We do not know how much the increased locality speeds up the running time. How-
ever, the work-multiple parameterization demonstrates that as workloads increase, it
becomes harder to obtain processor locality and as workloads decrease it becomes
easier. Thus, as the locality of the jobs improves, the running time decreases which
further decreases the load, thus further decreasing the running time.

The overall trend is that the processor locality improves through our approach.
The simulation results were sufficiently promising to justify implementing the alloca-
tion algorithms on Cplant. The gains in system throughput (described in Section 4)
are consistent with these simulation results.

12

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16

A
ve

. S
tr

et
ch

 o
f B

ou
nd

in
g

C
ub

e
V

ol
um

e

Work Multiple

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 S
pa

n

Work Multiple

Random
Free List (no curve)

First Fit (no curve)
Best Fit (no curve)

Free List (Hilbert)
First Fit (Hilbert)
Best Fit (Hilbert)

Figure 1: Top: The average bounding cube divided by the smallest bounding cube.
Bottom: The average span of jobs. The x-axis plots the work multiple, where we
simulate the strategies on a range of workloads.

4 Experiments

We have performed a limited number of experiments on a 128-processor Cplant ma-
chine configured as a 2D mesh. This development machine has an 8 × 8 mesh of
switches with toroidal wraps in both dimensions. Four of the rows have four proces-
sors per switch. The other rows contain no compute processors; they contain service
and I/O nodes, but fewer than four per switch on average. This pilot study serves as
a proof of the concept: careful one-dimensional ordering and allocation to preserve
locality within this ordering both improve system throughput.

All runs use identical job streams containing replicas of various-sized instances of
a single communication test suite. The communication test suite contains all-to-all

13

Allocation Average Standard
Strategy Makespan Deviation
Free List (no curve) 5:46:31 0:10:10
Best Fit (no curve) 5:27:58 0:05:48
Free List (Hilbert) 4:58:52 0:07:37
Sum of Squares (Hilbert) 4:32:09 0:03:16
First Fit (Hilbert) 4:30:22 0:06:09
Best Fit (Hilbert) 4:25:23 0:03:00

Table 1: Effect of allocation policy on the makespan of the test stream

broadcast, all-pairs ping-pong (message sent in each direction), and ring communi-
cation. Each communication test is repeated a hundred times in each suite. The
suite computes a variety of statistics, whose computation consumes a small fraction
of the total running time. Because locality is most important for jobs with high com-
munication demand, this test suite represents a best-case scenario for the benefits of
allocation improvements.

Our test job stream had 91 jobs of size 2, 33 jobs of size 5, 31 jobs of size 25, and
33 jobs of size 30. This gives a small range of “large” (approximately 1/4 or 1/5 of
the machine) and small jobs. The stream starts with some large jobs to fill up the
machine. Small jobs are interspersed among the large ones to cause fragmentation.
The last job submitted is small, but it always finishes in front of the last large job.
The machine is busy through the release of the last job.

Running times on the Cplant system are nondeterministic. If we run the same
job stream twice with the same allocation algorithm, same job ordering, same release
times, starting from an empty machine, and having dedicated processors, the running
times are not the same. Cplant has inherent nondeterminism in the network. There
is variability in time to load executables, in message delivery times, and so on. If
the completion time of a single job changes, the options available for the allocation
of subsequent jobs also changes. This effect propagates so that later jobs can be
allocated significantly better or worse than in a previous run. We even see different job
execution orderings, when a job that is held up for insufficient free processors in one
run finds enough free processors in a different run. We found that this nondeterminism
did not significantly affect the makespan of the job stream,1 but the running times of
individual job types did vary by 4-16%.

We ran the job stream two to five times (an average of four) for each of the
following strategies: First Fit and Sum of Squares with the Hilbert curve, and Free
List and Best Fit with and without the curve.

Table 1 shows the effect of the allocation algorithm on the makespan of the job

1The makespan of a set of jobs is the time between the start of the first job and the completion

of the last job.

14

0

1000

2000

3000

4000

5000

6000

7000

8000

0 20 40 60 80 100 120 140 160 180 200

W
ai

tin
g

T
im

e
(s

ec
on

ds
)

Job Number

Baseline
Free List

Sum of Squares
First Fit
Best Fit

Figure 2: The x-axis shows order of job release. The y-axis shows waiting time. The
baseline points use the default processor ordering. All other runs are for the indicated
algorithm with the Hilbert curve. Jobs of size 2, 5, and 25 are not represented since
these would all be near the line y = 0.

stream. For this particular job stream, it is better to use a space-filling curve than
the row-based ordering. It is also better to pack a job into a consecutive interval
if possible. However, the performance of the various bin-packing-based allocation
strategies were largely indistinguishable.

Figure 2 shows the waiting times of the 30 node jobs as a function of their order in
the job stream. Recall the job stream is identical for all runs, so job order is identical
across runs. Wait time measures the amount of time a job sits in a queue waiting for
a sufficient number of free processors. This plot does not include the 2-node, 5-node,
and 25-node jobs. Their wait time was so insignificant compared to that of the 30-
node jobs that they all sit near the x axis. This figure shows that waiting time is yet
another metric that orders the methods the same way with substantial separation.

Figure 3 examines job completion time as a function of two job-fragmentation
metrics, one inherent to the topology of the job placement and one used by the
algorithms. A natural geometric fragmentation metric is the average of the number
of communication hops between processors allocated to a job. Figure 3(a) plots job
completion time as a function of this average for the 30-node jobs. Figure 3(b) is

15

(a)
800

1000

1200

1400

1600

1800

2000

2200

3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4

C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

Average Number of Hops (b)
800

1000

1200

1400

1600

1800

2000

2200

30 40 50 60 70 80 90 100

C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

Span

Figure 3: (a): Completion time as a function of the average number of communication
hops between processors. (b): Completion time as a function of span. Comparison of
fragmentation metrics. These plots include only 30-processor jobs across all allocation
algorithms. (a) includes all processor orderings. (b) is for Hilbert curve only.

a similar plot for span with the Hilbert curve. We do not include the 2-node, 5-
node, and 25-node jobs in these plots. The 2-node, 5-node, and 25-node jobs differ
enough from the 30-node jobs to add noise to the plots. When the 2-node, 5-node,
and 25-node jobs are plotted by themselves, they show the same weak correlation
on a different scale and with a different slope. These plots include all 30-node jobs
placed with all algorithms since the effect of fragmentation should be a function of
the amount of fragmentation and independent of how that placement decision was
made.

We observe a weak correlation for both metrics. As expected, there is a stronger
correlation of completion time to the average number of communication hops because
this is a closer match to the topology of the job placement. We are encouraged that
the general span metric, which can be easily computed, still tracks this correlation,
albeit more weakly. We do not show the similar plot for bounding box perimeter that
gives an intermediate strength correlation. None of these metrics captures the full
environment in which a job is run.

16

5 Concluding Remarks and Future Work

We are cautiously optimistic that the simple, general allocation methods discussed in
this paper will improve the performance of Cplant systems and apply to more general
systems. Our experiments support the use of span as a fragmentation metric for the
design of algorithms and as a measure of locality. Jobs with large span do generally
take longer. However, the relationship between span and completion time is not very
tight. More work is needed to determine how much of this variability is inherent in
the problem and how much results from the imprecision of using span.

We also think that finding the minimum span for a given machine and set of jobs
is an interesting theoretical problem. It is related to, yet distinct from, well-studied
problems such as memory allocation and bin packing. We have a simple reduction to
show that finding the exact minimum span is NP-hard, but do not yet know if it is
approximable.

We have also studied these problems in the online setting, where the standard
(worse-case) model is competitive analysis [49]. While we omit the proof here, we
have been able to show that no online algorithm for minimizing maximum span can
achieve a competitive ratio better than Ω(n) even for randomized strategies.

We intend to evaluate non-greedy allocation methods for jobs that cannot be
allocated a contiguous interval. In particular, Sum-of-Squares-like algorithms are
more likely to leave flexibility in the allocation options for future jobs. On some
Cplant machines, once a job has span of half the machine size, it effectively consumes
bandwidth across the entire machine. Our hope is that additional flexibility will allow
us to avoid such situations.

It may be possible to improve the allocation further by considering the actual
processor topology rather than working entirely within a linear ordering of the pro-
cessors. When the processors are arranged as a mesh, this makes the allocation
problem a multidimensional packing problem, but other processor topologies such as
toruses do not have obvious analogs in the packing literature.

It may also be beneficial to consider scheduling and processor allocation together.
Currently the allocator is forced to allocate jobs passed from the scheduler even if
these jobs must be highly fragmented. Combining these modules might allow more
intelligent decisions to be made, but any replacement would need to provide other
functionality of the scheduler such as preventing starvation and allocating resources
fairly between users.

Our experiments were limited by the small size of our test machine and the spe-
cialized nature of the test jobs/stream. Fully rigorous testing will be very challenging
because even our limited test suite required 4.5 to 6 hours per run. In order to do
these runs, we must take a system away from other users. This is particularly chal-
lenging for the 1500+ node production systems. Therefore our future work will have
to rely on simulation to some extent. However, these simulations must convincingly
account for the effects of locality on job completion time.

17

References

[1] J. Alber and R. Niedermeier. On multidimensional Hilbert indexings. Theory of
Computing Systems, 33:295–312, 2000.

[2] V. V. Alexandrov, A. I. Alexeev, and N. D. Gorsky. A recursive algorithm for
pattern recognition. In Proc. IEEE Intl. Conf. Pattern Recognition, pages 431–
433, 1982.

[3] S. Aluru and F. Sevilgen. Parallel domain decomposition and load balanc-
ing using space-filling curves. In Proc. 4th International Conference on High-
Performance Computing, pages 230–235, 1997.

[4] A. Ansari and A. Fineberg. Image data compression and ordering using Peano
scan and lot. IEEE Trans. on Consumer Electronics, 38(3):436–445, 1992.

[5] M. A. Bender, E. Demaine, and M. Farach-Colton. Cache-oblivious B-trees.
In Proc. 41st Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 399–409, 2000.

[6] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-preserving cache-
oblivious dynamic dictionary. In Proc. 13th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 29–38, 2002.

[7] R. Brightwell, H. E. Fang, and L. Ward. Scalability and performance of CTH
on the Computational Plant. In Proc. 2nd International Conference on Cluster-
Based Computing, 2000.

[8] R. Brightwell, L. A. Fisk, D. S. Greenberg, T. Hudson, M. Levenhagen, A. B.
Maccabe, and R. Riesen. Massively parallel computing using commodity com-
ponents. Parallel Computing, 26(2-3):243–266, 2000.

[9] R. Brightwell and A. Maccabe. Scalability limitations of VIA-based technologies
in supporting MPI. In Proc. 4th MPI Developer’s and User’s Conference, 2000.

[10] G. S. Brodal, R. Fagerberg, and R. Jacob. Cache oblivious search trees via binary
trees of small height (extended abstract). In Proc. 13th ACM-SIAM Symp. on
Discrete Algorithms (SODA), 2002.

[11] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. S. Thottethodi. Recursive
array layouts and fast matrix multiplication. In Proc. 11th ACM Symposium on
Parallel Algorithms and Architectures (SPAA), pages 222–231, 1999.

[12] F. R. K. Chung, M. R. Garey, and D. S. Johnson. On packing two-dimensional
bins. SIAM Journal on Algebraic and Discrete Methods, 3:66–76, 1982.

18

[13] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for
bin packing: A survey. In D. Hochbaum, editor, Approximation Algorithms for
NP-hard Problems, chapter 2. PWS Publishing Company, 1997.

[14] D. Coppersmith and P. Raghavan. Multidimensional online bin packing: Algo-
rithms and worst case analysis. Operations Research Letters, 8:17–20, 1989.

[15] Cray Inc. Network queuing environment.
http://www.cray.com/products/software/nqe.html.

[16] J. Csirik, D. Johnson, C. Kenyon, J. Orlin, P. Shor, and R. Weber. On the sum-
of-squares algorithm for bin packing. In Proc. 32nd Annual ACM Symposium on
Theory of Computation (STOC), pages 208–217, 2000.

[17] J. Csirik, D. Johnson, C. Kenyon, P. Shor, and R. Weber. A self-organizing
bin packing heuristic. In Proc. Algorithm Engineering and Experimentation:
International Workshop (ALENEX), volume 1619 of Springer Lecture Notes in
Computer Science, pages 246–265, 1999.

[18] J. Csirik and G. Woeginger. On-line packing and covering problems. In A. Fiat
and G. Woeginger, editors, On-Line Algorithms—The State of the Art, Lecture
Notes in Computer Science, chapter 7. Springer-Verlag, 1998.

[19] Eric Weisstein’s World of Mathematics. Hilbert curve.
http://mathworld.wolfram.com/HilbertCurve.html.

[20] J. D. Frens and D. S. Wise. Auto-blocking matrix-multiplication or tracking
BLAS3 performance from source code. ACM SIGPLAN Notices, 32(7):206–216,
1997.

[21] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious al-
gorithms. In Proc. 40th Annual Symposium on Foundations of Computer Science
(FOCS), pages 285–297, 1999.

[22] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[23] C. Gotsman and M. Lindenbaum. On the metric properties of discrete space-
filling curves. IEEE Trans. on Image Processing, 5(5):794–797, 1996.

[24] D. S. Greenberg, R. Brightwell, L. A. Fisk, A. McCabe, and R. Riesen. A
system software architecture for high-end computing. In Proc. High Performance
Networking and Computing (SC), 1997.

19

[25] M. Griebel and G. W. Zumbusch. Hash-storage techniques for adaptive multilevel
solvers and their domain decomposition parallelization. In J. Mandel, C. Farhat,
and X.-C. Cai, editors, Proc. Domain Decomposition Methods, (DD), number
218 in Contemporary Mathematics, pages 279–286, Providence, 1998. AMS.

[26] D. Hilbert. Über die stetige abbildung einer linie auf ein flachenstück. Math.
Ann., 38:459–460, 1891.

[27] D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 1973.

[28] D. S. Johnson. Fast algorithms for bin packing. J. Comput. Syst. Sci., 8:272–314,
1974.

[29] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-
case performance bounds for simple one-dimensional packing algorithms. SIAM
J. Comput., 3:256–278, 1974.

[30] S. Kamata, R. O. Eason, and Y. Bandou. A new algorithm for N-dimensional
Hilbert scanning. IEEE Trans. on Image Processing, 8(7):964–973, 1999.

[31] S. Kamata, R. O. Eason, and E. Kawaguchi. An implementation of the Hilbert
scanning algorithm and its application to data compression. IEICE Trans. on
Information and Systems, E76-D(4):420–428, Apr. 1993.

[32] Lawrence Livermore National Laboratory. Advanced Simulation and Computing
(ASCI). http://www.llnl.gov/asci/.

[33] M. G. Luby, J. S. Naor, and A. Orda. Tight bounds for dynamic storage alloca-
tion. SIAM Journal on Discrete Mathematics, 9(1):155–166, 1996.

[34] Y. Matias and A. Shamir. A video scrambling technique based on space filling
curves. In Proc. Advances in Cryptology (CRYPTO), volume 293 of Lecture
Notes in Computer Science, pages 398–417. Springer-Verlag, 1987.

[35] B. Moon, H. V. Jagadish, C. Faloutsos, and J. Saltz. Analysis of the clustering
properties of Hilbert space-filling curve. IEEE Trans. on Knowledge and Data
Engineering, 13(1):124–141, 2001.

[36] NASA. The portable batch system. http://www.nas.nasa.gov/Software/PBS/.

[37] R. Niedermeier, K. Reinhardt, and P. Sanders. Towards optimal locality in mesh-
indexings. In Proc. 11th Intl Symp on Fund. Computation Theory, volume 1279
of LNCS, pages 364–375, 1997.

[38] G. Peano. Sur une courbe, qui remplit toute une aire plane. Math. Annalen,
pages 157–160, 1890.

20

[39] J. R. Pilkington and S. B. Baden. Dynamic partitioning of non-uniform struc-
tured workloads with spacefilling curves. IEEE Transactions on Parallel and
Distributed Systems, 7(3):288–300, 1996.

[40] H. Prokop. Cache-oblivious algorithms. Master’s thesis, Massachusetts Institute
of Technology, Cambridge, MA, 1999.

[41] N. Rahman, R. Cole, and R. Raman. Optimized predecessor data structures
for internal memory. In Proc. 5th Workshop on Algorithms Engineering (WAE),
2001.

[42] R. Riesen, R. Brightwell, L. A. Fisk, T. Hudson, J. Otto, and A. B. Maccabe.
Cplant. In Proc. 2nd Extreme Linux workshop at the 1999 USENIX Annual
Technical Conference, 1999.

[43] J. M. Robson. An estimate of the store size necessary for dynamic storage
allocation. Journal of the ACM, 18(3):416–423, 1971.

[44] J. M. Robson. Bounds for some functions concerning dynamic storage allocation.
Journal of the ACM, 21(3):491–499, 1974.

[45] H. Sagan. Space-Filling Curves. Springer-Verlag, 1994.

[46] Sandia National Laboratories. The Computational Plant Project.
http://www.cs.sandia.gov/cplant.

[47] S. Seiden and R. van Stee. New bounds for multi-dimensional packing. In Proc.
13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
486–495, 2002.

[48] J. Sgall. On-line scheduling. In A. Fiat and G. Woeginger, editors, On-Line
Algorithms—The State of the Art, Lecture Notes in Computer Science, chapter 9.
Springer-Verlag, 1998.

[49] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM, 28(2):202–208, 1985.

[50] V. Subramani, R. Kettimuthu, S. Srinivasan, J. Johnson, and P. Sadayappan.
Selective buddy allocation for scheduling parallel jobs on clusters. In Proc. 4th
IEEE International Conference on Cluster Computing, 2002.

[51] K. S. Thyagarajan and S. Chatterjee. Fractal scanning for image compression.
In Conference Record of the 25th Asilomar Conference on Signals, Systems and
Computers, pages 467–471, 1992.

21

UNLIMITED RELEASE

INITIAL DISTRIBUTION:

20 State University of New York
Dept. of Appl. Math. and Statistics
Attn: E. M. Arkin (10)

J. S. B. Mitchell (10)
Stony Brook, NY 11794-3600

10 State University of New York
Dept. of Computer Science
Attn: M. A. Bender
Stony Brook, NY 11794-4400

10 Tufts University
Dept. of Electrical Engineering and Computer Science
Attn: A. Lal
Medford, MA 02155

1 MS 0310 R. W. Leland, 9220
1 0312 W. J. Camp, 9200
1 0316 M. D. Rintoul, 9212
1 0318 P. D. Heermann, 9227
1 0318 P. Yarrington, 9230
1 0847 S. A. Mitchell, 9211
1 1110 R. B. Brightwell, 9223

10 1110 D. P. Bunde, 9211
1 1110 D. W. Doerfler, 9224

10 1110 J. R. Johnston, 9223
10 1110 V. J. Leung, 9215
10 1110 C. A. Phillips, 9215
1 1110 N. D. Pundit, 9223
1 1110 J. R. Stearley, 9224
1 1110 D. E. Womble, 9214
1 1111 B. A. Hendrickson, 9226
1 9018 Central Technical Files, 8945-1
2 0899 Technical Library, 9616
1 0612 Review & Approval Desk, 9612

For DOE/OSTI

22

