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Abstract. We deal with the notion of M-unambiguity [5] in connection with the Parikh matrix
mapping introduced by Mateescu and others in [7]. M-unambiguity is studied both in terms of
words and matrices and several sufficient criteria for M-unambiguity are provided in both cases,
nontrivially generalizing the criteria based on theγ-property introduced by Salomaa in [15]. Also,
the notion of M-unambiguity with respect to a word is defined in connection with the extended
Parikh matrix morphism [16] and some of the M-unambiguity criteria are lifted from the classical
setting to the extended one.

This paper is an revised and extended version of [17].

Keywords: subword, scattered subword, Parikh matrix, ambiguity

1. Introduction

The Parikh matrix mapping was introduced by Mateescu and others in [7] as a maping from words to
algebraic structures (matrices) in the spirit of the classical Parikh mapping [9] which associates vectors to
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words. By using matrices instead of vectors more information about the word is preserved and numerical
facts such as the number of occurrences of certain subwords in a word can be elegantly computed (by
matrix multiplication). Because of the easiness in dealingwith subword occurrences some interesting
problems were discovered and solved using this tool in fieldslike combinatorics on words [6, 4, 8, 5, 13,
14, 3] and theory of codes [2, 1].

Also the question of a word being determined by the number of occurrences of some of its subwords
has been asked in this framework leading to the notion of M-unambiguity of an word - that is a word
being uniquely determined by its corresponding Parikh matrix. Although several articles [2, 4, 5, 15,
3] are dealing with this notion and M-unambiguous words for alphabets with two letters have been
completely characterized ([2, 4, 5]), it seems that a complete characterization of M-unambiguous words
for general alphabets is still long ahead of us. We add our contribution to this still open question by giving
new syntactical (in terms of words) and semantical (in termsof matrices) criteria for M-unambiguity.
Although developed independently, our results seem to non-trivially generalize the results obtained by
Salomaa in [15] using the so-calledγ-property; yet the way the results from [15] were expressed enabled
us to strengthen our results by expressing them in a different manner.

The paper is structured as follows: Section 2 reproduces some known definitions and results from
[7, 5, 15, 16] in order to allow a self-contained reading of the paper. Section 3 gives M-unambiguity
criteria for words and Parikh matrices. Section 4 lifts someof the results obtained in Section 3 to the
case of extended Parikh Matrices [16]. We conclude in Section 5 mentioning some open problems. A
characterization of M-unambiguous words for three letter alphabets is given in the appendix in the hope
that some of the techniques used there might be generalized at some point in the future.

2. Preliminaries

We will assume the reader familiar with the basics of formal languages. Whenever necessary, [12, 10]
may be consulted. As customary, we use small letters from thebegining of the English alphabeta, b, c, d

possibly with indices, to denote letters of our formal alphabet Σ. Words are usually denoted by small
letters from the end of the English alphabet.

2.1. Subwords

Let Σ be an alphabet. The set of all words overΣ is denotedΣ∗ and the empty word isλ. If w ∈ Σ∗

then|w| denotes the length ofw.

Definition 2.1. Let Σ be an alphabet andu,w ∈ Σ∗. We say thatu is ascattered subword(or simply
subword) of w if w, as a sequence of letters, containsu as a subsequence. Formally, this means that there
exist wordsx1, . . . , xk andy0, . . . , yk in Σ∗, some of them possibly empty such that

u = x1 . . . xk andw = y0x1y1 . . . xkyk.

More formally,a1a2 . . . ak is a subword ofb1b2 . . . bn (whereai ∈ Σ for all 1 ≤ i ≤ k andbj ∈ Σ for
all 1 ≤ j ≤ n) if there exists a mappingf : {1, . . . , k} → {1, . . . , n} so thatf(i) < f(i + 1) for all
1 ≤ i < k andbf(i) = ai for all 1 ≤ i ≤ k.
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We will denote by|w|u thenumber of occurrencesof word u as a subword inw, that is the number
of mappings that can be defined with respect to the above definition. For instance,

|abba|ba = 2 and|aabbc|abc = 4.

In some works ([11]), the number|w|u is denoted as the binomial coefficient. Indeed, if the alphabet
Σ contains only one letter, the number|w|u reduces to the number of mappingsf : {1, . . . , |u|} →
{1, . . . , |w|} so thatf(i) < f(i + 1) for all 1 ≤ i < |u|, and that is exactly the binomial coefficient.

It is easy to see that if|w| < |u| then|w|u = 0. Also, if u = λ then|w|u = 1 because{1, . . . , |u|} =
∅ and the inclusion∅ →֒ {1, . . . , |w|} is the only possible mapping (it clearly satisfies the definition).

Let a, b be two letters in an alphabetΣ. We denote byδa,b be theKronecker Symbolregarding letters,
that is

δa,b =

{

1, if a = b

0, if a 6= b

Fact 2.1. It is shown in [11] that the equation

|vb|ua = |v|ua + δa,b|v|u, a, b ∈ Σ;u, v ∈ Σ∗

together with the equations|w|λ = 1 and|w|u = 0 for |w| < |u| suffice to compute all values|w|u.

2.2. Parikh matrices

The notion of Parikh matrix was introduced in [7]. All definitions and results presented in this subsection
can be found in [7, 6, 8].

The definition of the Parikh matrix mapping presented below uses a special type of matrices, called
triangle matrices. A triangle matrix is a square matrixM = (mi,j)1≤i,j≤k, such thatmi,j is a nonnega-
tive integer for all1 ≤ i, j ≤ k, mi,j = 0 for all 1 ≤ j < i ≤ k andmi,i = 1 for all 1 ≤ i ≤ k.

The set of all triangle matrices is denoted byM. The set of all triangle matrices of dimensionk ≥ 1
is denoted byMk. Clearly (Mk, ·, Ik), where· represents the matrix multiplication andIk is the unit
matrix, is a monoid.

An ordered alphabetis an alphabetΣ = {a1, . . . , ak} with a relation of order< on it. If we have
a1 < a2 < . . . < ak, then we will use the notationΣ = {a1 < a2 < . . . < ak}.

Definition 2.2. Let Σ = {a1 < . . . < ak} be an ordered alphabet. TheParikh matrix mapping, denoted
ΨΣ, is the monoid morphism:

ΨΣ : (Σ∗, ·, λ) → (Mk+1, ·, Ik+1),

defined by the condition: ifΨΣ(aq) = (mi,j)1≤i,j≤(k+1), then for each1 ≤ i ≤ (k + 1), mi,i = 1,
mq,q+1 = 1, and all other elements of the matrixΨΣ(aq) are0.

For the ordered alphabetΣ = {a1 < . . . < ak}, we denote byai,j the wordaiai+1 . . . aj , where
1 ≤ i ≤ j ≤ k.

The following theorem characterizes the entries of the Parikh matrix.
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Theorem 2.1. Let Σ = {a1 < . . . < ak} be an ordered alphabet andw ∈ Σ∗. The matrixΨΣ(w) =
(mi,j)1≤i,j≤(k+1), has the following properties:

• mi,j = 0, for all 1 ≤ j < i ≤ (k + 1),

• mi,i = 1, for all 1 ≤ i ≤ (k + 1),

• mi,j+1 = |w|ai,j
, for all 1 ≤ i ≤ j ≤ k.

Let M = (mi,j)1≤i,j≤k be a triangle matrix. Thealternate matrix ofM , denoted byM , is the matrix
M = (m′

i,j)1≤i,j≤k, wherem′
i,j = (−1)i+j(M)i,j for all 1 ≤ i, j ≤ k. Thereverse ofM , denoted by

M (rev), is the matrixM (rev) = (m′′
i,j)1≤i,j≤k, wherem′′

i,j = mk+1−j,k+1−i, for all 1 ≤ i < j ≤ k. (The

entries below the main diagonal are the same inM andM (rev)). Given a wordw = a1 . . . an (ai ∈ Σ
for all 1 ≤ i ≤ n), we denote bymi(w) themirror imageof word w, that ismi(w) = anan−1 . . . a1. Let
(A,<) be an ordered set. Thedual orderof the order<, denoted<◦, is defined as:

a <◦ b iff b < a.

Let Σ = {a1 < a2 < . . . < ak} be an ordered alphabet. Thedual ordered alphabet, denotedΣ◦, is
Σ◦ = {ak < ak−1 < . . . < a1}. The following theorem characterizes the inverse of a Parikh matrix.

Theorem 2.2. Let Σ = {a1 < a2 < . . . < ak} be an ordered alphabet and letw ∈ Σ∗ be a word. Then:

[ΨΣ(w)]−1 = ΨΣ(mi(w)) = ΨΣ◦
(w)(rev)

2.3. Ambiguity

The notion of ambiguity was studied in [4, 2] for two letter alphabets even before it was introduced in
[5]. Instead of reproducing the original definition, we prefer to give here a rephrased version of it taken
from [3].

Definition 2.3. Let Σ = {a1 < · · · < ak} be an ordered alphabet. Two wordsw1, w2 ∈ Σ∗ are termed
M-equivalent, in symbolsw1 ≡M w2, if ΨΣ(w1) = ΨΣ(w2). A wordw ∈ Σ∗ is termedM-unambiguous
if there is no wordw′ 6= w such thatw ≡M w′. Otherwise,w is termedM-ambiguous. If w ∈ Σ∗ is
M-unambiguous (resp. ambiguous), then also the Parikh matrix ΨΣ(w) is called unambiguous (resp.
ambiguous).

A word being M-unambiguous means that it is uniquely determined by its Parikh matrix. Let us list
some basic results about M-unambiguity from [5] (see also [17]). The first result shows that any factor
of an M-unambiguous word is also M-unambiguous.

Proposition 2.1. If a wordy ∈ Σ is M-ambiguous, so is every wordxyz wherex, z ∈ Σ∗.

Next result lists some short M-ambiguous words.

Proposition 2.2. Consider the alphabetΣ = {a1 < · · · < ak}. The following words are M-ambiguous:

• aiaj with |i − j| > 1;
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• aia
m+2
j ai andajaia

m
j aiaj where|i − j| = 1 andm ≥ 0.

The following corollary says that adjacent letters in a M-unambiguous word must be equal or con-
secutive in the alphabet.

Corollary 2.1. If w is M-unambiguous (overΣ = {a1 < · · · < ak}) andaiaj is a factor ofw then
|i − j| ≤ 1. That is, the only factors of length two ofw are of form:

aiai, aiai+1 or ai+1ai

Next result from [5] (see also [4, 2]) gives a complete characterization for M-unambiguous words of
length2.

Theorem 2.3. A word in {a < b}∗ is M-ambiguous if and only if it contains disjoint occurrences of
ab andba. A word is M-unambiguous if and only if it belong to the language denoted by the regular
expression

a∗b∗ + b∗a∗ + a∗ba∗ + b∗ab∗ + a∗bab∗ + b∗aba∗

In [15] another useful property, namely theγ-property is introduced to give M-unambiguity criteria.
We reproduce below the definition along with some results concerning theγ-property presented in [15].

Definition 2.4. Let γ : N × N → 2N be the mapping defined by:

γ(m,n) =

{

{i | 0 ≤ i ≤ mn} if m ≤ 1 or n ≤ 1,

{0, 1,mn,mn − 1} if m > 1 andn > 1.

A (k + 1)-dimensional Parikh matrixM , k ≥ 2, possesses theγ-property if each entrymi,i+2 in the
third diagonal is in the setγ(mi,i+1,mi+1,i+2).

The following result is an alternative characterization ofunambiguous Parikh matrices over binary
alphabets.

Theorem 2.4. A Parikh matrix over a binary alphabet is unambiguous if and only if it possesses the
γ-property.

Also, a M-unambiguity criteria for an arbitrary ordered alphabetΣ = {a1 < · · · < ak} is given.

Theorem 2.5. Assume thatΨΣ(w) possesses theγ-property and that every length two factor ofw has
one of the forms

aiai, 1 ≤ i ≤ k, or aiai+1, ai+1ai, 1 ≤ i ≤ k − 1.

Thenw is M -unambiguous (and so isΨΣ(w)).

For more results and interesting examples of M-unambiguouswords, consult [5, 15, 3].
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2.4. Extended Parikh Matrices

When studying a wordw in terms of the number of occurrences of certain subwords in it, one may think
of considering a so calledbasic wordu (see for example [15]) and count the number of occurrences of
each of its factors inw.

The Parikh matrix introduced above uses the catenationa1 . . . ak of all letters in the alphabetΣ =
{a1 < · · · < ak} in the proper order as the basic word: the matrix giving the values|w|v for factorsv of
the basic word. In the extended Parikh matrix mapping [16] any word (also with repeating letters) can
be chosen as the basic word. The following definitions and results can be found in[16].

Definition 2.5. Let Σ be an alphabet andu = b1 . . . b|u| be a word inΣ∗ (bi ∈ Σ for all 1 ≤ i ≤ |u|).
The Parikh matrix mapping induced by the wordu over the alphabetΣ (shortly, theu-Parikh matrix
mapping), denotedΨΣ,u, is the monoid morphism

ΨΣ,u : (Σ∗, ·, λ) → (M|u|+1, ·, I|u|+1),

defined by the condition: ifa ∈ Σ andΨΣ,u(a) = (mi,j)1≤i,j≤(|u|+1), then:

mi,j =











1 if j = i

δbi,a if j = i + 1

0 otherwise

Since in the sequel we will mainly be concerned with M-unambiguity, we will assume thatΣ is
determined byu (for reasons which will become clear shortly), that is,u contains all letters ofΣ, and
use the notationΨu for theu-Parikh matrix mapping.

Similarly to the notationai,j in the case of an ordered alphabet we introduce the followingnotation:
given the wordu = b1 . . . bn, we denote byui,j the wordbibi+1 . . . bj , where1 ≤ i ≤ j ≤ n. Using this
notation we can give a similar theorem characterizing the entries of anu-Parikh matrix.

Theorem 2.6. Consideru,w ∈ Σ∗. The matrixΨu(w) = (mi,j)1≤i,j≤(|u|+1), has the following proper-
ties:

(i) mi,j = 0, for all 1 ≤ j < i ≤ (|u| + 1),

(ii) mi,i = 1, for all 1 ≤ i ≤ (|u| + 1),

(iii) mi,j+1 = |w|ui,j
, for all 1 ≤ i ≤ j ≤ |u|.

A result similar to Theorem 2.2 cannot be given for Parikh matrices induced by any word. However,
it can be given for all wordsu not having consecutive equal letters.

Theorem 2.7. Let u ∈ Σ∗ be a word such thataa is not a factor ofu for anya ∈ Σ. Then:

[Ψu(w)]−1 = Ψu(mi(w)).

Related to the inverse of a Parikh matrix the following holdsfor arbitraryu.

Theorem 2.8.
Ψu(mi(w)) = Ψmi(u)(w)(rev).
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The following result shows that anyu-Parikh matrix can be obtained as a Parink matrix over a (dif-
ferent) ordered alphabet. To make the presentation clearerwe will use a different style than in [16].

Fix a wordu = a1 . . . ak ∈ Σ∗. Associate tou the ordered alphabetΣk = {1 < 2 < · · · < k}
and for each lettera ∈ Σ, let traceu(a) be the ordered sequencei1i2 . . . i|u|a ∈ Σ∗

k of positions inu

on which a occurs, that is,aij = a for all 1 ≤ j ≤ |u|a. For example,tracebaraba(b) = 1 5 and
tracebaraba(a) = 2 4 6.

Theorem 2.9. Let ϕ : Σ∗ → Σ∗
k be the morphism given byϕ(a) = mi(traceu(a)). Then for each

w ∈ Σ∗,
Ψu(w) = ΨΣk

(ϕ(w))

3. New M-unambiguity results

Let Σ = {a1 < . . . < ak} be an ordered alphabet. Letϕ◦ : Σ∗ → Σ∗ denote the only morphism given
by ϕ◦(ai) = ak−i+1 for any1 ≤ i ≤ k. It is easy to see thatΨΣ(ϕ◦(w)) = ΨΣ,◦(w).

Proposition 3.1. For any wordw and any ordered alphabetΣ, the following are equivalent:

1. w is M-unambiguous;

2. mi(w) is M-unambiguous;

3. ϕ◦(w) is M-unambiguous;

4. mi(ϕ◦(w)) is M-unambiguous;

Proof:

“ 1 ⇐⇒ 2”: ΨΣ(mi(w)) = ΨΣ(mi(w′)) iff ΨΣ(mi(w)) = ΨΣ(mi(w′)) iff [ΨΣ(w)]−1 = [ΨΣ(w′)]−1

iff ΨΣ(w) = ΨΣ(w′)

“ 1 ⇐⇒ 3”: ΨΣ(ϕ◦(w)) = ΨΣ(ϕ◦(w′)) iff ΨΣ,◦(w) = ΨΣ,◦(w
′) iff ΨΣ,◦(w) = ΨΣ,◦(w

′) iff
[ΨΣ,◦(w)](rev) = [ΨΣ,◦(w

′)](rev) iff [ΨΣ(w)]−1 = [ΨΣ(w′)]−1 iff ΨΣ(w) = ΨΣ(w′)

“ 1 ⇐⇒ 4”: ΨΣ(w) = ΨΣ(w′) iff ΨΣ(ϕ◦(w)) = ΨΣ(ϕ◦(w′)) iff ΨΣ(mi(ϕ◦(w))) = ΨΣ(mi(ϕ◦(w′)))

⊓⊔

Let Σ be an alphabet andΣ′ ⊆ Σ be a subalphabet ofΣ. The projection ofΣ∗ to Σ′∗ is the only
morphism mapping the letters ofΣ′ to themselves and the remaining letters ofΣ to the empty word
(see [15], for example). In the sequel, given an ordered alphabetΣ = {a1 < · · · < ak}, for any
1 ≤ i ≤ j ≤ k, let πi,j denote the projection ofΣ∗ to {ai < · · · < aj}. Also, we will useΨi,j as a short
notation forΨ{ai<···<aj}. Given a matrixA ∈ Mk and1 ≤ p ≤ q ≤ k, let Ap,q denote the submatrix of
A at the intersection of lines and columns betweenp andq + 1. This notation is not so intuitive in terms
of matrices, but as next result shows, it is closely related to the projection on a restricted alphabet.
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Theorem 3.1. Let Σ = {a1 < · · · < ak} and let1 ≤ p ≤ q ≤ k. Then for any wordw we have that

[ΨΣ(w)]p,q = Ψp,q(πp,q(w))

Proof:
It clearly holds due to the Theorem 2.1 and to the fact that foreachp ≤ i ≤ j ≤ q we have that
|w|ai,j

= |πp,q(w)|ai,j
. The latter is true since the projection neither deletes norchanges the order of

letters betweenap andaq ⊓⊔

As a corollary we get the following characterization of M-equivalence for projections.

Corollary 3.1. Let Σ = {a1 < · · · < ak} andu,w ∈ Σ∗ such thatu ≡M w. Then for each1 ≤ p ≤
q ≤ k,

• πp,q(u) ≡M πp,q(w);

• if πp,q(w) is M-unambiguous thenπp,q(u) = πp,q(w).

Proof:
The first is a direct consequence of the theorem. The second holds from the first since M-equivalence for
M-unambiguous words reduces to equality. ⊓⊔

The following result shows that one may prove a wordw ∈ Σ∗ to be M-unambiguous if it manages
to prove that its projection on selected subalphabets ofΣ is M-unambiguous.

Theorem 3.2. Let Σ = {a1 < · · · < ak} be an ordered alphabet. Letw ∈ Σ∗ such that all its length
two factors are of the form

aiai, 1 ≤ i ≤ k, or aiai+1, ai+1ai, 1 ≤ i ≤ k − 1.

If there existp, q such that1 < p ≤ q < k and bothπ1,q(w) andπp,k(w) are M-unambiguous thenw is
also M-unambiguous.

Proof:

If π1,q(w) or πp,k(w) areλ then our proof is done.
Else, suppose by contradiction there existsu 6= w such thatΨΣ(w) = ΨΣ(u). Then, by Corollary

3.1 we have thatπ1,q(u) = π1,q(w) and πp,k(u) = πp,k(w). Suppose now thatw = b1 . . . bn and
u = c1 . . . cn and let1 ≤ i ≤ n be the smallest integer such thatbi 6= ci. Also, supposeπ1,q(w) =
d1 . . . dm(= π1,q(u)) and letj be such thatd1 . . . dj−1 = π1,q(b1 . . . bi−1) = π1,q(c1 . . . ci−1).

Case 1:i > 1

If bi ∈ {a1 . . . ap−1} then bi−1 ∈ {a1 . . . ap}. But bi−1 = ci−1, so ci ∈ {a1 . . . ap+1}. Since
bi ∈ {a1 . . . ap−1},it must be thatdj = bi. If p < q or [p = q andci 6= ap+1] then, sinceci ∈ {a1 . . . aq}
we must have thatdj = ci. But this leads tobi = ci, a contradiction. Ifp = q andci = ap+1 then
bi−1 = ci−1 = ap whence the first letter inu whose index is greater thani and belongs to{a1 . . . ap}
must beap, implying thatdj = ap, contradiction withdj = bi ∈ {a1 . . . ap−1}
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By a similar argument, but usingπp,k, bi 6∈ {aq+1 . . . ak}.
If bi ∈ ap . . . aq then if ci ∈ {a1 . . . aq} then at positionj we can observe thatπ1,q(bi) = π1,q(ci),

contradiction. The same wayci ∈ {aq+1 . . . ak} leads to a contradiction usingπp,k.
Case 2:i = 1
If b1 ∈ {a1 . . . ap−1} then the first letter inw whose index is greater than1 and does not belong to

{a1 . . . ap−1} is ap, soπp,k(w) starts withap; thusu cannot start with a letter from{aq+1 . . . ak}. This
means that (usingπ1,q) b1 = d1 = c1, a contradiction.

The same way,b1 6∈ {aq+1 . . . ak}
If b1 ∈ {ap . . . aq} thenπ1,q(w) andπp,k(w) start withb1, soπ1,q(u) andπp,k(u) start withb1, which

means thatb1 = c1, contradiction.
⊓⊔

By iteratively applying the above theorem, the following result is immediate.

Corollary 3.2. Let w be as in Theorem 3.2. If there exists a sequence ofn pairs(pi, qi), 1 ≤ i ≤ n such
that

• p0 = 1 andqn = k,

• pi < qi and

• pi+1 ≤ qi

andπpi,qi
(w) is M-unambiguous for each1 ≤ i ≤ n, thenw is also M-unambiguous.

Analyzing theγ-property more carefully, one can see it as an instance of theabove Corollary for the
sequence(i, i + 1) where1 ≤ i < k. Indeed, applying the Corollary we get thatw is M-unambiguous
if πi,i+1(w) is M-unambiguous for1 ≤ i < k. But this is equivalent withΨΣ(w) having theγ-property,
since Theorems 2.4 and 2.5 basically say thatA = ΨΣ(w) has theγ-property if and only if each subma-
trix Ai,i+2 = Ψi,i+1(πi,i+1(w)) of A, 1 ≤ i < k is unambiguous.

To show that the above theorem is more powerful than Theorem 2.5, consider the wordabcdcbcde

over the alphabeta < b < c < d < e. The projections ofw on alphabets{a < b}, {b < c}, {c < d} and
{d < e} are:

• πa<b(abcdcbcde) = abb,

• πb<c(abcdcbcde) = bccbc,

• πc<d(abcdcbcde) = cdccd and

• πd<e(abcdcbcde) = dde.

It is clear that we cannot apply Theorem 2.5 to prove its M-unambiguity, since only the first and the last
projections yield M-unambiguous words. On the other hand, we can use the decomposition{a < b <

c < d} and{b < c < d < e} to obtain:

• πa<b<c<d(abcdcbcde) = abcdcbcd and

• πb<c<d<e(abcdcbcde) = bcdcdcde and
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First notice thatbcdcdcd is M-unambiguous (see appendix, Theorem A.1), so the order of b, c andd is
fixed. Now, since the number ofabs in abcdcbcd is 2, a can only occur as the first letter in the word,
thus the word is completely determined. A similar argument holds for bcdcdcde, thusabcdcbcde is
M-unambiguous

Next theorem gives a similar criteria for M-unambiguity, this time without imposing special condi-
tions on the factors ofw.

Theorem 3.3. Let Σ = {a1 < · · · < ak} be an ordered alphabet, letp, q ∈ N such that1 < p < q < k

and letw ∈ Σ∗ such thatπ1,q(w) andπp,k(w) are M-unambiguous andπp,q(w) 6= λ. Thenw is also
M-unambiguous.

Since one can easily check whether the two length factors word w satisfy the conditions of Theorem 3.2,
this is a strictly less useful result than Theorem 3.2. However, it can be rephrased as the following com-
pletely algebraic (not referring to words) equivalent criteria for unambiguity of Parikh matrices giving a
test for unambiguity for matrices known to be Parikh but withunknown generating word.

Theorem 3.4. Let A be a Parikh matrix. If we can findp andq, 1 ≤ p < q ≤ k such thatA1,q andAp,k

are unambiguous andAp,q 6= I, thenA is also unambiguous

Proof:
We will show that we can apply Theorem 3.2. Suppose by contradiction there existsaiaj a factor ofw
such that|j − i| > 1. Sinceπ1,q(w) andπp,k(w) are both M-unambiguous, it must be that eitheri < p

andj > q or i > q andj < p. Without loss of generality, let us assume thati < p andj > q. Also, since
πp,q(w) 6= λ it must be that there exist an occurrence of a letterar in w such thatp ≤ r ≤ q.

If ar occurs at the right ofaiaj then sinceπ1,q(w) is M-unambiguous all letters inΣ having indexes
betweeni andr must occur inw betweenaiaj andar. Moreover,ap must be the first letter occuring
at right of aiaj having index greater thanp − 1. But this precisely means thatajap is a factor of the
M-unambiguous wordπp,k(w), a contradiction, sincej − p > q − p = 1.

If ar occurs at the left ofaiaj the same argument as above holds interchanging the roles ofπ1,q and
πp,k.

⊓⊔

The following is a converse of Theorem 3.3.

Theorem 3.5. Let Σ = {a1 < · · · < ak} be an ordered alphabet, letp, q ∈ N such that1 < p < q < k

and letw ∈ Σ∗ such thatw andπp,q(w) are M-unambiguous. Then bothπ1,q(w) andπp,k(w) are also
M-unambiguous.

With its equivalent matrix formulation.

Theorem 3.6. Let A be an unambiguous Parikh matrix. If we can findp andq, 1 ≤ p < q ≤ k + 1 such
thatAp,q is unambiguous, then bothA1,q andAp,k are unambiguous.

Proof:
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First notice that inside an M-unambiguous word, the first andthe last letters in the alphabet may
have powers greater than1 only at the beginning or at the end of the word (it is almost obvious from
Proposition 2.2). Letw′ = πp,q(w). Sincew′ is M-unambiguous it follows thatap andaq can have
powers greater than1 only at the beginning or the end ofw′.

Sincew′ is a scattered subword ofw, w can be obtained by inserting inw′ some letters from
{a1, . . . , ap−1, aq+1, . . . , ak}. From the observation above and from the fact that for all factors aiaj

of w, |i − j| ≤ 1 must hold, it can easily be seen that the letters may be inserted inw only inside theap

or aq groups at the beginning and the end of the word (if such groupsexist) or before and after the word,
if the first and the last letter allows us to. Because of this fact, it follows that ifw′ neither begins nor ends
with ap or aq thenw = w′, since no letters from{a1, . . . , ap−1, aq+1, . . . , ak} can be inserted inw′

If w′ begins and ends withap, then none of the lettersaq+1 . . . ak may be added tow′, thusπ1,q(w) =
w andπp,k(w) = w′.

If w′ begins withap and ends withaq, then the lettersa1 . . . ap−1 may be added only inside or before
theap group at the beginning ofw′, and lettersaq+1 . . . ak may be added only inside or after theaq group
at the end ofw′. Suppose by contradiction thatπ1,q(w) is M-ambiguous and letu 6= π1,q(w) such that
u ≡M π1,q(w). Thenπp,q(u) = w′ (by Corollary 3.1). Now constructw′′ from u by inserting the letters
aq+1 . . . ak in the same relative positions they have inw with respect to the letters inw′ (there may be
more than one way to add them). One can see that thatw ≡M w′′, a contradiction. Indeed, it is obvious
that |w|ar,s = |w′′|ar,s if r, s ≤ q or r, s ≥ p. Let’s see what happens ifr < p andq < s. A scattered
occurrence ofar,s in w′′ is given by an occurrence ofar,q and an occurrence ofaq+1,s after that. Note
thataq+1 . . . as may be found only after the lastaq−1, andq − 1 ≥ p. For any scattered occurrence of
ar,q−1 in w we have an occurrence ofar,q−1 in w′′, and for any occurrence ofar,q in w we have one in
w′′. We can’t have any occurrence ofar,q after the lastaq−1, so the number of occurrences ofar,s in w

is the same with the number of occurrences inw′′.
The other cases for the beginning and the end ofw′ are treated in a similar manner. ⊓⊔

To show that the M-unambiguity condition forπp,q(w) is indeed needed by the theorem, consider the
word abcdcba which can easily be proven M-unambiguous. However, since its projection on{b < c},
bccb is M-ambiguous, one cannot guarantee the M-unambiguity of its projections on{a < b < c} and
{b < c < d}. Indeed, its projection on{a < b < c}, abcc is M-ambiguous.

4. M-unambiguity on extended Parikh matrices

Although Theorem 2.9 says that any extended Parikh matrix isin fact a Parikh matrix according to
the original definition, the unambiguity results cannot be carried on this way, because the image of the
u-Parikh matrix mapping is a strict subset of all Parikh matrices overΣ|u|. For example,Ψaba(a) =
Ψ{1<2<3}(31) is ambiguous; hence, the image of all words containinga throughΨaba would be ambigu-
ous. However, it is intuitively clear thatΨaba gives more information thanΨab and there is no wordw
for which Ψaba(a) = Ψaba(w). With this intuition in mind, we refine the notions of M-equivalence and
M-(un)ambiguity parametric on the given basic word.

Definition 4.1. Let u ∈ Σ∗ be an ordered alphabet. Two wordsw1, w2 ∈ Σ∗ are termedM-equivalent
w.r.t. u, in symbolsw1 ≡M(u) w2, if Ψu(w1) = Ψu(w2). A word w ∈ Σ∗ is termedM-unambiguous
w.r.t. u if there is no wordw′ 6= w such thatw ≡M(u) w′. Otherwise,w is termedM-ambiguous w.r.t.
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u. If w ∈ Σ∗ is M-unambiguous (resp. M-ambiguous) w.r.t.u, then also the (extended) Parikh matrix
Ψu(w) is called unambiguous (resp. ambiguous) w.r.t.u.

Given the fact that the extended Parikh matrix mapping has similar properties as the original Parikh
matrix mapping, we will try next to prove some of the already presented M-unambiguity results in the
more general context of M-unambiguity w.r.t. a word.

First, a corollary of Theorem 2.9 should be mentioned. Assume u = a1 . . . ak ∈ Σ∗ and letΣ only
contain the letters occuring inu.

Corollary 4.1. In the framework of Theorem 2.9, ifΨu(w) is unambiguous as a Parikh matrix over the
alphabetΣk then it is also unambiguous w.r.t.u (andw is M-unambiguous w.r.t.u).

Proof:
Remember thatϕ : Σ∗ → Σ∗

k is given byϕ(a) = mi(traceu(a)) wheretraceu(a) is the ordered sequence
of occurring positions ofa in u. Let w′ be such thatΨu(w′) = Ψu(w). Then, Theorem 2.9 assures
us that, sinceΨu(w′) is unambiguous as a Parikh matrix,ϕ(w′) = ϕ(w). The conclusion follows by
noticing thatϕ is injective. This is indeed true, sinceϕ(a) is notλ by the choice ofΣ and also ifa 6= b

thenϕ(a) does not have letters in common withϕ(b) (due to the waytrace is defined). ⊓⊔

It is easy to see (using the same argument as for Proposition 2.1) that ifw is M-unambiguous w.r.t.
u than any of its factor has the same property.

Let us now associate to each basic wordu ∈ Σ∗ a graphGu = (V,E) whereV = Σ andE =
{(a, b) | ab factor inu}. For any two lettersa, b ∈ Σ, let du(a, b) denotethe distance betweena andb in
u, that is, the length of the minimum path froma to b in Gu. Next result is a generalization of Corollary
2.1.

Proposition 4.1. If w is M-unambiguous w.r.t.u andab is a factor ofw thendu(a, b) ≤ 1, that is, either
ab is a factor ofu or a = b.

It is interesting to notice that the property ofGu having no self-loops exactly characterizes the words
with no consecutive repeating letters which we encounteredin the results characterizing the inverse of
an extended Parikh matrix. Next results generalize Proposition 3.1.

Proposition 4.2. Let u ∈ Σ∗ such thatGu has no self-loops. Thenw is M-unambiguous w.r.tu if and
only if mi(w) is M-unambiguous w.r.tu;

Proof:
Using Theorem 2.7 we obtain:Ψu(mi(w)) = Ψu(mi(w′)) iff Ψu(mi(w)) = Ψu(mi(w′)) iff [Ψu(w)]−1 =
[Ψu(w′)]−1 iff Ψu(w) = Ψu(w′) ⊓⊔

Also, as a consequence of Theorem 2.8, for arbitraryu we have.

Proposition 4.3. Let u,w ∈ Σ∗. Then mi(w) is M-unambiguous w.r.t.u if and only if w is M-
unambiguous w.r.tmi(u).

Proof:
Ψu(mi(w)) = Ψu(mi(w′)) iff Ψmi(u)(w)(rev) = Ψmi(u)(w

′)(rev) iff Ψmi(u)(w) = Ψmi(u)(w
′). ⊓⊔
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Corollary 4.2. Let u ∈ Σ∗ such thatGu has no self-loops. The following are equivalent:

• w is M-unambiguous w.r.tu;

• mi(w) is M-unambiguous w.r.tu;

• w is M-unambiguous w.r.tmi(u);

• mi(w) is M-unambiguous w.r.tmi(u).

Givenx ∈ Σ∗ we can define the projectionπx to be the projection ofΣ∗ to the alphabet containing
only the letters ofx. Using Theorem 2.6 we can prove a result similar to Theorem 3.1 for extended
Parikh matrices.

Theorem 4.1. Consideru ∈ Σ∗. Then for any1 ≤ p ≤ q ≤ |u| and any wordw ∈ Σ∗ we have that

[Ψu(w)]p,q = Ψup,q(πup,q(w))

And, of course the corresponding corollary.

Corollary 4.3. If w ≡M(u) w′ then for any factorx of u, πx(w) ≡M(x) πx(w′). Also, if πx(w) is
M-unambiguous w.r.t.x thenπx(w′) = πx(w).

Interesting enough, in the case of extended Parikh matriceswe obtain another useful corollary which
didn’t make sense in the original setting.

Corollary 4.4. If u ∈ Σ∗ contains a factoru′ such thatu′ contains all letters occuring inu andw is
M-unambiguous w.r.t.u′ thenw is also M-unambiguous w.r.t.u.

Proof:
Directly from Corollary 4.3, sinceπu′(w) = w. ⊓⊔

Next theorem generalizes Theorem 3.2

Theorem 4.2. Let u ∈ Σ∗ be a basic word and letw ∈ Σ∗ be a word such that each two letter factor of
w is either a factor ofu or of the formaa with a ∈ Σ. Let x, y, z ∈ Σ∗ be such thatu = xyz, |x| > 0
andx andz don’t share any letters besides those iny. If πxy(w) is M-unambiguous w.r.t.xy andπyz(w)
is M-unambiguous w.r.t.yz thenw is M-unambiguous w.r.t.u.

To see that the above theorem indeed generalizes Theorem 3.2, it is enough to takex = a1 · · · ap−1,
y = ap · · · aq andz = aq+1 · · · ak. This is a decomposition satisfying the conditions above since the
unambiguity conditons map exactly to the ones in Theorem 3.2. The proof follows the same technique
as for Theorem 3.2

Proof:
We can assume, without any loss of generality, that the letters adjacent toy (that is last letter ofx and
first letter ofz) don’t occur iny. Indeed by expandingy to y′ to satisfy the above property, for the
new decompositionx′y′z′ we get thatxy is a factor ofx′y′ containing all the letters occuring inx′y′
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andyz is a factor ofy′z′ containing all letters occuring iny′z′. Applying Corollary 4.4 we get that
πx′y′(w) = πxy(w) is M-unambiguous w.r.t.x′y′ andπy′z′(w) = πyz(w) is M-unambiguous w.r.t.y′z′.

If πxy(w) or πyz(w) areλ then our proof is done.
Else, suppose by contradiction there existsw′ 6= w such thatΨu(w) = Ψw(w′). Then, by Corollary

4.3 we have thatπxy(w
′) = πxy(w) and πyz(w

′) = πyz(w). Suppose now thatw = b1 . . . bn and
w′ = c1 . . . cn and let1 ≤ i ≤ n be the smallest integer such thatbi 6= ci. Also, supposeπxy(w) =
d1 . . . dm(= πxy(w

′)) and letj be such thatd1 . . . dj−1 = πxy(b1 . . . bi−1) = πxy(c1 . . . ci−1).
Case 1:i > 1

If πyz(bi) = λ thendj = bi. If πxy(ci) = ci then alsodj = ci, contradiction. Else, it must be that
bi−1 = ci−1 occurs iny andci occurs inz but not inxy. By the hypothesis, one starting withci should
pass throughy before getting to a letter inx, whencedj occurs iny implying bi occurs iny, contradiction
with πyz(bi) = λ. Thus,πyz(bi) = bi

By a similar argument, but usingπxy, πxy(bi) = bi.
Now, if πxy(ci) = ci then at positionj we can observe thatπxy(bi) = πxy(ci), contradiction. The

same way,πyz(ci) = ci leads to a contradiction usingπyz.
Case 2:i = 1

If πyz(b1) = λ then the first letter inw whose index is greater than1 and does not occur inx must
occur iny, soπyz(w) starts with a letter occuring iny; thusw′ must also start with a letter occuring in
xy. This means that (usingπxy) b1 = d1 = c1, a contradiction. Thusπyz(b1) = b1

The same way,πxy(b1) = x1. Using the above facts, it follows that bothπxy(w) andπyz(w) start
with b1 whence bothπxy(w

′) andπyz(w
′) must start withb1, leading tob1 = c1, contradiction. ⊓⊔

5. Conclusion. Open problems

The problem of characterizing the M-unambiguity for arbitrary alphabets or basic words still remains
open. However the results presented here give general and practical criteria for M-ambiguity, and hope-
fully are solid steps towards the higher goal.

We would not want to conclude without pointing an interesting problem related to M-unambiguity.
Given a wordw = b

p1

1 b
p2

2 . . . b
pn
n such that for all1 ≤ i ≤ n, pi > 0 and for each1 ≤ i < n, bi 6= bi+1

(it is clear that each word admits a unique such decomposition), we definethe print ofw to be the word
b1b2 . . . bn. We have found out that for alphabets of size two (see Theorem2.3) and three (see Appendix,
Theorem A.1) the M-unambiguity of a word implies the M-unambiguity of its print. Several questions
naturally arise in this setting:

1. Does the M-unambiguity of a word imply the M-unambiguity of its print for arbitrary alphabets?

2. Is the maximum length of a M-unambiguous print bounded fora given alphabet, and if so, can it
be computed?

3. Given a print, can one characterize all M-unambiguous words having the same print?

One can for example see that if the following conjecture holds, first question would be favorable
answered.
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Conjecture 5.1. Let Σ = {a1 < · · · < ak} be an ordered alphabet Then for anyu, v ∈ Σ∗ anda ∈ Σ,
- if uaav is M-unambiguous thenuav is also M-unambiguous, or, equivalently,
- if uav is M-ambiguous, then so isuaav.
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A. M-unambiguity on a three-letter alphabet - case study

The results in this section were proved in [17]. We give the same presentation as there, only changing
the notation and the language in order to fit this paper more properly.

First, let us give a criteria for the M-ambiguity of a word over a two-letter alphabet which will be
extensively used in the sequel:

Algorithm A.1. (The Moving Algorithm.) Let Σ = {a < b} be the alphabet. Ifw = a1 · · · an is a
word, andΨΣ(w) is its Parikh matrix, then any word having the same Parikh matrix asw can be obtained
by applying the following rules a finite number of times.

Let 1 ≤ i < |w| and2 ≤ j ≤ |w| be two indices such asi 6= j, i + 1 6= j − 1, ai = aj = a and
ai+1 = aj−1 = b. The(i,j)-rule consists of swappingai with ai+1 andaj with aj−1

Proof:

Moving the letters does not change the number ofa or b. Also, if we move letters using only the
above rules the number ofab in the word stays the same. We will prove that the rules above are enough
by induction on the length ofw. If |w| = 1 then the above is obviously true. Let’s suppose that|w| > 1
and we haveu with ΨΣ(w) = ΨΣ(u).

If w1 = u1, then letw′ = w2w3 . . . w|w| andu′ = u2u3 . . . u|u|. ΨΣ(w′) = ΨΣ(u′), sow′ can be
transformed tou′ with the above algorithm. But this means that we can getu from w by applying the
same changes.

If w1 6= u1: let’s supposew1 = a andu1 = b. SinceΨΣ(w) = ΨΣ(u) this means thatw contains at
least oneb andu contains at least ana. Then we take the leftmosta of u and anothera from the same
word that has ab to its right (we will prove that this is possible) and apply the algorithm rule. We do this
until we obtain a word starting witha.

Let’s suppose thatu does not have anothera with a b letter to its right. Thenu must be of the form
bmabna∗ with m andn being positive integers,m > 0. The number ofab in this word isn. But w also
hasm + n b letters and it has ana to the left, so it must have at leastm + n occurrences ofab as a
subword. This contradicts the fact thatw andu have the same Parikh matrix. ⊓⊔

Fix the alphabet{a < b < c}. DenoteΨ{a<b<c} simply byΨ.

Fact A.1. The wordac is M-ambiguous.

Fact A.2. The M-unambiguous words with at most two distinct letters are: λ, a+, a+b+, a+ba+,
a+bab+, b+, b+a+, b+ab+, b+aba+ c+, c+b+, c+bc+, c+bcb+, b+, b+c+, b+cb+ andb+cbc+.

In order to find all the three letters M-unambiguous words we will take all the M-unambiguous words
in the above fact and add letters according to the restrictions from Propositions 2.1 and 2.2.

We can see that if we generate all the M-unambiguous words beginning witha, by usingϕ◦ we will
generate all the M-unambiguous words beginning withc.

Every (i, j)-rule in Algorithm A.1 change the number ofabc in the word with the number ofc
betweeni andj. If i < j then the number is decreased, else it is increased. The same is true if we change
the rules by replacinga with c and count thea’s betweeni andj.
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Since every configuration with the same matrix except the upper-right corner can be reached with the
above rules (and swapping consecutivea andc letters freely), if we want to have the same upper-right
corner too we must use the same number of rules that decrease and increase it.

Also, it is obvious that a non-emptya or c group inside an M-unambiguous word can only have ab

near it, so the group must have exactly one letter (see Proposition 2.2).
It can also easily be seen that an M-unambiguous word over a three letters alphabet belongs to the

language obtained from the concatenation of the following languages:

{λ, ab, b+, cb}

{(ab+cb+)∗, ab+, cb+}

{λ, a+, c+}

This means that the word has a body ofab+cb+ab+cb+ . . . (it cannot have subwords likeb+ab+ab+,
b+cb+cb+, cbcbc or ababa), a prefix from the language{λ, ab, b+, cb} and a suffix from the language
{λ, a+, c+}.

If we take the mirror of every M-unambiguous wordw beginning witha or c and ending withb we
will have all the M-unambiguous words beginning withb and ending witha or c. The M-unambiguous
words beginning withb and ending withb are generated by addingb to the and of a word beginning with
b and ending witha or c.

In the followingm,n, p, q, r, s, t, u, v, w, x are nonzero positive integers.
We can easily see that the wordambncp is M-unambiguous, because no rule of Algorithm A.1 can

be used. To get another M-unambiguous word, we can add onlyb letters. However, ifp is greater than
1, the word we get is not M-unambiguous (see Proposition 2.2).If p = 1, then the wordambncbq is M-
unambiguous (we can’t apply the algorithm rule). Ifq = 1 then we can try to addc letters:ambncbcr is
M-unambiguous for the same reason. We cannot add more letters to this word, so let’s return toambncbq.

If we adda letters, we getambncbqar. We cannot apply any rule of the Algorithm A.1. Indeed, the
only change we can make to this word is to move letters from theam group to the right and letters from
thean group to the left. But these moves decrease the number ofabc in the word.

If we haver = 1 then we can try to add someb letters. The wordambncbqabs is M-unambiguous,
by the same argument as above.

Fors = 1 we adda letters and getambncbqabat, which is M-unambiguous for the same reason.
By addingc letters we getambncbqabsct. One can see that moving a pair ofa or c decreases the

number ofabc in the word, so this one is M-unambiguous, too. Ifn > 1 and we try to add ab to this
word, we get a ambiguous Parikh matrix, even ift = 1:

Ψ(ambncbqabscbu) = Ψ(am−1babn−2cbqabs+2cbu−1).

However, forn = 1 andt = 1 the wordambcbqabscbu is M-unambiguous. Indeed, if we move thec

letters and getamcbq+1abs+1cbu−1, we have decreased the number ofabc in our word by1. We cannot
move further thec letters without changing the number ofbc in the word, and we cannot increase the
number ofabc by moving thea letters. Moving thec letters the other way, we decreases the number of
abc in the word. Further moves that keep the number ofab in the wordamb2cbq−1abs−1cbu+1 (other
than moving thec back) will decrease or leave unchanged the number ofabc. Moving only thea letters
will decrease the number ofabc.
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For u = 1 we can addc letters, and we getambcbqabscbcv which is M-unambiguous for the same
reason. Ifu > 1 and we add a letters, we get a M-ambiguous word:ambcbqabscbuav. Indeed,

Ψ(ambcbqabscbuav) = Ψ(amcbq+2abscbu−2abav−1).

However, ifu = 1 thenambcbqabscbav is M-unambiguous by an argument similar to the above one.
If q > 1 and we try to addb letters to this word, we get a M-ambiguous one. Forv > 1, this is

obvious. Forv = 1, we can see that

Ψ(ambcbqabscbab) = Ψ(ambbcbq−2abscbbba).

If q = 1 andv = 1 and we addb letters, we get an M-unambiguous word:ambcbabscbabw. Indeed,
let’s see that if we move thec letters such as we getamcbbabs+1cabw and we have increased the number
of abc in the word; we cannot decrease it by moving thea letters. If we move thec letters the other way
we getambbcabs−1cbbabw, and we have decreased by1 the number ofabc in the word. The only chance
to increase it is to move thea letters such as we getambabcbs−1cbbbabw−1, but this increases the number
of abc by 2, and we have no way to decrease it again.

If we add ana letter to this word, we getambcbabscbabwa, which is M-ambiguous:

Ψ(ambcbabscbabwa) = Ψ(amcbbbabscabw−1ab)

If w > 1 and we addc letters, we getambcbabscbabwc, which is M-ambiguous:

Ψ(ambcbabscbabwc) = Ψ(ambcabscbbbabw−2cb).

For w = 1 the we get an M-unambiguous word:w = ambcbabscbabcx. To see why, let’s try to
move the letters: we can move thec letter from the right and the one in the middle such as we get
amcbbabs+1cabcx. The number ofabc has increased by1. Further moves for thec letters (other than
moving them back) do not change the number ofabc. Moving thea letters can only increase the number
of abc. But we can move thec letters from above such as we getambbcabs−1cbbabcx. The number of
abc has decreased by1. We can decrease it again by moving (once or twice) thec in the middle to the
left and onec from the group in the left to the right. Each of this moves decreases the number ofabc by
1 We get the words:

ambbcabscbacbcx−1

and
ambbcabs+1caccbcx−2

For the first word, moving thea can increase the number ofabc only by 3, and we cannot decrease it
anymore. For the second word, the number ofabc increases by4 and cannot be decreased. Let’s return
to

ambbcabs−1cbbabcx.

If we try to move thea letters, we can only increase the number ofabc by 2, and we can’t decrease
it again. Moving thec in the right to the left and onec from the left to the right will take us to one
of the words discussed above. We can move thec in the middle and onec from the left and we get
ambcbabs+1cacbcx−1 The number ofabc has decreased by1. Any further move will take us to a word
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discussed above, will leave the number ofabc unchanged or will increase it by2, with no hope of
decreasing it again. Moving only thea letters inw will give us words with different numbers ofabc.

If we addb letters to this word, we get M-ambiguous words. Indeed,

Ψ(ambcbabscbabcxb) = Ψ(am−1bacabscbbabcx−1bc).

For the next M-unambiguous words, the injectivity arguments are the same as for the words above.
Let’s start withambabn and add letters. we can add onlyc letters, andambabncp is M-unambiguous

(it is ϕ◦(mi(apbncbcm))). Forp = 1 we can addb letters and getambabncbq, which is M-unambiguous.
if q = 1 we can addc letters, an get an M-unambiguous word:ambabncbcr. We can also adda and
getambabncbqar, which is M-unambiguous. Forr = 1 we add someb letters and getambabncbqabs,
which is M-unambiguous. fors = 1 we adda and getambabncbqabat, which is M-unambiguous.
ambabncbqabsct is M-unambiguous only fors = 1 (ambabncbqabsct = ϕ◦(mi(atbscbqabncbcm))). If
we add ab we get a M-ambiguous word even ift = 1: ambabncbpabcqb.

Ψ(ambabncbpabcqb) = Ψ(am−1baabn−1cbpabbcq−1bc)

Let’s see the words starting and ending withb and containing all the three letters (the others can be ob-
tained from the words above withmi andϕ◦): bmabncbq, bmabncbpabq, bmabcbnabcbp andbmabcbabcbabn

are M-unambiguous, all the others are M-ambiguous.
To summarize, we have:

Theorem A.1. The only M-unambiguous words over{a, b, c} are:
ambabncp, ambabncbpaq, ambabncbpabq, ambabncbcp,
ambabncbpabaq, ambabncbpabcq,
ambncp, ambncbp, ambncbpaq, ambncbcp,
ambncbpabq, ambncbpabaq, ambncbpabqcr, ambcbnabpcbq,
ambcbnabpcbaq, ambcbnabpcbcq, ambcbabncbabp, ambcbabncbabcp,
bmabncp, bmabncbp, bmabncbpaq, bmabncbpabq,
bmabncbpabaq, bmabncbpabcq, bmabcbnabcbp, bmabcbnabcbap,
bmabcbabcbabn,
bmcbnap, bmcbnabp, bmcbnabpcq, bmcbnabpcbcq,
bmcbnabpcbaq, bmcbabncbabp, bmcbabncbabap,
cmbnap, cmbnabp, cmbnabap, cmbnabpcq,
cmbnabpcbq, cmbnabpcbqar, cmbnabpcbcq, cmbabncbpabq,
cmbabncbpabaq, cmbabncbpabcq, cmbabcbnabcbp, cmbabcbnabcbap,
cmbcbnap, cmbcbnabap, cmbcbnabpcq, cmbcbnabpcbq,
cmbcbnabpcbaq, cmbcbnabpcbcq, am, ambn, amban, ambabn, bm, bman, bmabn, bmaban cm, cmbn,
cmbcn, cmbcbn, bm, bmcn, bmcbn, bmcbcn with m,n, p, q > 0


