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Introduction

Blood is composed of a suspension of red blood cells
(RBCs) suspended in plasma, and the presence of the RBCs sub-
stantially changes the flow characteristics and rheology of these
suspensions. The viscosity of blood varies with the hematocrit
(volume fraction of RBCs), which is a result not seen in Newto-
nian fluids. Additionally, RBCs are deformable, which can alter
suspension dynamics. Understanding the physics in these flows
requires accurately simulating the suspended phase to recover
the microscale, and a subsequent analysis of the rheology to as-
certain the continuum-level effects caused by the changes at the
particle level. The direct numerical simulation of blood flow in-
cluding RBC migration effects has the capability to resolve the
Fahraeus effect of observing low hematocrit values near walls,
the subsequent cell-depleted layer, and the presence of velocity
profile blunting due to the distribution of RBCs.

For flows through bifurcations, the hematocrit and volume
flow rate are typically not proportional. This effect is commonly
referred to as the phase separation effect [1,2]. The hematocrit
distribution in the daughter branches is a function of several vari-
ables including the hematocrit of the parent vessel, vessel diam-
eters, and the volumetric flow rate ratio of the daughter to par-
ent vessels [2]. Previous studies [3] indicate that the phase sep-
aration effect is not a function of the angle and orientation of
the vessels. Another term relative to this phenomena is plasma
skimming, which refers to observation that the smaller daughter
branch of an arteriole bifurcation may ‘skim’ the cell-depleted
layer of its parent arteriole [4,5]. The phenomena of phase sep-
aration and plasma skimming are the motivation for our investi-

gations of cellular flows through model bifurcations relevant to
microcirculation.

Bifurcations of arteries throughout mammalian circulatory
systems are all unique. However, many studies show that the
area ratio between the main and daughter branches of bifurca-
tions follow Murray’s law [6] which states that the size of daugh-
ter branches is such that there is a balance between the metabolic
energy of a given volume of blood and the energy required for
blood flow [7]. This concept is used to generate theoretical vas-
cular networks with constant wall shear stress. This law was
constructed assuming that the vascular walls are rigid, the flow
is Poiseuille with a constant pressure gradient, and that blood
behaves as a Newtonian fluid. The daughter branch sizes are
then determined based on the minimization of dissipated power
through the network. Using Murray’s law the radii of the daugh-
ter branches of a model bifurcation can be chosen such that
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where r,, is the radius of the mother vessel, and r41, 7,4, are the
radii of the daughter branches. This law is used in the construc-
tion of the model geometries used in our investigations of ar-
teriole bifurcations. These model bifurcations are generated in
ICEM-CFD and are treated as rigid finite element entities em-
bedded in the fluid domain. An example model bifurcation is
given in Fig. 1. For this configuration, the mother branch radius
is 7,,=21.3 um and the daughter branches radii are r;;=18 ym and
rd2=15.6 aim.
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Figure 1. Bifurcation constructed using Murray’s law in ICEM-CFD.

Methodology

The method employed for this study combines a lattice-
Boltzmann (LB) method with a linear-elastic finite element (FE)
method for deformable RBCs. The LB method accurately solves
the Navier—Stokes equations at finite Reynolds number and is a
readily parallelized algorithm [8]. This 3D LB/FE method shows
good agreement to experimental results of blood flow and ac-
counts for the two-phase nature of blood and the deformation of
the suspended RBCs [9].

Results

The ensemble averaged axial velocity profile for the mother
branch of the bifurcation is given in Fig. 2. The ensemble aver-
aged hematocrit profile for the mother branch of the bifurcation
is given in Fig. 3. The velocity profiles show various degrees
of blunting for different hematocrit values. From the hematocrit
profile, the cell-depleted wall layer observed is approximately
lum thick. Further analysis of the daughter branches will be
given later.
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Figure 2. (u,)/U profile for the mother branch of the arteriole bifurca-

tion.
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Figure 3. () profile for the mother branch of the arteriole bifurcation.
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