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Abstract

This paper brings together two recent developments in

image analysis. We consider a new mathematical frame-

work that provides illumination invariant descriptors for

face detection. Towards fast learning and processing, we

understand images and the corresponding feature maps as

multilinear entities and apply higher order classifiers for

image analysis and object detection. Experimental results

underline that this approach indeed provides quick train-

ing, fast runtime and robust performance across a variety

of illumination conditions.

1. Introduction

Varying scene illumination and ambient lighting still

very much affect the performance of most present day com-

puter vision systems. Recently, Koenderink [4] claimed that

this is due to methodical flaws in mathematical image mod-

eling and proposed a representation providing illumination

invariance. More recently still, Bauckhage and Tsotsos [1]

applied this framework in face detection. Concerned with

feature vectors according to Koenderink’s ideas, they found

that even simple, linear subspace techniques can cope with

considerable illumination variations. Nevertheless, the re-

sults in [1] are of little practical use.

The major shortcoming is that the authors focus on PCA-

based classification. For finding faces in an image, however,

this is rather inefficient. With d denoting the dimension of

the subspace used for classification, principal component

analysis of all possible subimages of size m × n requires

O(dmn) operations per pixel. This simple analysis under-

lines, that, for common image resolutions and most choices

of m and n, naı̈ve linear techniques may be suited for recog-

nition but not for detection.

In this paper, we propose a much faster approach to il-

lumination insensitive detection. Similar to the work in

[1], we consider curvature features computed according to

Koenderink’s theory. However, instead of linear techniques

we apply multilinear classifiers.

Treating image patches as higher order tensors or n-way

arrays leads to interesting results [5, 6, 7, 9, 10]. In short,

the findings reported in these recent contributions suggest

that multilinear techniques capture salient structures more

efficiently and more faithfully than conventional linear ap-

proaches. We investigate if this also applies to illumination

insensitive face detection. First, we briefly sketch Koen-

derink’s framework and a novel approach to multilinear

classification. Then, in practical experiments, we combine

both approaches and obtain results showing that multilinear

face detection based on curvature features performs fast and

robustly. A conclusion will end this paper.

2. Image Space I
3 and Higher Order Classifiers

In this section, we summarize Koenderink’s approach to

illumination invariant image processing and briefly intro-

duce multivariate representations for object detection.

2.1. Image Space I
3

In [4], Koenderink criticizes that grayscale images often

are taken to be entities embedded in R
3. If intensity val-

ues zi were the surface of some function over the image

plane, i.e. zi = f(xi, yi), the geometry of R
3 would allow

for arbitrary rotations of this surface. However, some such

rotations might cause intensity values to lie in the coordi-

nate plane and image coordinates to become parallel to the

intensity direction.

Seeking a model that prevents physically senseless con-

figurations, Koenderink proposes the use of fibre bundles

(see Fig. 1). His image space I
3 locally looks like P

2 × L

where the base manifold P
2 corresponds to the picture plane

and the fibers L represent intensity information. More-

over, arguing that the photon count on a CCD chip is Pois-

son distributed, Koenderink stipulates a log-intensity scale
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(a) (b)

Figure 1. A fibre bundle B is defined by a
mapping π : B → M. M is the base manifold
and Vx = π−1(x) are the fibers; B =

⋃

x∈M
Vx.

Locally, B resembles M×V.

(a) ~u⊗ ~v (b) ~u⊗ ~v ⊗ ~w

Figure 2. The outer product of two or several
vectors results in higher order objects.

Z(x, y) = log(z(x, y)/z0) where z0 is an arbitrary unit of

intensity. Images thus correspond to cross sections of I
3 and

an image point is a triple {x, y, Z}.

Since, in I
3, intensity direction and image plane can-

not mix, brightness transformations do not alter relations

among fibres. This leaves the curvature of cross sections in-

variant. Finally, due to the bundle structure, Gaussian- and

Mean curvature of cross sections are given by notably sim-

ple expressions. In contrast to the lengthy formulas known

from Euclidean geometry, they simply correspond to

K(x, y) =
∂2Z

∂x2

∂2Z

∂y2
−

∂2Z

∂x∂y
= ZxxZyy − Z2

xy (1)

and

H(x, y) =

∂2Z
∂x2 + ∂2Z

∂y2

2
=

Zxx + Zyy

2
. (2)

2.2. Classification of Multilinear Objects

As a digital image consists of one or several layers, for

classification, it may be interpreted as a third-order tensor

I ∈ R
m1×m2×m3 where m1 and m2 correspond to the

x- and y-resolution and m3 counts the number of layers

(usually m3 ≤ 3). Alas, detection or recognition algo-

rithms, which make use of linear algebra, usually treat im-

age patches X of size m×n×d as high dimensional vectors

~x ∈ R
mnd. However, for classifiers which are based on an

inner product, one can refrain from unfolding X by consid-

ering the inner product of tensors W ·X =
∑

ijk WijkXijk.

(a) grayscale (b) gradient (c) H and K curvature in I
3

Figure 3. Examples of training data for sec-
ond and third order multilinear classification.

Dealing with a two class problem such as face detection,

multilinear classification closely resembles the linear case.

With ω+ denoting the class of face images and ω− denoting

the class of all non-face images, the decision function is

given by:

ω(X ) =

{

ω+ if W · X > θ

ω− otherwise

Moreover, if the projection tensor W is given as a sum

over R tensors of rank-1, such that

W =

R
∑

r=1

W
r =

R
∑

r=1

~ur ⊗ ~vr ⊗ ~wr (3)

where ⊗ denotes the outer product (see Fig. 2) and ~ur ∈
R

m, ~vr ∈ R
n, ~wr ∈ R

d, image analysis can be done effi-

ciently. Applying the classifier W to an image I reduces

to a sequence of one-dimensional convolutions

I ∗ W =

R
∑

r=1

I ∗ W
r =

R
∑

r=1

((

I ∗ ~ur
)

∗ ~vr
)

∗ ~wr. (4)

Therefore, the effort is O(R(m + n + d)) ≪ O(dmn), if

R ≪ min{m,n} and m,n ≫ d.

If a sample {X l, yl}l=1,...,L of image patches X
l and

corresponding class labels yl is given, W can be found by

minimizing the least squares error

E =

L
∑

l=1

(

yl − X
l ·

R
∑

r=1

~ur ⊗ ~vr ⊗ ~wr
)2

=
L

∑

l=1

(

yl −
R

∑

r=1

∑

ijk

X l
ijkur

i v
r
j wr

k

)2
(5)

As there is no closed form solution for (5), an iterative

procedure is required. Typically, a gradient descend with

∂E

∂ur
i

= −2
∑

l

(

yl −
∑

r

∑

ijk

X l
ijkur

i v
r
j wr

k

)(

∑

jk

X l
ijkvr

j wr
k

)

and corresponding ∂E
∂vr

j

and ∂E
∂wr

k

will find a locally optimal

solution. However, if the problem is cast as a sequence of
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convex optimizations, there is a more efficient way of find-

ing a suitable projection tensor. Consider the following al-

ternating least squares procedure:

1. initialize ~u(0) ∈ R
m and ~v(0) ∈ R

n, ‖~u‖ = ‖~v‖ = 1

2. given ~u(t) and ~v(t), solve the least squares problem

~w(t) = argmin
~w

∑

l

(

yl − ~w ·
∑

ij

X l
ijkuivj

)2

= argmin
~w

∑

l

(

yl − ~w · ~xl
k

)2

for conventional least squares problems like this, there

is a closed form solution: ~w(t) =
(

X
T
X

)−1
X

T~y
where X = [~x1

k, . . . , ~xL
k ]T and ~y = [y1, . . . , yL]T

3. correspondingly, given ~u(t) and ~w(t), solve for ~v(t);
normalize ~v(t) to unit length

4. correspondingly, given ~v(t) and ~w(t), solve for ~u(t);
normalize ~u(t) to unit length

5. while ‖~u(t) − ~u(t − 1)‖ > τ , continue with 2.

Compared to gradient-based approaches, this algorithm

trains faster, for it requires less tensor-tensor and tensor-

vector multiplications and optimizes in much lower dimen-

sional spaces. It works, because, in each iteration, it reduces

the overall error E. Moreover, the sequence {~u(t)}t∈N lies

on the unit ball in R
m which is a compact convex set. The

sequence must therefore have a convergent subsequence

and the algorithm is guaranteed to find a local minimum. If

the tensor W is constrained to be orthogonally decompos-

able [11], extending the procedure to an R-term solution is

straightforward. After finding a set of vectors ~ur, ~vr and

~wr, the vectors for the next term ~ur+1, ~vr+1 and ~wr+1 are

required to be orthogonal to the ones found so far.

3. Experimental Results

This section explores multilinear classifiers and curva-

ture features in I
3 for fast face learning and rapid face de-

tection under varying ambient illumination. Our investiga-

tion comprises multilinear representations of different or-

ders, different features as well as an analysis of the influ-

ence of the number of rank-1 tensors for classifier design.

All experiments were conducted on a 1.8GHz Pentium

Mobile Notebook running LINUX. The evaluation set con-

sists of 310 gray level images (scaled to 320 × 240 pixels)

of the Yale face database [3]. This subset corresponds to the

subsets 1, 2 and 3 proposed by Georghiades et. al. [3]. It

covers 10 individuals under 31 different illuminations. For

training, 4 images were randomly selected for each illumi-

nation condition. Afterwards, 5 positive and 20 negative ex-

ample patches of size 100× 100 pixels were extracted from

method ttrain ttest EER

Gray (R = 2) 5s 13s 55%

Gray (R = 4) 13s 12s 83%

Gray (R = 6) 18s 12s 87%

Gradient (R = 2) 10s 16s 80%

Gradient (R = 4) 18s 16s 80%

Gradient (R = 8) 31s 16s 88%

I
3 Features (R = 2) 18s 24s 88%

I
3 Features (R = 4) 37s 23s 90%

Table 1. Quantitative results.

Figure 4. Precision/recall curves of the best
classifiers for each of the different features.

each of the 124 training images. Each multilinear discrimi-

nant classifier was thus trained with ω+ = 620 positive and

ω− = 2480 negative image patches.

In order to better asses the use of Koenderink’s features,

we also experimented with simple gray value and common

gradient magnitude images (in both cases, for classifica-

tion, face images were treated as second order tensors in

R
100×100). In the I

3 based experiments, Gaussian- and

Mean curvature maps K and H were combined into third

order tensors in R
100×100×2. Figure 3 shows examples of

all three representations. For computing gradient and curva-

ture maps, we applied a fast and precise operator introduced

by Deriche [2].

Table 1 shows how multilinear classification performs

for the different feature types. It lists training- and runtimes

as well as equal error rates (EERs) for projection tensors of

different numbers R of terms. The EERs result from preci-

sion/recall curves (see Fig. 4) which were obtained by vary-

ing the classification threshold θ. It is noticeable that, for

the different features, the best performances (highlighted

in grey) were obtained for different Rs. In terms of EER

peak performance, the third order classifier applied to com-

bined Mean- and Gaussian-curvature achieves best results.
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Figure 5. Exemplary detection results for the
third order tensor classifier using I

3 features.

Adding more rank-1 tensors to the corresponding W did

not lead to further improvements.

Concerning the average execution speed, Tab. 1 under-

lines the quick learning and fast runtime capabilities of sep-

arable multilinear classifiers. Here, the alternating least

squares approach discussed in section 2 displays its po-

tential: even the computationally most demanding classi-

fier requires less than a minute for training. The increasing

runtimes in the third column of the table reflect the addi-

tional effort due to computing partial derivatives. Neverthe-

less, even the classifier based on H and K curvature maps

reaches a processing speed of 8Hz. Figure 5 exemplifies

detection results this classifiers yields for different, rather

extreme configurations of light sources.

For baseline comparison, we also considered the state

of the art algorithm by Viola and Jones [8]. Trained on

the same training set and applied to the same test set, this

boosted predictor achieved an EER of 92%. However, train-

ing took 93 minutes – two orders of magnitude longer than

for the third order multilinear classifier. Therefore, while

EER performance and runtimes are comparable, in terms

of training effort multilinear classifiers applied to curvature

tensors outperform boosted weak classifiers. With regard to

illumination insensitive face detection, I
3 features and mul-

tilinear classification thus open up interesting perspectives

for scenarios where adaptivity is an asset.

4. Conclusion

Recent research has demonstrated that tensor-based clas-

sifiers robustly capture essential image structures. More-

over, as they are separable, rank-1 decomposable tensor

classifiers can be trained rapidly and allow for fast process-

ing of image data. In this paper we explored their use for

face detection under diverse lighting conditions. To this

end, we considered illumination insensitive curvature fea-

ture maps resulting from Koenderink’s approach to image

modeling [4]. Similar to the results reported in [1], we

found that curvature features computed in image space I
3

enable robust face detection across a wide range of differ-

ent ambient lighting. However, in contrast to that contri-

bution, the tensor-based classifiers explored in this paper

trained within seconds and provided runtimes of several Hz.

In conclusion, applying multilinear classifiers to I
3 fea-

tures yield fast and robust performance where face detection

has to cope with changing and inhomogeneous illumination.

It thus provides an auspicious approach for a wide range

of practical applications. Encouraged by the fast training

times, we currently explore applying our approach to sce-

narios where online learning may overcome problems due

to uncontrollable and constantly changing scene illumina-

tion. In particular, we are interested in advanced interaction

with mobile devices such as cell phones.
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