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Abstract

The effect of a thermal reservoir is investigated on a bipartite
Gaussian state. We derive a pre-Lindblad master equation in the
non-rotating wave approximation for the system. We then solve the
master equation for a bipartite harmonic oscillator Hamiltonian with
entangled initial state. We show that for strong damping the loss of
entanglement is the same as for freely evolving particles. However,
if the damping is small, the entanglement is shown to oscillate and
eventually tend to a constant nonzero value.
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Motivation

Entanglement is one of quantum mechanics’ most fascinating features. It
was first described in a celebrated paper by Einstein, Podolsky and Rosen
[Einstein et al.(1935)Einstein, Podolsky, and Rosen] but owes its name to
Schrödinger [Schrödinger(1935)], who investigated its broader significance for
the measurement question. It has taken on enhanced significance in quan-
tum information. In this regard, the fragility of entanglement when the
system is subjected to “outside” influence is of even greater importance. In
the current work, we study a bipartite system with a Gaussian wave func-
tion. The state is prepared such that it is entangled, then shared between
two parties who let their respective particle evolve either freely or interact-
ing via a harmonic potential, but interacting with its own environment or
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heat bath. We study the resulting loss of entanglement between the parti-
cles. To do so, we use the pre-Lindblad non-rotating-wave master equation,
[Munro and Gardiner(1996), Gardiner and Zoller(2000)], for which we out-
line a simple perturbative derivation starting with the Quantum Langevin
Equation as derived in [Ford et al.(1988)Ford, Lewis, and O’Connell] and us-
ing a simple perturbation method as in [Ghesquière(2009)].

The loss of entanglement in a system interacting with an environment is
a well-known phenomenon. It has been studied in various systems, see e.g.
[Yu and Eberly(2003), Yu and Eberly(2004), Yu and Eberly(2006), Pratt and Eberly(2001),
Diósi(2003), Roszak and Machnikowski(2006)], where it was found that there
is often a sharp loss of entanglement when compared to a decoherence time
scale, which has been termed entanglement sudden-death (E.S.D.). These
studies are mainly in the context of qubits and the Rotating Wave Approx-
imation (R.W.A.). The R.W.A. is obtained by discarding the fast oscil-
lating terms in the equations of motion. This appproximation works well
for weak coupling and systems with well-spaced energy levels. However, we
wish to consider a more general setting and as such this work presents a
study of E.S.D. in a continuous-variables setting using the Non-Rotating-
Wave (N.R.W) approximation. Note that the master equation obtained
in the N.R.W approximation is not of the Lindblad form [Lindblad(1976)],
hence does not in general satisfy the complete positivity condition. Yet,
because the physical limits of the validity of this property are not well-
understood [Vacchini(2000)], complete positivity alone does not ensure phys-
icality of the result and one can easily check for the validity of the density
matrix by checking its positive semi-definiteness. At the same time, the
N.R.W master equation often works better for systems which are strongly
coupled to the environment [Munro and Gardiner(1996)]. Moreover, the un-
physical behaviour occurs for low temperatures only. Caldeira and Leggett
[Caldeira and Leggett(1983)] have derived a pre-Lindblad equation using a
path-integrals method which is presumably not perturbative. We present a
simple perturbative derivation of the N.R.W. master equation in ??. Diósi
[Diòsi(1993a), Diòsi(1993b)] has generalised the Caldeira-Leggett derivation
to obtain a more complicated equation which is valid for a range of low
temperatures.

The choice of a continuous variables setting allows for a more realis-
tic study of the evolution of the state of the chosen system. Gaussian
states form a class of continuous variable states which is becoming more
and more essential to the field of quantum optics. Indeed, their ease of ex-
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perimental manipulation makes them very attractive for quantum informa-
tion processing [Ferraro et al.(2005)Ferraro, Olivares, and Paris]. Gaussian
states have also been widely studied analytically in the context of a system
coupled to a heat bath, see e.g. [Xiang et al.(2008)Xiang, Shao, and Song,
Serafini et al.(2004)Serafini, Illuminati, Paris, and Siena, Prauzner-BechcickiJ(2004),
Serafini et al.(2005)Serafini, Paris, Illuminati, and Siena, Vasile et al.(2009)Vasile, Olivares, Paris, and Maniscalco]
to cite but a few. In [Vasile et al.(2009)Vasile, Olivares, Paris, and Maniscalco]
in particular, Vasile et al. study two non interacting quantum harmonic os-
cillators, coupled to two independent structured reservoir, examining various
spectral densities for the bath. In [Ficek and Tanás(2006)], Ficek and Tanás
study a system of two qubits coupled to a radiation field where they allow
spontaneous decay of the atoms. They show that the entanglement vanishes
but then is revived twice. In [Ficek and Tanás(2008)], the authors study
the emergence of entanglement between two initially non-entangled qubits
due to spontaneous emission, provided both atoms are initially excited and
in the asymmetric state. Their results suggest that an interaction between
two particles which are initially entangled can delay the vanishing of the en-
tanglement and even revive it, or create entanglement between two initially
non-entangled particles. We introduce a harmonic potential with frequency
ω0 as the interaction between the particles in our system and examine the
dynamics of the entanglement. We show that entanglement revival can occur
depending on the strength of the damping, i.e. how strong the coupling γ
is with respect to the oscillator’s frequency. We show that if the damping
is small (γ < 2

√
2ω0), the entanglement eventually tends towards a limiting

value and does not vanish asymptotically.
In Section 1 we recall the Langevin equation and present the main steps

in the derivation of the master equation. We then recall, in Section 2, the
formalism used to describe Gaussian states and the particular measure for
entanglement we use. Section 3 considers free evolution, illustrating E.S.D.
while Section 4 considers a harmonic interaction. Section 5 contains some
concluding remarks.

1 Framework

In the following we outline very briefly a perturbative derivation of the NRW
Master Equation used here. Further details are in ??. The derivation is given
for one particle but generalises easily to the case of two particles, each coupled
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to its own environment. We consider a heat bath modelled by independent os-
cillators coupled harmonically to the particle [Ford et al.(1988)Ford, Lewis, and O’Connell].
The corresponding Hamiltonian has the form

H =
p2

2m
+ V (x) +

1

2

∑
j

{
p2j
mj

+mjω
2
j (qj − x)2

}
(1)

Solving the Heisenberg equations of motion for qj yields the Quantum Langevin
Equation (see [Ford et al.(1988)Ford, Lewis, and O’Connell])

mẍ+

∫ t

−∞
µ(t− t′)ẋ(t′) dt′ + V ′(x) = ξ(t) (2)

where the dot denotes the derivative with respect to time and the prime
that with respect to x. µ(t) and ξ(t) describe the influence of the bath on
the system and are known as the memory function and the operator-valued
random force respectively and are expressed explicitly in ??. In the case of
a Ohmic heat bath, µ(t) effectively reduces to a constant γ. The Quantum
Langevin Equation for a general observable Y of the small system (particle)
then reads

Ẏ =
i

~
[Hs, Y ]− i

2~
[[x, Y ] , ξ(t)]+ +

iγ

2~
[[x, Y ] , ẋ(t)]+ . (3)

This equation is an equation for the system operators (Heisenberg repre-
sentation), whereas a Master Equation is an (approximate) equation acting
on the density operator of the quantum system under study (Schrödinger
picture). The adjoint equation provides a link between the two formalisms:

Tr {Y (t)ρ} = Tr {Y ρ(t)} , (4)

where Tr denotes the trace. Inserting (40), we obtain

ρ̇(t) = − i

~
[Hs, ρ(t)]−

i

2~
[
[ξ(t), ρ(t)]+ , x

]
+
iγ

2~
[
[ẋ, ρ(t)]+ , x

]
(5)

In order to derive the Master Equation from this adjoint equation, we assume
that the bath is large and hence stays at thermal equilibrium, and that for
t → −∞, the system and the bath are decoupled so that ρ(t) ∼ ρs(t)ρB.
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This assumption is critical to the derivation of any Master Equation. Finally,
assuming that the noise is small we write ξ(t) → ϵξ(t), where ϵ is a small
parameter. (This assumption is in fact not essential to the result but allows
for a simpler derivation.) Applying a perturbation method and tracing over
the bath yields the Non-Rotating-Wave Master Equation for ρs(t) (See ??)

ρ̇s(t) = − i

~
[Hs, ρ(t)] +

iγ

2~
[
[ẋ, ρs(t)]+ , x

]
−kTγ

~2
[[ρs(t), x] , x] .

(In position space this equation agrees with (5.10) in [Caldeira and Leggett(1983)].)
This equation generalises in an obvious way to the case of two particles, each
in its own heat bath:

ρ̇(t) = − i

~
[Hs, ρ(t)]

+
iγ1
2~

[
[ẋ1, ρ(t)]+ , x1

]
+

iγ2
2~

[
[ẋ2, ρ(t)]+ , x2

]
−kT1γ1

~2
[[ρ(t), x1] , x1]−

kT2γ2
~2

[[ρ(t), x2] , x2] .

(6)

(Here we have omitted the subscript s. γ1 and γ2 are the coupling parameters
for the individual heat baths and T1 and T2 are the temperatures of the
baths.)

2 Gaussian states and the logarithmic nega-

tivity

Since the states we will study are Gaussian, we now briefly recall the formal-
ism for Gaussian states [Anders(2003), Eisert and Plenio(2003), Plenio et al.(2004)Plenio, Hartley, and Eisert].

Gaussian states can be completely specified in terms of their first and
second moments, described respectively by the displacement vector

dj = ⟨Rj⟩ρ = Tr[Rjρ]

and the covariance matrix

Γj,k = 2ReTr [ρ(Rj − ⟨Rj⟩ρ)(Rk − ⟨Rk⟩ρ)]
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where R is the vector RT = (q1, p1; ....; qn, pn) ; qj and pj are the canonical
variables of a system of n oscillators with the usual canonical relations written
as [Rj, Rk] = i~σjk and σ a real skew-symmetric 2n× 2n block matrix given
by

σ =
n⊕

k=1

(
0 1
−1 0

)
The displacement vector is irrelevant in the study of entanglement and is

taken to be zero in our examples. The covariance matrix thus reduces to

Γj,k = 2ReTr [ρRjRk] (7)

Any real symmetric positive-definite matrix A can be brought to its
Williamson normal form [Williamson(1936)] via symplectic transformations,
i.e. transformations that preserve the canonical commutation relations, AWF =
SAST = diag(a1, a1, ....an, an) where the ai’s are the symplectic eigenvalues
of A. One can calculate them as the positive eigenvalues of iσA or more
simply as the positive square root of the eigenvalues of −σAσA.

A particularly suitable measure of the entanglement of mixed Gaussian
states is the logarithmic negativity [Vidal and Werner(2002), Anders(2003),
Eisert and Plenio(2003), Plenio et al.(2004)Plenio, Hartley, and Eisert]. It
vanishes for separable states, does not increase under LOCC (local opera-
tions and classical communication), and stays invariant under local unitary
transformations. It is defined as

EN (ρ) = −
2n∑
i=1

log2 (min (1 , | λi |)), (8)

where the λi are the symplectic eigenvalues of the partially transposed co-
variance γ(T1), which is obtained from γ = Γ/~ by reversing the time in all
variables of one of the subsystems. Choosing to transpose with respect to
particle 1, we replace x1 → x1 and p1 → −p1. The λi’s are thus the square
roots of the eigenvalues of −σγT1σγT1 .

3 Free evolution of an entangled initial state

Let us consider a bipartite initial state with the Gaussian wavefunction, as
suggested by Ford and O’Connell [Ford and O’Connell(2008), Ford et al.(2010)Ford, Gao, and O’Connell],

Ψ(x1, x2) = Ω1/2e−
(x1−x2)

2

4s2 e−
(x1+x2)

2

16d2 (9)
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where s is the mean distance between the particles and d is the width of the
center-of-mass system and Ω = 1

2πsd
is a normalisation factor.

We first consider the case of a free-particle Hamitonian

H =
p21
2m

+
p22
2m

(10)

with p|x⟩ = −i~ ∂
∂x
|x⟩. This will allow us to examine the dynamics of the

entanglement when an entangled bipartite Gaussian state is left to evolve,
each particle coupled to its own heat bath. We highlight here the main steps
in solving (6). The full solution may be found in B. In position-space, (6)
becomes

∂

∂t
⟨x| ρ |y⟩ =

i~
2m

(
∂2

∂x2
1

− ∂2

∂y21
+

∂2

∂x2
2

− ∂2

∂y22

)
ρ

− γ1
2m

(x1 − y1)

(
∂

∂x1

− ∂

∂y1

)
ρ

− γ2
2m

(x2 − y2)

(
∂

∂x2

− ∂

∂y2

)
ρ (11)

−γ1kT1

~2
(x1 − y1)

2ρ− γ2kT2

~2
(x2 − y2)

2ρ

After performing the change of variables

x = u+ ~z and y = u− ~z, (12)

and replacing ρ(x,y, 0) → P (u, z, 0), we apply a Fourier transformation with
respect to u:

P̃ (q, z, t) =

∫
P (u, z, t)e−iq1u1−iq2u2du1 du2 (13)

to obtain

∂

∂t
P̃ (q, z, t) = −

[(γ1
m
z1 +

q1
2m

) ∂

∂z1
+ 4γ1kT1z

2
1

]
P̃ (q, z, t)

−
[(γ2

m
z2 +

q2
2m

) ∂

∂z2
+ 4γ2kT2z

2
2

]
P̃ (q, z, t). (14)
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This first order equation can be solved with the method of characteristics.
The solution is

P̃ (q, z, t) = P̃ (q, z0(t), 0) exp
[
−τ1 q

2
1 t− τ2 q

2
2 t
]

× exp

[
−λ1(t)

(
z1 +

q1
2γ1

)2

− λ2(t)

(
z2 +

q2
2γ2

)2

+α1(t)

(
z1 +

q1
2γ1

)
+ α2(t)

(
z1 +

q2
2γ2

)]
(15)

where

τi =
kTi

γi
, λi(t) = 2mkTi(1− e−2γit/m) , αi(t) =

4mkTi

γi
(1− e−γit/m)

z0,i(t) = zi e
−γit/m − qi

2γi

(
1− e−γit/m

)
(16)

We compute the time-evolved state by inserting the Fourier transform of
the density operator corresponding to (12) (projection onto Ψ) ρ0 = |Ψ⟩⟨Ψ|
into (18):

P̃ (q, z0; 0)

= exp
[
−ϵ+~2z021 − ϵ+~2z022 + 2ϵ−~2z01z02

]
× exp

[
−ϵ+(q1

2 + q22)

4(ϵ2+ − ϵ2−)
− ϵ−q1q2

2(ϵ2+ − ϵ2−)

]
(17)

This eventually yields

P̃ (q, z, t) = e−A1q12−A2q22−B1z12−B2z22−Dz1z2−Eq1q2

× e−C11z1q1−C22z2q2−C12z1q2−C21z2q1 , (18)
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where the coefficients are given by

Aj =
d2

2
+

s2

8
+ τjt−

αj

2γj
+

λj

4γj2
+

~2ϵ+
2γj2

(1− e−
γjt

m )2

Bj = ~2ϵ+ e−
2γjt

m + λj

Cjj =
λj

γj
− αj −

~2ϵ+
γj

e−
γjt

m (1− e−
γjt

m )

D = −2~2ϵ− e−γ1t/m e−γ2t/m

E = d2 − s2

4
− ~2ϵ−

2γ1γ2
(1− e−γ1t/m)(1− e−γ2t/m)

Cjk =
~2ϵ−
γj

e−
γjt

m (1− e−
γkt

m ) (19)

with

ϵ± =
1

2s2
± 1

8d2
. (20)

The entries of the covariance matrix can be calculated directly from (21)
taking into account the change of variables (15):

2Re⟨XiXj⟩ = −2

(
∂

∂qi

∂

∂qj
P̃ (q, z = 0, t)

)
|q=0

2Re⟨XiPj⟩ =
∂

∂qi

∂

∂zj
P̃ (q, z, t)|q=0,z=0

2Re⟨PiXj⟩ =
∂

∂zi

∂

∂qj
P̃ (q, z, t)|q=0,z=0

2Re⟨PiPj⟩ = −1

2

(
∂

∂zj

∂

∂zj
P̃ (q = 0, z, t)

)
|z=0

The covariance matrix is then

Γt =


4A1 −C11 E −C21

−C11 B1 −C12 D
E −C12 4A2 −C22

−C21 D −C22 B2

 (21)

To determine the entanglement (logarithmic negativity) we now perform
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a partial transposition with respect to particle 1:

ΓT1
t =


4A1 C11 E −C21

C11 B1 C12 −D
E C12 4A2 −C22

−C21 −D −C22 B2

 (22)

This matrix is real and symmetric. The squares of its symplectic eigen-
values are given by

λ2
± =

ε11 + ε33
2

± 1

2

√
(ε11 − ε33)2 + 4ε13ε24 − 4ε14ε23 (23)

where ε12 = ε21 = ε34 = ε43 = 0 and

ε11 = ε22 = 4A1B1 −DE + C12C21 − C2
11

ε33 = ε44 = 4A2B2 − C2
22 −DE + C12C21

ε13 = ε42 = EB1 − 4A2D − C11C12 + C12C22

ε14 = −ε32 = −C12B2 − C21B1 + C11D + C22D

ε23 = −ε41 = −EC11 + 4A1C12 + 4A2C21 − EC22

ε24 = ε31 = EB2 − C22C21 + C11C21 − 4A1D

(24)

The logarithmic negativity is thus

EN (ρ) = −2 (log2 (min(1, |λ+|/~)) + log2 (min(1, |λ−|/~))) . (25)

Figure 1 shows the logarithmic negativity as a function of time for three
values of s. We have chosen γ1 = γ2 = γ and T1 = T2 = T for simplicity
and set the units by taking ~ = 1 and m = 1. We can observe that there
is complete disentanglement between the particles from a sharp cut-off time
onwards, which obviously depends on s, and hence on the initial degree of
entanglement. The sharp cut-off time characterizes entanglement sudden
death (ESD). Note that this follows from the linear behaviour in time of
the eigenvalues which results from the terms τjt in the expressions for Aj.
This linear increase means that the eigenvalues increase beyond 1 for large t.
Figure 2 shows the logarithmic negativity as a function of s for three different
times. One can see that at t = 0, the entanglement is present everywhere
except where s = 2d and that the range of s around 2d for which there is no
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Figure 1: Logarithmic negativity as a function of time for three values of s
and d = 2, γ = 1, T = 1, m = 1. The values of s are : dashed s = 0.75,
dotted s = 1, dash-dotted s = 2.

entanglement increases as as t increases. (For the initial state, the eigenvalues
λ± are obviously easy to compute:

|λ+|2 =
1

2

∣∣∣∣ 9s216d2
− d2

s2

∣∣∣∣ and

|λ−|2 =
1

2

∣∣∣∣2 + 3d2

s2
− 3s2

16d2

∣∣∣∣ .
In particular, for s = 2d, λ± = 1 and the log-negativity vanishes.)

4 Evolution with a harmonic potential inter-

action

We recall the initial state

Ψ(x1, x2) = Ω1/2e−
(x1−x2)

2

4s2 e−
(x1+x2)

2

16d2 . (26)
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Figure 2: Logarithmic negativity vs s for three values of t, d = 2, γ = 1,
T = 1, m = 1. The values of t are : dashed t = 0.01, dotted t = 0.005, full
t = 0.

If we introduce a harmonic potential interaction into the Hamiltonian, (13)
generalises to

Hs =
p21
2m

+
p22
2m

+
mω2

0

2
(x1 − x2)

2 (27)

We can include this into (6) and solve the resulting differential equation
following the method described in B. Again we choose γ1 = γ2 = γ, T1 =
T2 = T for simplicity. The solution is of the same form

P̃ = exp
[
−Aq21 − Aq22 − Eq1q2 −Bz21 −Bz22 −Dz1z2

−C1z1q1 − C1z2q2 − C2z1q2 − C2z2q1
]
,

(28)

but the coefficients A, B, C1, C2, D and E are considerably more compli-
cated: see Appendix B.

Figure 3 illustrates that, in the presence of a harmonic interaction between
the particles, there is a marked difference in behaviour between two damping
regimes. In the over-damped case (γ > 2

√
2ω0), the difference between the
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Figure 3: E as we vary ω0

The plots are obtained with T = 1, s = 1, d = 2, γ = 1.3 and : full
ω0 = 1.8, dashed ω0 = 1.3, dash-dotted ω0 = 1 and dotted ω0 = 0.5

graphs is so small as to be almost invisible. This shows that if the coupling
is much stronger than the harmonic potential, the decay of the entanglement
is unaffected by the potential. On the other hand, if the damping is small
(γ < 2

√
2ω0), the entanglement can reappear several times. Furthermore,

it can be easily seen that as the harmonic potential becomes stronger, the
entanglement does not disappear. Instead it decreases sharply before being
”restored”. It then tends towards a non-zero constant value for large times.
This suggests that allowing the particles to interact harmonically effectively
can save the entanglement. Figure 4 allows us to determine at which point
the system becomes under-damped enough that the entanglement survives.
We can see that as the coupling with the environment becomes smaller, the
entanglement is restored.

One may want to note that our choice of temperatures T1 = T2 = T ,
means that we are studying a system at equilibrium. The oscillations in
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Figure 4: E as we vary γ

The plots are obtained with T = 1, s = 1, d = 2, ω0 = 1.4 and : full
γ = 0.5, dash-dotted γ = 1.2 and dashed γ = 2.5

the evolution of the entanglement are therefore, a direct consequence of the
interaction between the two particles. Figure 5 illustrate that for a given
d, the width of the center-of-mass system, the entanglement evolves towards
the same value, regardless of s, the distance between the particles. Also, one
can easily see that the amplitude of the oscillations increases as s increases.
This is a consequence of the harmonic term in the Hamiltonian. However,
this increase in amplitude also result in the entanglement vanishing for some
time before being restored. This suggests that to maintain entanglement at
all times, the distance between the particles must be small.

5 Concluding observations

The evolution of the entanglement within a bipartite system, coupled to two
heat baths ate equilibrium, was studied. We found that when the system

14



0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4
Logarithmic negativity in the under−damped case

t

Lo
ga

rit
hm

ic
 N

eg
at

iv
ity

Figure 5: E as we vary s
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is left to evolve freely, the coupling with the reservoirs destroys the entan-
glement in a Entanglement-Sudden-Death fashion. To counteract this effect,
we introduced a harmonic potential between the particles. Two very distinct
behaviours were observed. In the over-damped case, the entanglement van-
ishes following an ESD curve. However, in the under-damped situation, the
entanglement is revived and tends towards a constant valu..
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A The Master equation

In this section, we will describe the derivation of the master equation in more
details. A simple derivation of the Quantum Langevin Equation, starting
from a heat bath modelled by independent oscillators coupled harmonically to
a system of one particle, was given in [Ford et al.(1988)Ford, Lewis, and O’Connell].
The Hamiltonian has the form

H =
p2

2m
+ V (x) +

1

2

∑
j

{
p2j
mj

+mjω
2
j (qj − x)2

}
(29)

Solving the Heisenberg equations of motion yields

qj(t) = qhj (t) + x(t)−
∫ t

−∞
cos [ωj(t− t′)] ẋ(t′) dt′

qhj (t) = qj cos(ωjt) +
pj

ωjmj

sin(ωjt). (30)

Introducing the quantities

µ(t) =
∑
j

mjω
2
j cos(ωjt)Θ(t)

ξ(t) =
∑
j

mjω
2
j q

h
j (t) (31)
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(Θ(t) is the Heaviside function) we obtain the Quantum Langevin Equation

mẍk +

∫ t

−∞
µk(t− t′)ẋk(t

′) dt′ + V ′(xk) = ξk(t) (32)

where the dot denotes the derivative with respect to time and the prime
that with respect to x. µ(t) and ξ(t) describe the influence of the bath on
the system and are known as the memory function and the operator-valued
random force respectively. We also introduce the spectral distribution

G(ω) = Re
[
µ̃(ω + i0+)

]
=

π

2

∑
j

mjω
2
j [δ(ω − ωj) + δ(ω + ωj)] , (33)

in terms of which the autocorrelation of ξ(t) is given by

1

2
⟨[ξ(t), ξ(t′)]+⟩ =

1

π

∫ ∞

0

G(ω)~ω coth

(
~ω
2kT

)
cos [ω(t− t′)] dω (34)

where [ , ]+ denotes the anticommutator. For a general observable Y of the
small system (particle), one can write

Ẏ =
i

~
[H,Y ]

=
i

~
[Hs, Y ]− i

2~
[[x, Y ] , ξ(t)]+

+
i

2~

[
[x, Y ] ,

∫ t

−∞
dt′ µ(t− t′)ẋ(t′)

]
+

(35)

In the case of an Ohmic heat bath, we can replace∫ t

−∞
µ(t′)ẋ(t′) dt′ → γẋ(t) and G(ω) → γ (36)

so that the Quantum Langevin Equation reads

Ẏ =
i

~
[Hs, Y ]− i

2~
[[x, Y ] , ξ(t)]+ +

iγ

2~
[[x, Y ] , ẋ(t)]+ . (37)
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If we define
Trs {Y (t)ρ} = Trs {Y ρ(t)} (38)

where Trs is the trace over the system. Let us introduce ρ(t) = ρs(t) ⊗ ρB
where ρs is the density matrix of the system and ρB that of the bath. It
follows easily from (40) that ρ(t) satisfies the adjoint equation

ρ̇(t) = − i

~
[Hs, ρ(t)]−

i

2~
[
[ξ(t), ρ(t)]+ , x

]
+
iγ

2~
[
[ẋ, ρ(t)]+ , x

]
(39)

To derive the master equation (that is, an effective equation for ρs(t)) from
the adjoint equation, we assume that the noise is small and temporarily intro-
duce a small parameter ϵ, replacing ξ(t) by ϵξ(t). This allows us to derive the
master equation in a perturbative manner, which has the advantage of being
simpler than that of Caldeira and Leggett [Caldeira and Leggett(1983)]. We
can write ν(t) to second order in ϵ as

ν(t) = ν0(t) + ϵν1(t) + ϵ2ν2(t)

We also assume the baths and the system are decoupled at t = −∞, so that
ρ0(t) = ρ0(t)ρB. Inserting this expansion into (42) yields equations for ρ0, ρ1
and ρ2 which can be solved successively. The equation for ρ0 reads

ρ̇0(t) = − i

~
[Hs, ρ0(t)] +

iγ

2~
[
[ẋ, ρ0(t)]+ , x

]
. (40)

The equation for ρ1 can be written as

ρ̇1(t) = − i

~
[Hs, ρ1(t)] +

iγ

2~
[
[ẋ, ρ1(t)]+ , x

]
− i

2~
[ξ(t), ρB]+[ρ0(t), x].

(41)

The solution for the first-order term can be written as

ρ1(t) = − i

2~

∫ t

−∞
eAs(t−t′)

{
[ρ0(t

′), x]⊗ [ξ(t′), ρB]+

}
dt′
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where As is a super operator which, applied to ρk(t) yields

Asρk(t) = − i

~
[Hs, ρk(t)] +

iγ

2~
[
[ẋ, ρk(t)]+ , x

]
.

(42)

Finally, we insert this solution into the equation for ρ2:

ρ̇2(t) = − i

~
[Hs, ρ2(t)] +

iγ

2~
[
[ẋ, ρ2(t)]+ , x

]
− i

2~
[[ξ(t), ρ1(t)]+, x]

(43)

Taking the trace over the bath variables and using the autocorrelation (37)
in the Ohmic limit which becomes at high temperatures,

1

2
⟨[ξ(t), ξ(t′)]+⟩ → 2kTγδ(t− t′) , (44)

we obtain the Non-Rotating-Wave Master Equation (upon removal of ϵ)

ρ̇s(t) = − i

~
[Hs, ρs(t)] s+

iγ

2~
[
[ẋ, ρs(t)]+ , x

]
− kTγ

~2
[[ρs(t), x] , x] .

(45)

The equation for two particles, where each particle is coupled to its own heat
bath, is an obvious generalisation: see (6).

B Solution of the Master Equation

The derivation of the solution to the master equation will here be given
in a general way. The method will be described for a harmonic potential
Hamiltonian

H =
p21
2m

+
p22
2m

+
mω2

0

2
(x1 − x2)

2 (46)

with p|x⟩ = −i~ ∂
∂x
|x⟩, but is easily generalised to other types of Hamil-

tonians. Note that we assume that the particles have the same mass. In
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position-space, (6) becomes

∂

∂t
⟨x| ρ |y⟩ =

i~
2m

(
∂2

∂x2
1

− ∂2

∂y21
+

∂2

∂x2
2

− ∂2

∂y22

)
ρ

− γ1
2m

(x1 − y1)

(
∂

∂x1

− ∂

∂y1

)
ρ

− γ2
2m

(x2 − y2)

(
∂

∂x2

− ∂

∂y2

)
ρ (47)

− imω2
0

2~
(
(x1 − x2)

2 − (y1 − y2)
2
)
ρ

−γ1kT1

~2
(x1 − y1)

2ρ− γ2kT2

~2
(x2 − y2)

2ρ

Using the change of variables (15) and replacing ρ(x,x’, 0) → P (u, z, 0), we
apply a Fourier transformation with respect to u:

P̃ (q, z, t) =
1

4π2

∫
P (u, z, t)e−iq1u1−iq2u2du1 du2 (48)

obtaining an equation for P̃ (q, z, t):

∂

∂t
P̃ (q, z, t) = −

[(γ1
m
z1 +

q1
2m

) ∂

∂z1
+
(γ2
m
z2 +

q2
2m

) ∂

∂z2

]
P̃ (q, z, t)

+

[
2mω2

0

(
∂

∂q1
− ∂

∂q2

)
(z1 − z2)

]
P̃ (q, z, t)

−
[
4γ1kT1z

2
1 + 4γ2kT2z

2
2

]
P̃ (q, z, t). (49)

This equation can in principle again be solved using the method of charac-
teristics. The characteristic equation is

∂v

∂t
=

M

2m
v (50)

with v = (z1, z2, q1, q2)
T and

M =


2γ1 0 1 0
0 2γ2 0 1

−4m2ω2
0 4m2ω2

0 0 0
4m2ω2

0 −4m2ω2
0 0 0

 (51)
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On a characteristic,

d

dt
P̃ (q, z(t), t) = −[4γ1kT1z

2
1(t) + 4γ2kT2z

2
2(t)] P̃ (q, z(t), t)

The eigenvalues and eigenvectors of M can be computed to be (we take
γ1 = γ2 = γ and T1 = T2 = T for simplicity)

λT = (0, 2γ, γ +
√
γ2 − 8m2ω2

0, γ −
√

γ2 − 8m2ω2
0)

= (λ1, λ2, λ+, λ−) (52)

and

Q =


− 1

2γ
1 1

λ−
1
λ+

− 1
2γ

1 − 1
λ−

− 1
λ+

1 0 −1 −1
1 0 1 1

 (53)

Since Q−1MQ = D where D is the diagonal matrix, we need Q−1 as

Q−1 =
0 0 1

2
1
2

1
2

1
2

1
4γ

1
4γ

λ+λ−
2(λ+−λ−)

− λ+λ−
2(λ+−λ−)

λ−
2(λ+−λ−)

− λ−
2(λ+−λ−)

− λ+λ−
2(λ+−λ−)

λ+λ−
2(λ+−λ−)

− λ+

2(λ+−λ−)
λ+

2(λ+−λ−)


(54)

Then we can write 2m∂w
∂t

= Dw with w = Q−1v which is easily solved so
that v(t) = QeDt/2mQ−1v0 with

eDt/2m =


1 0 0
0 eγt/m 0 0
0 0 eλ+t/2m 0
0 0 0 eλ−t/2m

 (55)

Some more algebra yields the solution

P̃ (q, z, t) = exp
[
− Aq21 − Aq22 − Eq1q2 −Bz21 −Bz22 −Dz1z2

− C1z1q1 − C1z2q2 − C2z1q2 − C2z2q1
]

(56)
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which is of the same form as (21), with A1 = A2 = A, B1 = B2 = B,
C11 = C22 = C1 and C12 = C21 = C2 except that the explicit expressions for
A, B, etc. are more complicated. The coefficients have explicit expressions

A =(δ1
2 + δ2

2)(ϵ+~2 + 4γkTχ1)− (δ1
2 − δ2

2)(2ϵ−~2 − 4γkTθ1)

+ (
1

4
+ ν2)(ϵ̃+ + 4γkTχ2) + (

1

4
− ν2)(2ϵ̃− + 4γkTθ2)

+ 4γkT ((δ1 + 2δ2ν)Λ1 + (δ1 − 2δ2ν)Λ2) (57)

B =(α1
2 + α2

2)(ϵ+~2 + 4γkTχ1)− (α1
2 − α2

2)(2ϵ−~2 − 4γkTθ1)

+ 2β2(ϵ̃+ + 4γkTχ2)− β2(2ϵ̃− + 4γkTθ2)

+ 8γkTβα2 (Λ2 − Λ1) (58)

D =4(α1
2 − α2

2)(ϵ+~2 + 4γkTχ1)− (α1
2 + α2

2)(2ϵ−~2 − 4γkTθ1)

− 4β2(ϵ̃+ + 4γkTχ2) + 2β2(2ϵ̃− + 4γkTθ2)

+ 16γkTβα2 (Λ1 − Λ2) (59)

E =4(δ1
2 − δ2

2)(ϵ+~2 + 4γkTχ1)− (δ1
2 + δ2

2)(2ϵ−~2 − 4γkTθ1)

+ 4(
1

4
− ν2)(ϵ̃+ + 4γkTχ2) + (

1

4
+ ν2)(2ϵ̃− + 4γkTθ2)

+ 8γkT ((δ1 − 2δ2ν)Λ1 + (δ1 + 2δ2ν)Λ2) (60)

C1 =4(α1δ1 + α2δ2)(ϵ+~2 + 4γkTχ1)− 2(α1δ1 − α2δ2)(2ϵ−~2 − 4γkTθ1)

+ 4βν)(ϵ̃+ + 4γkTχ2)− 2βν(2ϵ̃− + 4γkTθ2)

+ 4γkT (α1 + 2α2ν − 2βδ2)Λ1 + 4γkT (α1 − 2α2ν + 2βδ2)Λ2 (61)

C2 =4(α1δ1 − α2δ2)(ϵ+~2 + 4γkTχ1)− 2(α1δ1 + α2δ2)(2ϵ−~2 − 4γkTθ1)

− 4βν(ϵ̃+ + 4γkTχ2) + 2βν(2ϵ̃− + 4γkTθ2)

+ 4γkT (α1 − 2α2ν + 2βδ2)Λ1 + 4γkT (α1 + 2α2ν − 2βδ2)Λ2 (62)
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with ϵ̃± = ϵ±
4(ϵ2+−ϵ2−)

χ1 =
m

4γ
(e2γt/m − 1) +

mλ+

2(λ+ − λ−)2
(eλ+t/m − 1) +

mλ−

2(λ+ − λ−)2
(eλ−t/m − 1)

− 8m3ω2
0

γ(λ+ − λ−)2
(eγt/m − 1)

θ1 =
m

2γ
(e2γt/m − 1)− mλ+

(λ+ − λ−)2
(eλ+t/m − 1)− mλ−

(λ+ − λ−)2
(eλ−t/m − 1)

+
16m3ω2

0

γ(λ+ − λ−)2
(eγt/m − 1)

χ2 =
t

8γ2
+

m

16γ3
(e2γt/m − 1)− m

4γ3
(eγt/m − 1) +

m(eλ+t/m − 1)

2(λ+ − λ−)2λ+

+
m(eλ−t/m − 1)

2(λ+ − λ−)2λ−
− m(eγt/m − 1)

γ(λ+ − λ−)2

θ2 =
t

4γ2
+

m

8γ3
(e2γt/m − 1)− m

2γ3
(eγt/m − 1)− m(eλ+t/m − 1)

(λ+ − λ−)2λ+

− m(eλ−t/m − 1)

(λ+ − λ−)2λ−
+

2m(eγt/m − 1)

γ(λ+ − λ−)2

Λ1 =
m

4γ2
(e2γt/m − 1)− m

2γ2
(eγt/m − 1) +

m(eλ+t/m − 1)

(λ+ − λ−)2
+

m(eλ−t/m − 1)

(λ+ − λ−)2

− 2m(eγt/m − 1)

(λ+ − λ−)2

Λ2 =
m

4γ2
(e2γt/m − 1)− m

2γ2
(eγt/m − 1)− m(eλ+t/m − 1)

(λ+ − λ−)2
− m(eλ−t/m − 1)

(λ+ − λ−)2

+
2m(eγt/m − 1)

(λ+ − λ−)2
(63)
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and

α± =
e−γt/m

2
± λ+ e−λ+t/2m − λ− e−λ−t/2m

2(λ+ − λ−)
= α1 ± α2

β =λ+λ−
e−λ+t/2m − e−λ−t/2m

2(λ+ − λ−)

δ± =− 1

4γ
+

e−γt/m

4γ
± e−λ+t/2m − e−λ−t/2m

2(λ+ − λ−)
= δ1 ± δ2

ν± =
1

2
± λ+ e−λ−t/2m − λ− e−λ+t/2m

2(λ+ − λ−)
=

1

2
± ν (64)
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