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Let F be a local field such that the group µr(F) of r-th roots of unity in F
×

has cardinality r ≥ 1. Let G be the F-rational points of a simple Chevalley group

defined over F. In his thesis, Matsumoto [5] gave a beautiful construction for the

metaplectic cover G̃ of G, a central extension of G by µr(F) whose existence is

intimately connected with the deep properties of the r-th order Hilbert symbol

(·, ·)F : F× × F× → µr(F). Metaplectic groups figure prominently in the study of

number theory, representation theory, and physics, arising naturally in the theory of

theta functions, dual pair correspondences, Weil representations, and spin geometry.

In this paper we study the class of central extensions of a simple Chevalley group

over an arbitrary infinite field, of which the metaplectic groups form an important

subclass.

Metaplectic groups were constructed quite explicitly in Weil’s memoir [10] in the

case that G is symplectic. In [3] and [4], Kubota gave the construction of the r-fold

metaplectic cover of GL2(F). Moreover, he described an explicit 2-cocycle σK on

GL2(F) that represents the second cohomology class of the extension (cf. §3 Corol-

lary 8), which makes it possible to deal quite rapidly with many concrete problems

in this setting. Steinberg [9] and Moore [7] considered the algebraic problem of

determining the central extensions of a simple Chevelley group over an arbitrary

field; they were also led to the metaplectic groups. This line of investigation was

completed by Matsumoto [5], whose work forms the foundation of the present paper.

To summarize our results, let F be an infinite field, G the F-rational points of a

simple Chevalley group defined over F, A an abelian group, and c : F× × F× → A

a Steinberg symbol that is bilinear if G is not symplectic (cf. §1). In this paper we

describe an explicit 2-cocycle σG in Z2(G;A) that represents the cohomology class

in H2(G;A) of the central extension G̃ of G by A constructed by Matsumoto [5]
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using the Steinberg symbol c. In particular, if F is a local field such that µr(F) has

cardinality r, and one takes A := µr(F) and c := (·, ·)−1
F

, then G̃ is the metaplectic

cover of G discussed above. In this case σG is a metaplectic 2-cocycle.

By pulling back σG from G := SLn+1(F) to G := GLn(F) under a particular em-

bedding of G into G, we obtain for every n ≥ 1 an explicit 2-cocycle σn in Z2(G;A)

that represents the second cohomology class of the central extension G̃ of G by A,

where G̃ denotes the preimage of G in G̃. We show that the 2-cocycles
{
σn

∣∣n ≥ 1
}

are well-behaved with respect to restriction, and they satisfy a nice block formula

on all standard Levi subgroups of G, i.e., that they are block-compatible. We also

show that σ2 is the Kubota 2-cocycle σK on GL2(F).

The paper is organized as follows. In §1 we review Matsumoto’s construction of

the central extension G̃ of a simple Chevalley group G over an infinite field. Our

main result in this section (Theorem 3) is a presentation of G̃ in terms of generators

and relations. We also describe the natural projection p : G̃ → G.

In §2 we define the 2-cocycle σG by constructing an explicit section sG : G → G̃

with respect to p. The basic properties that σG satisfies are listed in Proposition 4.

In this section we define the notion of a standard subgroup of G and also show that

for every standard subgroup G♯, σG

∣∣
G♯×G♯ = σG♯ (Lemma 5). In other words, our

2-cocycles are well-behaved with respect to restriction to standard subgroups. In

Lemma 6 we prove that if
{
Gi
∣∣ 1 ≤ i ≤ p

}
is any collection mutually commuting

standard subgroups of G, then the preimages
{
G̃i
∣∣ 1 ≤ i ≤ p

}
in G̃ are also mutually

commuting. Moreover, in Theorem 7 we establish the following block formula:

σG(g1 . . . gp, g
′
1 . . . g′

p) =
p∏

i=1

σGi(gi, g
′
i)

for all gi, g
′
i ∈ Gi, 1 ≤ i ≤ p.

In §3 we pull back the 2-cocycle σG from G := SLn+1(F) to G := GLn(F) and

define the 2-cocycle σn ∈ Z2(G;A) for every n ≥ 1. The basic properties that

σn satisfies are listed in Theorem 7, and the nine properties listed there actually

characterize the 2-cocycle. Using this characterization we show that σ2 is the
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Kubota 2-cocycle σK (Corollary 8), and the restriction of σn to any copy of GLm(F)

embedded along the diagonal in G agrees with the 2-cocycle σm (Corollary 9).

Finally, in Theorem 11 we show that for all standard Levi subgroups of G, the

following block formula holds:

σn







g1

. . .

gp


,




g′
1

. . .

g′
p





 =

p∏
i=1

σni
(gi, g

′
i)
∏
i<j

c
(
det(gi), det(g′

j)
)−1

,

where n = n1 + . . . + np and gi, g
′
i ∈ GLni

(F) for 1 ≤ i ≤ p. Note that although

our 2-cocycle σn agrees on the torus with the 2-cocycle introduced in the founda-

tional work of Kazhdan and Patterson [2], their 2-cocycle does not satisfy the block

formula.

In §4 we describe a method of calculating σn(g, g′) for an arbitrary pair of ele-

ments g, g′ ∈ GLn(F). Using Lemma 1 and some results from §3, the calculation of

σn(g, g′) is achieved by performing ℓ + 1 2-cocycle calculations on the torus, where

ℓ is the length of g. The method is straightforward and easily implemented on a

computer.

In §5 we describe a different method of calculating the 2-cocycle for pairs of

elements in the Weyl group W of permutation matrices. We introduce the notion of

the canonical expression of an element w ∈ W . To compute σn(w, w′) for arbitrary

w, w′ ∈ W , one first determines the canonical expressions for w, w′, and ww′. Since

the section sn corresponding to σn is easily described on W once the canonical

expressions are known (Corollary 3), one simply applies the relations of Lemma 4

to determine σn(w, w′).

The metaplectic groups are fascinating and important objects of study that arise

in a number of disciplines. Unfortunately, the subject has had a long history of

errors, perhaps due to the deep and subtle nature of the underlying ideas. For this

reason, we have referred quite extensively to the remarkable thesis of Matsumoto [5]

as an (apparently) error-free foundation for our work. Moreover, we have included
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many details of our calculations in order to convince the skeptical reader of the

veracity of our proofs.

The authors would like to extend a special note of thanks to Anthony Kable.

This paper could not have been written without his kind assistance. We also thank

Jeff Adams, Jim Cogdell, Heng Sun, and Dave Witte for numerous insightful dis-

cussions, and we thank Oklahoma State University for providing support and an

environment richly conducive to research.

§1. Central Extensions of a Simple Chevalley Group

Let F be an infinite field, and let G be the F-rational points of a simply-connected

almost simple linear algebraic group G that is defined and split over F. Let H be

a maximal split torus of G also defined over F, let Φ be the set of roots of G with

respect to H, and let ∆ ⊂ Φ be a base of simple roots. These choices determine a

Borel subgroup of G whose unipotent radical we denote by N. Let H and N be the

F-rational points of H and N, respectively. Let Φ+ ⊂ Φ be the set of positive roots

determined by ∆. The set Φ can be embedded in a Euclidean space in a standard

way
(
cf. [1] p. 63

)
, and we define:

〈α, β〉 := 2
(α, β)

(β, β)
, α, β ∈ Φ,

where (·, ·) is the Euclidean norm. For every α ∈ Φ, let Nα be the standard

unipotent subgroup of G corresponding to α:

Nα := exp
{
X ∈ Lie(G)

∣∣Ad(h)X = α(h)X for all h ∈ H
}
.

We fix isomorphisms
{
nα : F → Nα

∣∣α ∈ Φ
}

based on an explicit decomposition:

gZ = hZ +
∑

α∈Φ

Zeα

of the Chevalley algebra corresponding to G
(
cf. [5] pp. 8,12

)
. It is well-known that

the subgroups
{
Nα

∣∣α ∈ Φ
}

generate G as an abstract group, and Steinberg [8] has

given the following presentation.



5

Proposition 1. The group G has the presentation
〈
GS

∣∣RS

〉
, where the set of

generators is:

GS :=
{
nα(x)

∣∣α ∈ Φ, x ∈ F
}
,

and the list RS of relations consists of the following:

nα(x) nα(y) = nα(x + y), α ∈ Φ, x, y ∈ F,R1 :

(i) nα(x) nβ(y) =
[ ∏

i,j∈Z
+

iα+jβ=γ∈Φ

nγ(mα,β;i,j xiyj)
]
nβ(y) nα(x),R2 :

α, β ∈ Φ, α + β 6= 0, x, y ∈ F,

where the mα,β;i,j’s are certain rational integers independent of x, y ∈ F,

(ii) wα(x) nα(y) wα(x)−1 = n−α(−x−2y), α ∈ Φ, x ∈ F
×, y ∈ F,

where wα(x) := nα(x) n−α(−x−1) nα(x),

hα(x) hα(y) = hα(xy), α ∈ Φ, x, y ∈ F
×,R3 :

where hα(x) := wα(x) wα(1)−1.

Note that the expression in brackets in R2(i) is a product of commuting terms.

To see this, simply apply R2(i) to the terms appearing in that expression. One of

the goals of this section is to give a different presentation of the group G.

Let A be an abelian group (written multiplicatively) with identity element 1A.

Suppose that we are given a central extension E of G by A, i.e., an exact sequence:

1 → A →֒ E
π

−→G → 1.

Steinberg [8] showed that there exist unique lifts
{
n∗

α : F → E
∣∣α ∈ Φ

}
of the maps

{
nα

∣∣α ∈ Φ
}

that also satisfy the relations R1 and R2 of Proposition 1. In par-

ticular, for every α ∈ Φ, the extension E splits over Nα, and N
∗
α := Im(n∗

α) is the

image in E of Nα under the splitting. It is known that N is the product in G of the

groups
{
Nα

∣∣α ∈ Φ+
}
, and Steinberg has shown

(
cf. [5] Lemme 5.1(a)

)
that the
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projection π induces an isomorphism from the subgroup N∗ :=
∏

α∈Φ+

N∗
α of E to the

subgroup N of G.

By [5] Lemme 5.4 and Proposition 5.5, if we define for all α ∈ Φ, x ∈ F×:

w̃α(x) := n∗
α(x) n∗

−α(−x−1) n∗
α(x), h̃α(x) := w̃α(x) w̃α(1)−1,

then for every α ∈ ∆, the map cα : F× × F× → A given by:

cα(x, y) := h̃α(x) h̃α(y) h̃α(xy)−1

satisfies the following relations for all x, y, z ∈ F
×:

cα(x, y) cα(xy, z) = cα(x, yz) cα(y, z),S1 :

cα(1, 1) = 1A, cα(x, y) = cα(x−1, y−1),S2 :

cα(x, y) = cα

(
x, (1 − x)y

)
, x 6= 1.S3 :

Moreover, the relations:

cα(xy, z) = cα(x, z) cα(y, z), x, y, z ∈ F
×,S4 :

also hold unless G is symplectic and α is its long simple root. Note that the maps
{
cα

∣∣α ∈ ∆
}

are determined from one another by the relations
(
cf. [5] p. 38

)
:

(1) cα(x, y〈α,β〉) = cβ(y, x〈β,α〉)−1, α, β ∈ ∆, x, y ∈ F
×.

We call any map c : F× × F× → A satisfying S1, S2 and S3 a Steinberg sym-

bol. A Steinberg symbol is said to be bilinear if it also satisfies S4. Since every

Steinberg symbol c satisfies c(x, y) = c(y−1, x)
(
cf. [5] Proposition 5.7(a)

)
, and a

symplectic group has only one long simple root, it follows from S4 and (1) that the

Steinberg symbol cα is independent of the choice of a long simple root α. Accord-

ingly, we define the Steinberg symbol of E
(
with respect to our choices of H, ∆ and

{
nα

∣∣α ∈ Φ
})

to be the Steinberg symbol cα for any long simple root α.
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Lemma 2. Let E be a central extension of G by A with Steinberg symbol c.

Define
{
cα

∣∣α ∈ ∆
}

using (1) above. For every α ∈ Φ+, let
{
n∗

α(x)
∣∣x ∈ F

}
,

{
h̃α(x)

∣∣x ∈ F
×
}

and
{
w̃α(x)

∣∣x ∈ F
×
}

be defined as above, and let w̃α := w̃α(−1)

for all α ∈ ∆. Then the following relations hold in the extension E:

a b = (ab), a, b ∈ A,RA :

h̃α(x) h̃α(y) = cα(x, y) h̃α(xy), α ∈ ∆, x, y ∈ F
×,R2

H̃
:

h̃α(x) h̃β(y) = cα

(
x, y〈α,β〉

)
h̃β(y) h̃α(x), α, β ∈ ∆, x, y ∈ F

×,R∗

H̃
:

h̃α(x) a = a h̃α(x), α ∈ ∆, x ∈ F
×, a ∈ A,R

H̃,A
:

w̃α w̃β = w̃β w̃α, α, β ∈ ∆, 〈α, β〉 = 0,R0

M̃Z

:

w̃α w̃β w̃α = w̃β w̃α w̃β , α, β ∈ ∆, 〈α, β〉 = 〈β, α〉 = −1,R−1

M̃Z

:

(w̃α w̃β)2 = (w̃β w̃α)2, α, β ∈ ∆, 〈α, β〉 = −2,R−2

M̃Z

:

(w̃α w̃β)3 = (w̃β w̃α)3, α, β ∈ ∆, 〈α, β〉 = −3,R−3

M̃Z

:

w̃α a = a w̃α, α ∈ ∆, a ∈ A,R
M̃Z,A

:

w̃2
α = h̃α(−1), α ∈ ∆,R2

M̃Z,H̃
:

w̃α h̃β(x) = h̃α

(
x−〈α,β〉

)
h̃β(x) w̃α, α, β ∈ ∆, x ∈ F

×,R∗

M̃Z,H̃
:

n∗
α(x) n∗

α(y) = n∗
α(x + y), α ∈ Φ+, x, y ∈ F,R2

N∗ :

n∗
α(x) n∗

β(y) =
[ ∏
i,j∈Z

+

iα+jβ=γ∈Φ

n∗
γ

(
mα,β;i,j xiyj

)]
n∗

β(y) n∗
α(x), α, β ∈ Φ+, x, y ∈ F,R∗

N∗ :

n∗
α(x) a = a n∗

α(x), α ∈ Φ+, x ∈ F, a ∈ A,RN∗,A :

n∗
α(x) h̃β(y) = h̃β(y) n∗

α

(
xy−〈α,β〉

)
, α ∈ Φ+, β ∈ ∆, x ∈ F, y ∈ F

×,R∗

N∗,H̃
:

w̃α n∗
α(x) w̃α = n∗

α(−x−1) h̃α(x−1) w̃α n∗
α(−x−1), α ∈ ∆, x ∈ F

×,R2

N∗,M̃Z

:

n∗
α(x) w̃β = w̃β n∗

sβα

(
nβ,α x

)
, α ∈ Φ+, β ∈ ∆, α 6= β, x ∈ F,R∗

N∗,M̃Z

:

where
{
sα

∣∣α ∈ ∆
}

is the set of simple reflections in the Weyl group of (G,H), and

the nα,β’s are constants (equal to ±1) independent of A and c.
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Proof : The constants {nα,β} are partially described in [5] Lemme 5.1(c). Our

proof of the lemma relies heavily on results of Matsumoto [5]. Note that Steinberg

also gave a list of relations for the extension E.

The relations involving A are clear since E is a central extension of G by A.

The relations R2

H̃
were used to define the Steinberg symbols

{
cα

∣∣α ∈ ∆
}
, and the

relations R2

M̃Z,H̃
follow from the definition of h̃α. To see this, observe that since

the maps
{
n∗

α

∣∣α ∈ Φ
}

are homomorphisms, the definition of w̃α(x) implies that

w̃α = w̃α(1)−1 for all α ∈ ∆. The relations R2
N∗ and R∗

N∗ all appear in R1 and R2

of Proposition 1.

For the remaining relations, we refer to [5]. The relations R∗

H̃
are given in

[5] Lemme 5.4(c). To establish the relations R∗

M̃Z,H̃
, we use [5] Lemme 5.2(f),(g)

and the relations R2

H̃
, R∗

H̃
and S2 as follows:

w̃−1
α h̃α(x−〈α,β〉)h̃β(x)w̃α = h̃α(x〈α,β〉)h̃β(x)h̃α(x−〈α,β〉)

= cα(x−〈α,β〉, x〈α,β〉)−1h̃α(x〈α,β〉)h̃α(x−〈α,β〉)h̃β(x)

= cα(x−〈α,β〉, x〈α,β〉)−1cα(x〈α,β〉, x−〈α,β〉)h̃β(x)

= h̃β(x).

The elements
{
w̃α

∣∣α ∈ ∆
}

satisfy the relations in (W2) of [5] Lemme 6.1; this

follows from [5] Lemme 5.2(a), the second and third lines of [5] Lemme 5.1(c), and

the elementary observation that if α, β ∈ ∆ are orthogonal, then neither α− β nor

α+β = sβ(α−β) is a root. Matsumoto notes
(
cf. [5], proof of Théorème 6.3

)
that

given the relations R∗

M̃Z,H̃
and R2

M̃Z,H̃
, the relations (W2) are equivalent to those in

(W2′) of [5] Théorème 6.3, which are precisely the relations R0

M̃Z

, R−1

M̃Z

, R−2

M̃Z

and

R−3

M̃Z

. The relations R∗

N∗,H̃
follow immediately from [5] Lemme 5.2(c), the relations

R∗

N∗,M̃Z

follow from [5] Lemme 5.1(b), and the relations R2

N∗,H̃
follow from [5] Lemme
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5.2(h) and the relations R2

M̃Z,H̃
and R∗

N∗,H̃
as follows:

w̃αn∗
α(x)w̃α = w̃αn∗

α(x)w̃−1
α h̃α(−1)

= n∗
α(−x−1)h̃α(x−1)w̃−1

α n∗
α(−x−1)h̃α(−1)

= n∗
α(−x−1)h̃α(x−1)w̃αn∗

α(−x−1).

This completes the proof.

The relations given in Lemma 2 actually form a complete list of relations for the

central extension E by the following theorem.

Theorem 3. Suppose that there exists a central extension E of G by A with

Steinberg symbol c. Then E is isomorphic to the group G̃ that is given by the

presentation
〈
G

G̃

∣∣R
G̃

〉
, where the set G

G̃
of generators is the union of the sets:

GA := A,

G
H̃

:=
{
h̃α(x)

∣∣α ∈ ∆, x ∈ F
×
}
,

G
M̃Z

:=
{
w̃α

∣∣α ∈ ∆
}
,

GN∗ :=
{
n∗

α(x)
∣∣α ∈ Φ+, x ∈ F

}
,

and the list R
G̃

of relations consists precisely of the relations given in Lemma 2.

Proof : By Lemma 2, there is a natural homomorphism φ : G̃ → E, and we must

show that φ is an isomorphism.

To see that φ is surjective, it suffices by Proposition 1 to show that the elements
{
n∗

α(x) ∈ E
∣∣α ∈ Φ, x ∈ F

}
all lie in the image of φ. But this follows from the

relations in R2(ii) of Proposition 1 for E and the relations R∗

N∗,M̃Z

for E and G̃,

since the simple reflections
{
sα

∣∣α ∈ ∆
}

generate the full Weyl group W of (G,H).

Since the relations in RA hold in G̃, the subgroup of G̃ generated by GA is a

quotient of A. On the other hand, φ(a) = a for all a ∈ GA = A, hence the map

φ provides an isomorphism from this subgroup to A (here we use our hypothesis
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that E is a central extension of G by A). To prove that φ is injective, it therefore

suffices to show that the kernel of the composition p : G̃
φ

−→E
π

−→G is this copy

of A in G̃. This will be our approach, and we will not need to mention E again in

this proof.

The natural homomorphism p : G̃ → G described above is determined by its

values on the generators of G̃. Clearly:

p(a) = 1G, a ∈ A,

p
(
h̃α(x)

)
= hα(x), α ∈ ∆, x ∈ F

×,

p(w̃α) = wα, α ∈ ∆,

p
(
n∗

α(x)
)

= nα(x), α ∈ Φ+, x ∈ F,

where 1G is the identity element in G, and wα := wα(−1) for all α ∈ ∆.

It is well-known that the (finite) subgroup MZ of G generated by the elements
{
wα

∣∣α ∈ ∆
}

is a central extension of W by the group H ∩ MZ that is generated

by
{
hα(−1)

∣∣α ∈ ∆
}
. Let Ñ be the abstract group defined by formal generators

{
w̃α, h̃α(−1)

∣∣α ∈ ∆
}

subject only to the relations in R0

M̃Z

, R−1

M̃Z

, R−2

M̃Z

and R−3

M̃Z

,

those in R2

M̃Z,H̃
, and the relations in R∗

M̃Z,H̃
with x = −1. Then Matsumoto proved

(
cf. [5] Théorème 6.3

)
that Ñ is a cover of MZ by a cyclic group whose order

is infinite [resp. two] if the group G is [resp. is not] symplectic. Because of the

additional relations h̃α(1)2 = h̃α(1) and h̃α(−1)2 = cα(−1,−1) h̃α(1) in R2

H̃
, it

follows that the subgroup M̃Z of G̃ generated by
{
w̃α

∣∣α ∈ ∆
}

is a central extension

of MZ by the subgroup of A generated by c(−1,−1). Thus, the composed map

M̃Z → MZ → W is surjective, and using the information above we conclude that

if M̃ =
{
η̃w

∣∣w ∈ W
}

is a complete set of representatives in M̃Z for W under

this surjection, then for all α ∈ ∆, w̃αM̃ ⊂ H̃ M̃, where H̃ is the subgroup of G̃

generated by the elements in GA and G
H̃
.

Fix a set M̃ of representatives as in the previous paragraph, and for each α ∈ Φ+,

let N∗
α now denote the subgroup n∗

α(F) of G̃. Choose an ordering of the simple roots

∆, and extend it to an order on Φ+ by expressing each root as a non-increasing
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sum of simple roots, then comparing pairs of roots lexicographically. We will prove

the following Bruhat decomposition for G̃:

(2) G̃ =
∐

w∈W

( ∏′

α∈Φ+

N∗
α

)
H̃η̃w

∏′

α∈Φ+

N∗
α,

where
∏′

α∈Φ+

N∗
α denotes the set of products of the form n∗

α1
(x1) . . . n∗

αk
(xk) with the

αi’s increasing. Observe that this decomposition implies the theorem.

To establish the Bruhat decomposition, it suffices to show that the right hand

side of (2) is preserved under left multiplication by the generators of G̃ (disjointness

of the union follows from the projection to G). The union is clearly preserved under

left multiplication by the (central) elements in GA. Using the relations R2
N∗ and

R∗
N∗ , it can also be shown that the union is preserved under left multiplication by

elements of GN∗ , and the relations in R∗

N∗,H̃
imply that the union is preserved under

left multiplication by elements of G
H̃
. This leaves only the elements in G

M̃Z

. Fix

β ∈ ∆ and w ∈ W. Using R∗

N∗,M̃Z

, R∗

N∗,H̃
and R∗

M̃Z,H̃
, it follows that:

w̃β

( ∏′

α∈Φ+

N∗
α

)
H̃η̃w

∏′

α∈Φ+

N∗
α =

( ∏′

α∈Φ+

α 6=β

N∗
α

)
w̃βN∗

βH̃η̃w

∏′

α∈Φ+

N∗
α

=
( ∏′

α∈Φ+

α 6=β

N∗
α

)
H̃w̃βN∗

β η̃w

∏′

α∈Φ+

N∗
α.

We consider two cases. First suppose that the root w−1β is positive. Write w as

a product of minimal length of simple reflections: w = sα1
. . . sαℓ

. Then η̃w can be

expressed in the form η̃w = h̃w̃α1
. . . w̃αℓ

for some h̃ ∈ H̃, and for each i = 1, . . . , ℓ,

we have sαi−1
. . . sα1

β 6= αi. Consequently, the relations in R∗

N∗,M̃Z

, RN∗,A and

R∗

N∗,H̃
imply that:

N∗
β η̃w

( ∏′

α∈Φ+

N∗
α

)
= η̃w

( ∏′

α∈Φ+

N∗
α

)
.

We can also write w̃β η̃w = h̃′η̃sβw for some h̃′ ∈ H̃, hence H̃w̃β η̃w = H̃η̃sβw. Thus,

if w−1β is positive, it follows that:

w̃β

( ∏′

α∈Φ+

N∗
α

)
H̃η̃w

∏′

α∈Φ+

N∗
α ⊂

( ∏′

α∈Φ+

N∗
α

)
H̃η̃sβw

∏′

α∈Φ+

N∗
α.
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Now suppose that w−1β is negative. Write w′ = sβw. Then w′−1β is positive,

and η̃w = h̃w̃β η̃w′ for some h̃ ∈ H̃. Using the relations R2

M̃Z,H̃
and R2

N∗,M̃Z

, and

proceeding as before, it follows that:

w̃β

( ∏′

α∈Φ+

N∗
α

)
H̃η̃w

∏′

α∈Φ+

N∗
α ⊂

( ∏′

α∈Φ+

N∗
α

)
H̃η̃w

∏′

α∈Φ+

N∗
α ∪

( ∏′

α∈Φ+

N∗
α

)
H̃η̃w′

∏′

α∈Φ+

N∗
α.

This completes the proof.

Remark. Most of the preceding proof was taken from [5] Lemme 6.11.

Corollary 4. If GG and RG are defined by taking A := 1 and c := 1 in Theorem 3,

then
〈
GG

∣∣RG

〉
is a presentation of G.

In the sequel we will continue to denote families of relations in the group G̃ as

in Lemma 2, while using the notation R2
MZ,H, R∗

N,H, etc., for the corresponding

families of relations in the group G. This should not cause any confusion.

Starting with arbitrary A and c, if we define G̃ by the presentation above, then

G̃ is a central extension of G. However, the subgroup of G̃ generated by GA might

be a strict quotient of A, hence G̃ need not be a central extension of G by A.

Matsumoto completed the above construction as follows.

Theorem 5.
(
[5] Théorème 5.10

)
There exists a central extension of G by A with

Steinberg symbol c if and only if either c is bilinear or G is symplectic.

Necessity follows from S4. To prove sufficiency, Matsumoto first reduced to the

case where G is either simply-laced or symplectic. Next, he showed
(
cf. [5] Lemme

6.6
)

that the abstract group M̃ defined by the generators GA ∪ G
H̃
∪ G

M̃Z

subject

only to the first eleven families of relations in Lemma 2 is a central extension of

M := NG(H) by A. Finally, he built the desired extension of G as a group of
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permutations on the set:

X :=
{
(g, m̃)

∣∣ g ∈ G, m̃ ∈ M̃, m(g) = p(m̃)
}
,

where p denotes the natural projection from M̃ to M, and m is the unique map

from G to M such that m(m) = m for all m ∈ M, and m(ngn′) = m(g) for all

n, n′ ∈ N, g ∈ G. The existence of m follows from the Bruhat decomposition for G.

§2. Construction of a 2-Cocycle

We continue to use the notation of §1. Let F be an infinite field, G the F-rational

points of a simple simply-connected algebraic group that is defined and split over

F, A an abelian group, and c : F
× × F

× → A a Steinberg symbol that is bilinear if

G is not symplectic (cf. §1 Theorem 5). In §1 we constructed a central extension G̃

of G by A, together with a natural projection p : G̃ → G. In other words, we have

an exact sequence:

1 → A →֒ G̃
p

−→G → 1.

The goal of this section is to construct an explicit 2-cocycle in Z2(G;A) that rep-

resents the cohomology class in H2(G;A) of the extension G̃.

Recall that for any subgroup G of G, a section of G (with respect to p) is a

map s : G → G̃ such that p
(
s(g)

)
= g for all g ∈ G, and s(1G) = 1A. If s is a

homomorphism, then s is said to be a splitting of G. In this case, s(G) ∼= G, and

p−1(G) = s(G)·A ∼= G×A since A is central. Note that if s and s′ are two splittings

of G, the map s′s−1 : G → A, g 7→ s′(g)s(g)−1, is a homomorphism.

Lemma 1. There exists a unique splitting sN of N with the property:

sN

(
nα(x)

)
= n∗

α(x), α ∈ Φ+, x ∈ F.

If the exponent of A is finite and nonzero in F, then sN is the only splitting of N.
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Proof : As we mentioned earlier, Steinberg proved
(
cf. [5] Lemme 5.1(a)

)
that

the map p : N∗ → N is an isomorphism, and this immediately implies the first

statement of the lemma.

Now suppose that A has finite exponent z ∈ Z ∩ F×. If s′ is any splitting of N,

then s′s−1
N

: N → A, n 7→ s′(n)sN(n)−1, is a homomorphism. For all α ∈ Φ+, x ∈ F:

s′s−1
N

(
nα(x)

)
= s′s−1

N

(
nα(xz−1)z

)
= s′s−1

N

(
nα(xz−1)

)z
= 1A

since az = 1A for all a ∈ A. This shows that s′
(
nα(x)

)
= sN

(
nα(x)

)
= n∗

α(x), hence

s′ = sN by the first statement of the lemma.

Let d := rank(G). For the remainder of the section, we fix an arbitrary ordering

of the simple roots: ∆ = {α̌1, . . . , α̌d}. We define a section sH of H as follows.

First, let:

sH

(
hα(x)

)
:= h̃α(x) cα(x, x), α ∈ ∆, x ∈ F

×.

It follows from the relations R2
H

and R∗
H

that every h ∈ H can be uniquely expressed

in the form h =
d∏

i=1

hα̌i
(xi) with each xi ∈ F×, and we define:

sH(h) := sH

(
hα̌d

(xd)
)
. . . sH

(
hα̌1

(x1)
)

=
1∏

i=d

h̃α̌i
(xi)

d∏
i=1

cα̌i
(xi, xi).

In order to extend sH to a section sM of the subgroup M := NG(H) = H·MZ,

we introduce a certain finite subset M ⊂ MZ as follows. Every root α ∈ Φ defines

a homomorphism α : H → F×, h 7→ hα := α(h). The group M acts on Φ: for all

m ∈ M, α ∈ Φ, let mα be the unique element of Φ such that h(mα) = (hm)α for all

h ∈ H, where hm := m−1hm. As H acts trivially on Φ, we obtain a well-defined

(faithful) action of the Weyl group W ∼= M/H on Φ. Regarding W as a group

of permutations on Φ, it is known that W is generated by the simple reflections
{
sα

∣∣α ∈ ∆
}
, where each sα is the element of W associated to wα ∈ M. For any

w ∈ W, the length ℓ(w) of w is the smallest integer ℓ such that w has an expression
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of the form w = sα1
sα2

. . . sαℓ
with each αi ∈ ∆. For later purposes, we also define

the length ℓ(g) of an arbitrary element g ∈ G by pulling back the length function

on W via the composition:

G
m
−→M → M/H ∼= W.

For all w ∈ W, write w = sα1
sα2

. . . sαℓ
with ℓ = ℓ(w), and let ηw := wα1

wα2
. . . wαℓ

.

Then ηw ∈ MZ, and the assignment w 7→ ηw is independent of the expression

of w as a minimal product of simple reflections
(
cf. [5] Lemme 6.2

)
. Note that

ℓ(ηw) = ℓ(w). We now define:

M :=
{
ηw

∣∣w ∈ W
}
.

The set M is not a group in general, but the map w 7→ ηw gives a bijection between

W and M, and M is a complete set of distinct coset representatives for M/H.

Lemma 2. There exists a unique section sM of M with the properties:

(a) sM(wα) = w̃α for all α ∈ ∆,

(b) sM(ηη′) = sM(η) sM(η′) for all η, η′ ∈ M such that ℓ(ηη′) = ℓ(η) + ℓ(η′),

(c) sM(hη) = sH(h) sM(η) for all h ∈ H, η ∈ M.

Proof : Let η ∈ M, and write η = wα1
. . . wαℓ

with ℓ = ℓ(η) and each αi ∈ ∆.

Then by [5] Lemme 6.2(d):

sM(η) := w̃α1
w̃α2

. . . w̃αℓ

is well-defined, and sM clearly satisfies (a) and (b). Since H∩M = {1G}, sM can be

extended to a section of M satisfying (c) as well. The uniqueness assertion is clear

since M =
∐

η∈M

Hη.

Lemma 3. There exists a unique section sG of G with the property:

sG(nmn′) = sN(n) sM(m) sN(n′), n, n′ ∈ N, m ∈ M.
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Proof : Uniqueness follows from the Bruhat decomposition for G. In order to

prove existence, we will first verify the following assertion:

(1) if nm = mn′ with n, n′ ∈ N, m ∈ M, then sN(n) sM(m) = sM(m) sN(n′).

First, suppose that n = nα(x) with α ∈ Φ+, x ∈ F. If x = 0, then (1) holds

trivially, thus we can assume that x 6= 0. If m = hβ(y) with β ∈ ∆, y ∈ F×, then

n′ = nα(xy−〈α,β〉) by R∗
N,H. But n∗

α(x) h̃β(y) = h̃β(y) n∗
α(xy−〈α,β〉) by the relations

in R∗

N∗,H̃
, hence (1) follows in this case. Similarly, if m = wβ with β ∈ ∆, then

α 6= β since x 6= 0 and n′ ∈ N, and nα(x) wβ = wβ nsβα(nβ,α x) by R∗
N,MZ

. By the

relations in R∗

N∗,M̃Z

, n∗
α(x) w̃β = w̃β n∗

sβα(nβ,α x
)
, and (1) follows in this case as well.

For arbitrary m ∈ M, write m = hη with h ∈ H, η ∈ M. Factoring h =
d∏

i=1
hα̌i

(xi)

with each xi ∈ F×, and η = wα1
. . . wαℓ

with ℓ = ℓ(η) and each αi ∈ ∆, we must

show that:

n∗
α(x) h̃α̌d

(xd) . . . h̃α̌2
(x2) h̃α̌1

(x1) w̃α1
. . . w̃αℓ

d∏
i=1

cα̌i
(xi, xi)

is equal to:

h̃α̌d
(xd) . . . h̃α̌2

(x2) h̃α̌1
(x1) w̃α1

. . . w̃αℓ

d∏
i=1

cα̌i
(xi, xi) sN(n′).

This follows by an inductive argument using the preceding results. Thus, (1) holds

if n = nα(x). For arbitrary n ∈ N, we factor n into a product of generators of the

form nα(x), and the assertion (1) follows by an inductive argument using the fact

that sN is a splitting.

Now for any g ∈ G, if g = nmn′ with n, n′ ∈ N, m ∈ M, then m = m(g) is

uniquely determined. To establish the lemma, it suffices to show that if nmn′ =

n1mn′
1, then sN(n) sM(m) sN(n′) = sN(n1) sM(m) sN(n′

1). But n−1
1 nm = mn′

1n
′−1

,

hence (1) implies that sN(n−1
1 n) sM(m) = sM(m) sN(n′

1n
′−1

). As sN is a splitting,

the result follows.
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Recall that for any group G, a 2-cocycle on G with coefficients in A is a map

σ : G × G → A such that:

(2) σ(g, g′) σ(gg′, g′′) = σ(g, g′g′′) σ(g′, g′′), g, g′, g′′ ∈ G,

and σ(1G, 1G) = 1A, where 1G is the identity element in G. This definition implies

that σ(1G, g) = σ(g, 1G) = 1A for all g ∈ G. Let Z2(G;A) denote the set of all such

2-cocycles.

Proposition 4. Let σG ∈ Z2(G;A) be defined by:

σG(g, g′) := sG(g) sG(g′) sG(gg′)−1, g, g′ ∈ G.

Then σG satisfies the following properties:

(a) σG(g, n) = σG(n, g) = 1A for all n ∈ N, g ∈ G,

(b) σG(ng, g′n′) = σG(g, g′) for all n, n′ ∈ N, g, g′ ∈ G,

(c) σG(gn, g′) = σG(g, ng′) for all n ∈ N, g, g′ ∈ G,

(d) σG(h, η) = 1A for all h ∈ H, η ∈ M,

(e) σG(η, η′) = 1A for all η, η′ ∈ M such that ℓ(ηη′) = ℓ(η) + ℓ(η′).

Proof : Property (a) follows from Lemma 3, while (b) and (c) follow from (a) and

the cocycle relation (2). Properties (d) and (e) follow from Lemmas 2 and 3.

We will next consider the restriction of the 2-cocycle σG to certain “standard”

subgroups of G. Let ∆♯ ⊂ ∆, let Φ♯ be the set of roots in Φ spanned by the elements

of ∆♯, and let Φ♯+ := Φ♯ ∩ Φ+. Let G♯ be the group that is generated in G by:

{
hα(x)

∣∣α ∈ ∆♯, x ∈ F
×
}
∪
{
wα

∣∣α ∈ ∆♯
}
∪
{
nα(x)

∣∣α ∈ Φ♯+, x ∈ F
}
.

We call G♯ a standard subgroup of G if G♯ is also the F-rational points of a simple

simply-connected algebraic group that is defined and split over F.
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Let G♯ be a standard subgroup of G. Realize G♯ as a Chevalley group with gen-

erators
{
nα(x)

∣∣α ∈ Φ♯, x ∈ F
}
, and give ∆♯ the order inherited from ∆. We con-

struct (just as we did with G in §1) a central extension G̃
♯ of G

♯ by A corresponding

to the Steinberg symbol c
(
with respect to our choices of

{
hα(x)

∣∣α ∈ ∆♯, x ∈ F×
}
,

∆♯, and
{
nα

∣∣α ∈ Π♯
})

. Since H♯ := H ∩ G♯, N♯ := N ∩ G♯, M♯ := M ∩ G♯ and

M♯ := M ∩ G
♯ are the analogues of H, N, M and M, respectively, for the group

G♯, we can proceed as above to construct the section sG♯ : G♯ → G̃♯ and the

corresponding 2-cocycle σG♯ ∈ Z2(G♯;A).

Lemma 5. For every standard subgroup G♯ of G, σG

∣∣
G♯×G♯ = σG♯ .

Proof : By the results of §1, G̃♯ is isomorphic to the group generated in G̃ by:

A ∪
{
h̃α(x)

∣∣α ∈ ∆♯, x ∈ F
×
}
∪
{
w̃α

∣∣α ∈ ∆♯
}
∪
{
n∗

α(x)
∣∣α ∈ Φ♯+, x ∈ F

}
.

The natural projection G̃♯ → G♯ is simply the restriction of p : G̃ → G to G̃♯. The

relation sG♯ = sG

∣∣
G♯ follows immediately from the definitions, and this implies the

lemma.

Lemma 6. Let
{
Gi
∣∣ 1 ≤ i ≤ p

}
be a collection of mutually commuting standard

subgroups of G. Then
{
G̃i
∣∣ 1 ≤ i ≤ p

}
are mutually commuting subgroups of G̃.

Moreover:

(3) sG(g1 . . . gp) = sG(g1) . . . sG(gp)

for all gi ∈ Gi, 1 ≤ i ≤ p.

Proof : For each i, let ∆i, Φi, Φi+, Hi, Ni, Mi and Mi be defined as above for

the group Gi. Observe that if α ∈ ∆i, β ∈ ∆j , i 6= j, then 〈α, β〉 = 0. Indeed,

this follows from the relations R∗
N,H. Using the relations in RA, R∗

H̃
, R

H̃,A
, R0

M̃Z

,

R
M̃Z,A

, R∗

M̃Z,H̃
, R∗

N∗ , RN∗,A, R∗

N∗,H̃
, and R∗

N∗,M̃Z

, it follows that if g̃i [resp. g̃j ] is a
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generator of G̃i [resp. G̃j ], i 6= j, then g̃ig̃j = g̃j g̃i. This implies the first statement

of the lemma.

We first establish (3) in the case where gi = hi ∈ H
i, 1 ≤ i ≤ p. The product

h1 . . . hp can be uniquely expressed in the form
d∏

i=1

hα̌i
(xi) with each xi ∈ F×. Let

l := card
{
i
∣∣xi 6= 1

}
. We induct on l, the case l = 0 being trivial. Thus, suppose

that l ≥ 1, and let k be the largest integer such that xk 6= 1. Let i be such that

α̌k ∈ ∆i. From the definition of sH:

sH(h1 . . . hp) = sH

(
hα̌k

(xk) h1 . . . ĥi . . . hp

)
= sH

(
hα̌k

(xk)
)
sH(h1 . . . ĥi . . . hp),

where ĥi := hα̌k
(xk)−1hi. By induction on l, this expression equals:

sH

(
hα̌k

(xk)
)
sH

(
h1) . . . sH(ĥi) . . . sH(hp

)
= sH

(
h1) . . . sH

(
hα̌k

(xk)
)
sH(ĥi) . . . sH(hp

)
,

since H̃i commutes with H̃j if i 6= j. But sH

(
hα̌k

(xk)
)
sH(ĥi) = sH(hi), hence (3)

holds in this case.

Next, suppose that gi = ηi ∈ Mi, 1 ≤ i ≤ p. Since the elements of Mi commute

with the elements of Mj if i 6= j, it follows that ℓ(η1 . . . ηp) = ℓ(η1) + . . . + ℓ(ηp).

By an inductive argument using Lemma 2(b):

sM(η1 . . . ηp) = sM(η1) . . . sM(ηp),

and (3) holds in this case as well.

To establish (3) in general, let gi ∈ Gi, 1 ≤ i ≤ p, and factor each gi = nihiηin
′
i

with ni, n
′
i ∈ Ni, hi ∈ Hi, and ηi ∈ Mi. Then:

sG(g1 . . . gp) = sG(n1h1η1n
′
1 . . . nphpηpn

′
p)

= sG(n1 . . . nph1 . . . hpη1 . . . ηpn
′
1 . . . n′

p)

= sN(n1 . . . np) sH(h1 . . . hp) sM(η1 . . . ηp) sN(n′
1 . . . n′

p).

Using the results above and the fact that sN is a splitting, the last expression equals:

sN(n1) . . . sN(np) sH(h1) . . . sH(hp) sM(η1) . . . sM(ηp) sN(n′
1) . . . sN(n′

p).
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Since G̃i commutes with G̃j if i 6= j, this expression equals:

sN(n1) sH(h1) sM(η1) sN(n′
1) . . . sN(np) sH(hp) sM(ηp) sN(n′

p).

As sN(ni) sH(hi) sM(ηi) sN(n′
i) = sG(gi) for each i, the result follows.

Theorem 7. Let
{
Gi
∣∣ 1 ≤ i ≤ p

}
be a collection of mutually commuting standard

subgroups of G. Then:

σG(g1 . . . gp, g
′
1 . . . g′

p) =
p∏

i=1

σGi(gi, g
′
i)

for all gi, g
′
i ∈ Gi, 1 ≤ i ≤ p.

Proof : By Lemma 6:

sG(g1 . . . gp) = sG(g1) . . . sG(gp), sG(g′
1 . . . g′

p) = sG(g′
1) . . . sG(g′

p).

Since G̃i commutes with G̃j if i 6= j:

sG(g1 . . . gp) sG(g′
1 . . . g′

p) = sG(g1) sG(g′
1) . . . sG(gp) sG(g′

p)

= sG(g1g
′
1) . . . sG(gpg

′
p)

p∏
i=1

σGi(gi, g
′
i)

by Lemma 5. On the other hand:

sG(g1 . . . gpg
′
1 . . . g′

p) = sG(g1g
′
1 . . . gpg

′
p) = sG(g1g

′
1) . . . sG(gpg

′
p).

Comparing these expressions, the theorem follows.

§3. The 2-Cocycle for the General Linear Group

We continue to use the notation of the previous two sections. For the remainder

of the paper, let G♭ be the general linear group GLn+1(F), and let G♭ ⊂ G♭ be

the special linear group SLn+1(F), where n is a fixed positive integer. Let T ♭ be
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the subgroup of diagonal matrices in G♭, and for 1 ≤ i ≤ n + 1, let τi be the i-th

coordinate homomorphism on T ♭:

τi : T ♭ → F
×, t = diag(t1, . . . , tn+1) 7→ ti.

The set Φ♭ of roots of G♭ relative to T ♭ can be identified with the set of pairs
{
(i, j)

∣∣1 ≤ i, j ≤ n + 1, i 6= j
}
, where:

tα :=
τi(t)

τj(t)
, t ∈ T ♭, α = (i, j) ∈ Φ♭.

We call a root (i, j) positive if i < j and negative if i > j. Let Φ♭+ be the set of posi-

tive roots in Φ♭, and ∆♭ its ordered base of simple roots
{
α̌i := (i, i + 1)

∣∣ 1 ≤ i ≤ n
}
.

Let H♭ := T ♭ ∩G♭, and let N♭, M♭
Z
, M♭ and M♭ be defined for the simple Chevalley

group G♭ as in §§1-2. Note that N ♭ := N♭ is the standard unipotent subgroup of

G♭ associated to our choice of positive roots, and M ♭ := T ♭·M♭
Z

=
∐

η∈M♭

T ♭η is the

subgroup of monomial matrices.

For all g, h ∈ G♭, let gh := h−1gh, and hg := hgh−1 = gh−1

. As in §2, the action

of M ♭ on T ♭ by conjugation induces an action on Φ♭, where for all m ∈ M ♭, α ∈ Φ♭,

mα is the unique element of Φ♭ such that t(mα) = (tm)α for all t ∈ T ♭. The group

M ♭ also acts on the finite set Nn := {1, . . . , n}, where for all m ∈ M ♭, i ∈ Nn, mi

is the unique element of Nn such that:

τmi(t) = τi(t
m), t ∈ T ♭.

The relation:

(tm)(i,j) =
τi(t

m)

τj(tm)
=

τmi(t)

τmj(t)
= t(mi,mj)

shows that:

m(i, j) = (mi, mj), m ∈ M ♭, (i, j) ∈ Φ♭.

A set of generators of G
♭ can be explicitly described as follows. For every

α ∈ Φ♭+, x ∈ F, the generator nα(x) is the matrix 1G♭ +x eα, where 1G♭ is the iden-

tity matrix in G♭, and eα is the elementary matrix with 1 in the α-th position and
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0’s elsewhere. For every α = α̌i ∈ ∆♭, the generator wα := nα(−1) n−α(1) nα(−1)

is the monomial matrix with −1 in the α-th position, 1 in the −α-th position, 1 in

the j-th diagonal entry for all j 6= i, i+1, and 0’s elsewhere. For every α = α̌i ∈ ∆♭,

x ∈ F×, the generator hα(x) := nα(x) n−α(−x−1) nα(x) wα is the diagonal matrix

with x in the i-th diagonal entry, x−1 in the (i + 1)-th entry, and 1’s elsewhere

along the diagonal. For example, our generators for SL2(F) have the form:

hα̌1
(x) :=

(
x

x−1

)
, wα̌1

:=

(
−1

1

)
, nα̌1

(x) :=

(
1 x

1

)
.

For the remainder of the paper, let A be an abelian group, and c : F××F× → A

a bilinear Steinberg symbol. Note that F× → A, x 7→ c(x, x), is a homomorphism

in this case, and every element c(x, x) = c(x,−1) ∈ A has order at most two.

According to §1 Theorem 5, there exists a central extension G̃♭ of G♭ by A with

Steinberg symbol c. Notice that cα = c for all α ∈ ∆♭. Using our ordering on ∆♭,

the section sG♭ : G♭ → G̃♭ and the corresponding 2-cocycle σG♭ ∈ Z2(G♭;A) are

defined as in §2.

Now let G := GLn(F), let G := SLn(F) ⊂ G, and let T , Φ, Φ+, ∆, H, N, MZ,

M, M, N and M be defined as above with n + 1 replaced by n. In particular,

∆ =
{
α̌i

∣∣ 1 ≤ i ≤ n − 1
}
. The goal of this section is to study the 2-cocycle σn in

Z2(G;A) that is defined as follows. Consider the embedding of G into G♭:

ι : G →֒ G
♭, g 7→

(
g

det(g)−1

)
.

Then σn is the 2-cocycle defined by:

σn(g, g′) := σG♭

(
ι(g), ι(g′)

)
c
(
det(g), det(g′)

)−1
, g, g′ ∈ G.

Lemma 1. For all t, t′ ∈ T , σn(t, t′) =
∏
i<j

c
(
τi(t), τj(t

′)
)−1

.
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Proof : Let ti := τi(t) and t′i := τi(t
′) for 1 ≤ i ≤ n. Then:

ι(t) =
n∏

i=1
hα̌i

(xi), ι(t′) =
n∏

i=1
hα̌i

(x′
i),

where xi :=
i∏

j=1

tj and x′
i :=

i∏
j=1

t′j for 1 ≤ i ≤ n. Then:

σG♭

(
ι(t), ι(t′)

)
= sG♭

( n∏
i=1

hα̌i
(xi)

)
sG♭

( n∏
i=1

hα̌i
(x′

i)
)
sG♭

( n∏
i=1

hα̌i
(xix

′
i)
)−1

=
1∏

i=n

h̃α̌i
(xi)

1∏
i=n

h̃α̌i
(x′

i)
( 1∏

i=n

h̃α̌i
(xix

′
i)
)−1

,

since:
n∏

i=1

c(xi, xi)
n∏

i=1

c(x′
i, x

′
i)
( n∏

i=1

c(xix
′
i, xix

′
i)
)−1

= 1A.

Using the relations in R
H̃
:

1∏
i=n

h̃α̌i
(xi)

1∏
i=n

h̃α̌i
(x′

i) =
1∏

i=n

(
h̃α̌i

(xi) h̃α̌i
(x′

i)
) n−1∏

i=1

c(xi, x
′
i+1)

−1

=
1∏

i=n

h̃α̌i
(xix

′
i)

n∏
i=1

c(xi, x
′
i)

n−1∏
i=1

c(xi, x
′
i+1)

−1.

Consequently:

σG♭

(
ι(t), ι(t′)

)
= c(xn, x′

n)
n−1∏
i=1

c(xi, x
′
i+1x

′
i
−1)−1 = c(xn, x′

n)
n−1∏
i=1

c(xi, t
′
i+1)

−1.

Since xn = det(t), x′
n = det(t′), we have:

σn(t, t′) = σG♭

(
ι(t), ι(t′)

)
c(xn, x′

n)−1 =
n∏

j=2

c(xj−1, t
′
j)

−1 =
n∏

j=2

j−1∏
i=1

c(ti, t
′
j)

−1.

The result follows.

Lemma 2. We have:

(a) σn(t, η) = 1A for all t ∈ T , η ∈ M,

(b) σn(η, η′) = 1A for all η, η′ ∈ M such that ℓ(ηη′) = ℓ(η) + ℓ(η′).
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Proof : Observe that ι(T ) ⊂ H♭, and ι(M) ⊂ M♭. Then for all t ∈ T , η ∈ M:

σn(t, η) = σG♭

(
ι(t), ι(η)

)
c
(
det(t), 1

)−1
= 1A

by §2 Proposition 4(d). Similarly, if η, η′ ∈ M with ℓ(ηη′) = ℓ(η) + ℓ(η′), then

ℓ
(
ι(η) ι(η′)

)
= ℓ
(
ι(η)

)
+ ℓ
(
ι(η′)

)
, hence:

σn(η, η′) = σG♭

(
ι(η), ι(η′)

)
c(1, 1)−1 = 1A

by §2 Proposition 4(e).

Lemma 3. For all t ∈ T , η ∈ M:

(1) σn(η, t) =
∏

α=(i,j)∈Φ+

ηα<0

c
(
− τj(t), τi(t)

)−1
.

Proof : We identify M with its image ι(M) in G
♭. If ℓ(η) = 0, (1) holds trivially.

Now suppose that η is a simple generator of the form wα with α = α̌k ∈ ∆. As in

Lemma 1, let ti := τi(t) for 1 ≤ i ≤ n, and write ι(t) =
n∏

i=1

hα̌i
(xi) with xi :=

i∏
j=1

tj .

Let t′ := wαt, t′i := τi(t
′) = τw−1

α i(t) for 1 ≤ i ≤ n, and write ι(t′) =
n∏

i=1
hα̌i

(x′
i)

with x′
i :=

i∏
j=1

t′j . Then:

(2) xi =

{
tαx′

i if i = k,

x′
i otherwise.

Since det(η) = 1, we have that:

σn(η, t) = σG♭

(
wα, ι(t)

)
= sG♭(wα) sG♭

( n∏
i=1

hα̌i
(xi)

)
sG♭

(
wα

n∏
i=1

hα̌i
(xi)

)−1
.

Now:

sG♭(wα) sG♭

( n∏
i=1

hα̌i
(xi)

)
= w̃α

1∏
i=n

h̃α̌i
(xi)

n∏
i=1

c(xi, xi),

sG♭

(
wα

n∏
i=1

hα̌i
(xi)

)
= sG♭

( n∏
i=1

hα̌i
(x′

i) wα

)
=

1∏
i=n

h̃α̌i
(x′

i) w̃α

n∏
i=1

c(x′
i, x

′
i),
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thus σn(η, t) is the product of:

(3) w̃α

1∏
i=n

h̃α̌i
(xi)

( 1∏
i=n

h̃α̌i
(x′

i) w̃α

)−1

and:
n∏

i=1
c(xi, xi)

( n∏
i=1

c(x′
i, x

′
i)
)−1

= c(tα, tα).

Applying the relations in R∗

M̃Z,H̃
, R2

H̃
, and R∗

H̃
, it follows that:

w̃α

k+2∏
i=n

h̃α̌i
(xi) =

k+2∏
i=n

h̃α̌i
(xi) w̃α,

w̃α h̃α̌k+1
(xk+1) = c(xk+1, xk+1) h̃α̌k+1

(xk+1) h̃α̌k
(xk+1) w̃α,

w̃α h̃α̌k
(xk) = h̃α̌k

(x−1
k ) w̃α

w̃α h̃α̌k−1
(xk−1) = h̃α̌k

(xk−1) h̃α̌k−1
(xk−1) w̃α,

w̃α

1∏
i=k−2

h̃α̌i
(xi) =

1∏
i=k−2

h̃α̌i
(xi) w̃α.

By a straight-forward calculation, it can be shown that:

c(xk+1, xk+1) h̃α̌k
(xk+1) h̃α̌k

(x−1
k ) h̃α̌k

(xk−1) = c(tα, tk+1) h̃α̌k
(t−α xk).

Using (2), it follows that (3) is equal to c(tα, tk+1). Consequently:

σn(η, t) = c(tα, tk+1) c(tα, tα) = c(tkt−1
k+1, tk) = c(−t−1

k+1, tk) = c(−tk+1, tk)−1.

Since
{
α ∈ Φ+

∣∣ ηα < 0
}

= {α̌k}, this proves (1) when ℓ(η) = 1.

Now suppose that (1) has been established for all t ∈ T , η ∈ M, with ℓ(η) < l,

l ≥ 2. Let t ∈ T , η ∈ M, with ℓ(η) = l. We can write η = η1η2 for some η1, η2 ∈ M

such that ℓ(η) = ℓ(η1) + ℓ(η2), and ℓ(ηi) < l for i = 1, 2. Then:

σn(η, t) = σn(η1η2, t) = σn(η1η2, t) σn(η1, η2) = σn(η1, η2t) σn(η2, t)

by Lemma 2(b). Now:

σn(η1, η2t) = σn(η1,
η2t η2) = σn(η1,

η2t η2) σn(η2t, η2) = σn(η1
η2t, η2) σn(η1,

η2t)
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by Lemma 2(a). Also:

σn(η1
η2t, η2) = σn(η1η2t η1, η2) = σn(η1η2t η1, η2) σn(η1η2t, η1)

= σn(η1η2t, η1η2) σn(η1, η2) = 1A.

Thus, by the inductive hypothesis, σn(η, t) is equal to:

σn(η1,
η2t) σn(η2, t) =

∏
α=(i,j)∈Φ+

η1α<0

c
(
− τj(

η2t), τi(
η2t)

)−1 ∏
α=(i,j)∈Φ+

η2α<0

c
(
− τj(t), τi(t)

)−1
.

The first product can be re-expressed as:

∏
α=(i,j)∈Φ+

η1α<0

c
(
− τη−1

2
j(t), τη−1

2
i(t)
)−1

=
∏

α=(i,j)∈η−1

2
Φ+

η1η2α<0

c
(
− τj(t), τi(t)

)−1
.

Since ℓ(η1η2) = ℓ(η1) + ℓ(η2), it is easily shown that:

{
α ∈ Φ+

∣∣ η1η2α < 0
}

=
{
α ∈ Φ+

∣∣ η2α < 0
}∐{

α ∈ η−1
2 Φ+

∣∣ η1η2α < 0
}
.

Thus, σn(η, t) is equal to:

∏
α=(i,j)∈η−1

2
Φ+

η1η2α<0

c
(
− τj(t), τi(t)

)−1 ∏
α=(i,j)∈Φ+

η2α<0

c
(
− τj(t), τi(t)

)−1
=

∏
α=(i,j)∈Φ+

η1η2α<0

c
(
− τj(t), τi(t)

)−1
.

Since η = η1η2, this completes the proof.

Lemma 4. For all n, n′ ∈ N , g, g′ ∈ G:

σn(n, g) = σn(g, n) = 1A,

σn(ng, g′n′) = σn(g, g′),

σn(gn, g′) = σn(g, ng′).

Proof : Observe that ι(N) ⊂ N
♭. Then:

σn(n, g) = σG♭

(
ι(n), ι(g)

)
c
(
1, det(g)

)−1
= 1A,

σn(g, n) = σG♭

(
ι(g), ι(n)

)
c
(
det(g), 1

)−1
= 1A,
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for all n ∈ N , g ∈ G, by §2 Proposition 4(a). The other statements follow from

these and the cocycle relation.

Lemma 5. For all α ∈ ∆, x ∈ F:

σn

(
wα, nα(x)wα

)
=

{
c(x, x) if x 6= 0,

c(−1,−1) if x = 0.

Proof : If we identify M [resp. N ] with its image ι(M) [resp. ι(N)] in G♭, then

M ⊂ M♭, and N ⊂ N ♭. Suppose that x ∈ F×. Since det(wα) = 1, σn

(
wα, nα(x)wα

)

is equal to:

σG♭

(
wα, nα(x)wα

)
= sG♭(wα) sG♭

(
nα(x)wα

)
sG♭

(
wαnα(x)wα

)−1

= w̃α n∗
α(x) w̃α sG♭

(
nα(−x−1)hα(x−1)wαnα(−x−1)

)−1

= w̃αn∗
α(x)w̃α

(
n∗

α(−x−1)h̃α(x−1)w̃αn∗
α(−x−1)c(x−1, x−1)

)−1

= w̃α n∗
α(x) w̃α

(
w̃α n∗

α(x) w̃α

)−1
c(x−1, x−1)−1 = c(x, x).

The case x = 0 is similar.

Recall that M is a complete set of distinct coset representatives for M/T ∼= M/H.

Then G has the Bruhat decomposition:

G =
∐

η∈M

NTηN,

and there exists a unique map t : G → T such that:

t(ntηn′) = t, n, n′ ∈ N, t ∈ T, η ∈ M.

Note that t(g) can be easily computed for any g ∈ G (cf. §4).

Proposition 6. For all α ∈ ∆, g ∈ G:

(4) σn(wα, g) = σn

(
t(wαg) t(g)−1,−t(g)

)
.
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Proof : For the proof, we will only need the fact that σn lies in Z2(G;A) and

satisfies the properties of Lemmas 1-5, which we apply repeatedly without comment.

For any g ∈ G, we factor g = ntηn′ with n, n′ ∈ N , t ∈ T , η ∈ M. Without loss

of generality, we can always assume that nη ∈ N−, where N− :=
∏

α∈Φ+

N−α is the

standard unipotent subgroup of G opposite to N .

Case I. Suppose that wαn 6∈ N . Then it is possible to factor n = n′′nα(x) with

x ∈ F
× and n′′ ∈ N such that wαn′′ ∈ N , (n′′)η ∈ N−. Since nα(x)η must lie

in N−, it follows that η−1α < 0, hence η = wαη′ for some η′ ∈ M such that

ℓ(wαη′) = ℓ(η′) + 1. Using the fact that nα(−x−1)(t
wαη′) ∈ N , it follows that

σn(wα, g) is equal to:

σn

(
wα, n′′nα(x)twαη′n′

)
= σn

(
wα, nα(x)wαtwαη′

)

= σn

(
wα, nα(x)wαtwαη′

)
σn

(
nα(x)wα, twαη′

)
σn(wα, twαη′)−1

= σn

(
wα, nα(x)wα

)
σn

(
nα(−x−1)hα(x−1)wαnα(−x−1), twαη′

)
σn(wα, twαη′)−1

= c(x, x) σn

(
hα(x−1)wα, twαη′

)
σn

(
hα(x−1), wα

)
σn(wα, twαη′)−1

= c(x, x) σn

(
hα(x−1), tη

)
σn(t, η)

= c(x, x) σn

(
hα(x−1), t

)
σn

(
hα(x−1)t, η

)

= c(x−1,−1)−1 c
(
x−1, τk+1(t)

)−1
= c
(
x−1,−τk+1(t)

)−1

if α = α̌k. On the other hand:

t(wαg) = t
(
wαn′′nα(x)twαη′n′′

)
= t
(
wαnα(x)wαtwαη′

)

= t
(
nα(−x−1)hα(x−1)wαnα(−x−1)twαη′

)
= hα(x−1) t,

hence:

σn

(
t(wαg)t(g)−1,−t(g)

)
= σn

(
hα(x−1),−t

)
= c
(
x−1,−τk+1(t)

)−1
.

This proves (4) in this case.

Case II. Suppose that wαn ∈ N , and ℓ(wαη) = ℓ(η) + 1. Then:

σn(wα, g) = σn(wα, ntηn′) = σn(wα, tη) σn(t, η)

= σn(wα, t) σn(wαtwα, η) σn(wαt, wα)

= σn(wα, t) σn(wαt, wαη) σn(wα, η) = c
(
− τk+1(t), τk(t)

)−1
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if α = α̌k. On the other hand:

t(wαg) = t(wαntηn′) = t(wαtη) = wαt = hα(t−α) t.

Thus:

σn

(
t(wαg)t(g)−1,−t(g)

)
= σn

(
hα(t−α),−t

)

= c
(
τk+1(t)τk(t)−1,−τk+1(t)

)−1
= c
(
− τk+1(t), τk(t)

)−1
.

Thus, (4) holds in this case as well.

Case III. Suppose that wαn ∈ N , and ℓ(wαη) = ℓ(η)−1. We can write η = wαη′

with η′ ∈ M such that ℓ(wαη′) = ℓ(η′) + 1. Then:

σn(wα, g) = σn(wα, ntwαη′n′) = σn(wα, twαη′) σn(twα, η′),

since:

σn(twα, η′) = σn(twα, η′) σn(t, wα) = σn(t, wαη′) σn(wα, η′) = 1A.

Then σn(wα, g) is equal to:

σn(wα, twα) σn(wαtwα, η′) = σn(wα, twα) σn(t, wα)

= σn(wα, t) σn(wαtwα, wα) σn(wαt, wα)

= σn(wα, t) σn

(
wαt, hα(−1)

)
σn(wα, wα)

= c
(
− τk+1(t), τk(t)

)−1
c
(
τk+1(t),−1

)−1
c(−1,−1)−1

= c
(
− τk+1(t),−τk(t)

)−1

if α = α̌k. On the other hand:

t(wαg) = t(wαntwαη′n′) = t(wαtwαη′) = hα(−1) twα = hα(−1)hα(t−α) t.

Hence:

σn

(
t(wαg)t(g)−1,−t(g)

)
= σn

(
hα(−1)hα(t−α),−t

)

= c
(
− τk+1(t)τk(t)−1,−τk+1(t)

)−1
= c
(
− τk+1(t),−τk(t)

)−1
,
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Thus, (4) holds in this case, and the proof is complete.

Theorem 7. The 2-cocycle σn is the unique element of Z2(G;A) satisfying:

(a) σn(t, t′) =
∏
i<j

c
(
τi(t), τj(t

′)
)−1

for all t, t′ ∈ T ,

(b) σn(t, η) = 1A for all t ∈ T , η ∈ M,

(c) σn(η, η′) = 1A for all η, η′ ∈ M such that ℓ(ηη′) = ℓ(η) + ℓ(η′),

(d) σn(η, t) =
∏

α=(i,j)∈Φ+

ηα<0

c
(
− τj(t), τi(t)

)−1
for all t ∈ T , η ∈ M,

(e) σn(n, g) = σn(g, n) = 1A for all n ∈ N , g ∈ G,

(f) σn(ng, g′n′) = σn(g, g′) for all n, n′ ∈ N , g, g′ ∈ G,

(g) σn(gn, g′) = σn(g, ng′) for all n ∈ N , g, g′ ∈ G,

(h) σn

(
wα, nα(x)wα

)
= c(x, x) for all α ∈ ∆, x ∈ F

×.

(i) σn(wα, wα) = c(−1,−1).

Proof : By Lemmas 1-5, σn satisfies the above properties. Conversely, suppose

that σ ∈ Z2(G;A) satisfies (a)-(i). Clearly:

(5) σ(t, g) = σ
(
t, t(g)

)
, t ∈ T, g ∈ G.

Also, the proof of Proposition 6 shows that:

(6) σ(wα, g) = σ
(
t(wαg)t(g)−1,−t(g)

)
, α ∈ ∆, g ∈ G.

Now let g, g′ ∈ G, and factor g = ntηn′ with n, n′ ∈ N , t ∈ T , η ∈ M. If ℓ(η) = ℓ,

we can express η in the form η = wα1
. . . wαℓ

with each αi ∈ ∆. By an easy

argument:

σ(g, g′) = σ(t, ηn′g′) σ(wα1
, wα2

. . .wαℓ
n′g′) . . . σ(wαℓ−1

, wαℓ
n′g′) σ(wαℓ

, n′g′),

and all of the terms on the right can be computed using (5) and (6). Since σn(g, g′)

has a similar expansion, and σ and σn must agree on T × G and on {wα} × G for

every α ∈ ∆, it follows that σ = σn.
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Corollary 8. The 2-cocycle σ1 on GL1(F) ∼= F× is trivial. The 2-cocycle σ2 on

GL2(F) agrees with the Kubota 2-cocycle on GL2(F).

Proof : If n = 1, then T = G, hence σ1 is trivial by Theorem 7(a). For n = 2, the

Kubota 2-cocycle σK ∈ Z2(G;A) is defined by:

σK(g, g′) := c

(
x(gg′)

x(g)
,

x(gg′)

x(g′)det(g)

)−1

, g, g′ ∈ G,

where for all g =

(
a b

c d

)
∈ G:

x(g) :=

{
c if c 6= 0,

d otherwise.

As σK satisfies properties (a)-(i) of Theorem 7, σK = σ2.

Corollary 9. Let G♯ := GLm(F), m ≤ n, and let  : G♯ →֒ G be the embedding

defined by:

g 7→




1a

g

1b


 ,

where a, b ≥ 0, n = a+m+ b, and 1a [resp. 1b] is the a×a [resp. b× b] matrix with

1’s along the diagonal and 0’s elsewhere. Then:

σn

(
(g), (g′)

)
= σm(g, g′), g, g′ ∈ G♯.

Proof : Let σ(g, g′) := σn

(
(g), (g′)

)
for all g, g′ ∈ G♯. Let T ♯, Φ♯, Φ♯+, ∆♯,

H♯, N♯, M
♯
Z
, M♯, M♯, N ♯ and M ♯ be defined as above with n replaced by m. In

particular, ∆♯ =
{
α̌i

∣∣ a + 1 ≤ i ≤ a + m − 1
}
⊂ ∆. Also, let τ ♯

i : T ♯ → F× be the

i-th coordinate homomorphism on T ♯: τ ♯
i (t) := ti for all t = diag(t1, . . . , tm) ∈ T ♯.

Note that:

τi

(
(t)
)

=

{
τ ♯
i−a(t) if a + 1 ≤ i ≤ a + m,

1 otherwise,
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for all t ∈ T ♯. Then for all t, t′ ∈ T ♯:

σ(t, t′) =
∏
i<j

c
(
τi

(
(t)
)
, τj

(
(t)
))−1

=
∏

a+1≤i<j≤a+m

c
(
τ ♯
i−a(t), τ ♯

j−a(t)
)−1

=
∏

1≤i<j≤m

c
(
τ ♯
i (t), τ ♯

j (t)
)−1

= σm(t, t′).

Since (M♯) ⊂ M, the relation σ(t, η) = 1A for all t ∈ T ♯, η ∈ M♯, is clear.

Moreover, (wα̌i
) = wα̌i+a

for 1 ≤ i ≤ m − 1, hence  is length preserving on M♯.

Consequently, σ(η, η′) = 1A for all η, η′ ∈ M♯ such that ℓ(ηη′) = ℓ(η) + ℓ(η′). For

all t ∈ T ♯, η ∈ M♯, σ(η, t) is equal to:

∏
α=(i,j)∈Φ+

(η)α<0

c
(
− τj

(
(t)
)
, τi

(
(t)
))−1

=
∏

α=(i,j)∈Φ+

(η)α<0
a+1≤i,j≤a+m

c
(
− τ ♯

j−a(t), τ ♯
i−a(t)

)−1

=
∏

α=(i+a,j+a)∈Φ+

(η)α<0
1≤i,j≤m

c
(
− τ ♯

j (t), τ ♯
i (t)

)−1
.

For all i ∈ Nn = {1, . . . , n}, η ∈ M♯:

(η)i =

{
a + η(i − a) if a + 1 ≤ i ≤ a + m,

i otherwise.

This relation implies that:

{
(i, j)

∣∣1 ≤ i < j ≤ m, (η)(i + a, j + a) < 0
}

=
{
(i, j) ∈ Φ♯+

∣∣ η(i, j) < 0
}
.

Thus:

σ(η, t) =
∏

α=(i,j)∈Φ♯+

ηα<0

c
(
− τ ♯

j (t), τ ♯
i (t)

)−1
= σm(η, t).

Since (N ♯) ⊂ N , σ(n, g) = σ(g, n) = 1A for all n ∈ N ♯, g ∈ G♯, and it follows

that σ(ng, g′n′) = σ(g, g′) and σ(gn, g′) = σ(g, ng′) for all n, n′ ∈ N ♯, g, g′ ∈ G♯.

Finally, 
(
nα̌i

(x)
)

= nα̌i+a
(x) for all x ∈ F, 1 ≤ i ≤ m − 1, hence:

σ
(
wα̌i

, nα̌i
(x)wα̌i

)
= σn

(
wα̌i+a

, nα̌i+a
(x)wα̌i+a

)
=

{
c(x, x) if x 6= 0,

c(−1,−1) if x = 0.
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We have shown that σ satisfies properties (a)-(i) of Theorem 7 with n replaced

by m. By the uniqueness assertion, it follows that σ = σm.

Lemma 10. For all t, t′ ∈ T , η, η′ ∈ M:

σn(tη, t′η′) = σn(t, ηt′) σn(η, t′) σn

(
ηt′t, t(ηη′)

)
σn(η, η′).

In particular, if ℓ(ηη′) = ℓ(η) + ℓ(η′), σn(tη, t′η′) = σn(t, ηt′) σn(η, t′).

Proof : We have:

σn(tη, t′η′) = σn(tη, t′η′) σn(t′, η′) = σn(tη, t′) σn(t, η) σn(ηt′tη, η′) σn(ηt′t, η)

= σn(t, ηt′η) σn(ηt′, η) σn(η, t′) σn(ηt′t, ηη′) σn(η, η′)

= σn(t, ηt′) σn(η, t′) σn

(
ηt′t, t(ηη′)

)
σn(η, η′).

If ℓ(ηη′) = ℓ(η)+ℓ(η′), then ηη′ ∈ M
(
hence t(ηη′) = 1G

)
, and the second statement

follows easily.

Theorem 11. For every standard Levi subgroup of G, the following block formula

holds:

σn







g1

. . .

gp


,




g′
1

. . .

g′
p





 =

p∏
i=1

σni
(gi, g

′
i)
∏
i<j

c
(
det(gi), det(g′

j)
)−1

,

where n = n1 + . . . + np, and gi, g
′
i ∈ GLni

(F) for 1 ≤ i ≤ p.

Proof : We induct on the number of blocks. When p = 1, there is nothing to

prove. Suppose that p = 2, n = n1 + n2, and let G1 := GLn1
(F), G2 := GLn2

(F).

For i = 1, 2, we define T i, Φi, Φi+, ∆i, Hi, Ni, Mi
Z
, Mi, Mi, N i and M i as before

with n replaced by ni. Let:

1 : G1 →֒ G, g1 7→

(
g1

1n2

)
,

2 : G2 →֒ G, g2 7→

(
1n1

g2

)
,
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where 1ni
denotes the identity matrix in Gi. According to Corollary 9, if we identify

each Gi with its image i(Gi) in G, then:

(7) σn(gi, g
′
i) = σni

(gi, g
′
i), gi, g

′
i ∈ Gi.

We claim that:

(8)
σn(g1, g2) = c

(
det(g1), det(g2)

)−1
,

σn(g2, g1) = 1A,

for all g1 ∈ G1, g2 ∈ G2. Indeed, if we factor each gi = nimin
′
i with ni, n

′
i ∈ N i,

mi ∈ M i, then:

σn(g1, g2) = σn(g1, n2m2n
′
2) = σn(g1n2, m2) = σn(n2g1, m2) = σn(g1, m2).

Similarly, σn(g1, m2) = σn(m1, m2). Now factor each mi = tiηi with ti ∈ T i,

ηi ∈ Mi. Since ℓ(η1η2) = ℓ(η1) + ℓ(η2), and G1 commutes with G2, Lemma 10

implies:

σn(m1, m2) = σn(t1,
η1t2) σn(η1, t2) = σn(t1, t2) σn(η1, t2).

Since τi(t2) = τj(t2) = 1 for all (i, j) ∈ Φ+ such that η1(i, j) < 0, σn(η1, t2) = 1A.

Thus:

σn(g1, g2) = σn(t1, t2) = c
(
det(t1), det(t2)

)−1
= c
(
det(g1), det(g2)

)−1
.

The proof that σn(g2, g1) = 1A is similar. This establishes the claim.

For all g1, g
′
1 ∈ G1, g2, g

′
2 ∈ G2, we compute using (7) and (8):

σn(g1g2, g
′
1g

′
2) = σn(g2g1, g

′
2g

′
1) σn(g′

2, g
′
1)

= σn(g2g1, g
′
2) σn(g2, g1) σn(g2g

′
2g1, g

′
1) σn(g2g

′
2, g1)

= σn(g2, g
′
2g1) σn(g′

2, g1) σn(g1, g
′
2) σn(g2g

′
2, g1g

′
1) σn(g1, g

′
1)

= σn(g2, g
′
2) σn(g2g

′
2, g1) σn(g1, g

′
2) σn(g1, g

′
1)

= σn1
(g1, g

′
1) σn2

(g2, g
′
2) c
(
det(g1), det(g′

2)
)−1

.
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This proves the theorem in the case p = 2. For arbitrary p ≥ 2, we proceed by

induction:

σn







g1

. . .

gp


 ,




g′
1

. . .

g′
p







= σn1
(g1, g

′
1) σn−n1







g2

. . .

gp


 ,




g′
2

. . .

g′
p





 c
(
det(g1), det(g′

2 . . . g′
p)
)−1

= σn1
(g1, g

′
1)

p∏
i=2

σni
(gi, g

′
i)

∏
2≤i<j≤p

c
(
det(gi), det(g′

j)
)−1

p∏
j=2

c
(
det(g1), det(g′

j)
)−1

=
p∏

i=1
σni

(gi, g
′
i)
∏
i<j

c
(
det(gi), det(g′

j)
)−1

.

This completes the proof.

§4. On Calculating the 2-Cocycle

We continue to use the notation of §3. In order to compute σn(g, g′) for arbitrary

g, g′ ∈ G = GLn(F), we will need to have a method of computing t(g) for any g ∈ G.

Here t is the unique map from G to T such that:

t(ntηn′) = t, n, n′ ∈ N, t ∈ T, η ∈ M.

To this end, consider the set of functions
{
xi : G → F×

∣∣ 1 ≤ i ≤ n + 1
}

defined as

follows. First, let xn+1(g) := 1 for all g ∈ G. Next, if 1 ≤ i ≤ n and g ∈ G, let

xi(g) be the first nonzero (n+1−i)×(n+1−i)-minor formed from the last n+1−i

rows of g, where the minors are ordered lexicographically according to the columns

they involve. In particular, x1(g) = det(g) for all g ∈ G. For each i, it follows from

the definition of xi that:

(1)
xi(tg) = xi(t)xi(g), t ∈ T, g ∈ G,

xi(ngn′) = xi(g), n, n′ ∈ N, g ∈ G.
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The computation of t(g) is now described by the following lemma.

Lemma 1. The set M is characterized by:

M =
{
m ∈ M

∣∣xi(m) = 1 for 1 ≤ i ≤ n
}
.

Consequently:

τi

(
t(g)

)
=

xi(g)

xi+1(g)
, g ∈ G, 1 ≤ i ≤ n.

Proof : Let M1 :=
{
m ∈ M

∣∣xi(m) = 1 for 1 ≤ i ≤ n
}
. For any monomial matrix

m ∈ M , let mi denote the nonzero entry in the i-th row for each 1 ≤ i ≤ n. As mi

lies in the (m−1i)-th column, it follows that:

xi(m) = signi(m) mi xi+1(m),

where:

signi(m) :=
∏
j>i

m−1j<m−1i

(−1).

Consequently, m ∈ M1 if and only if mi = signi(m) for 1 ≤ i ≤ n.

We will show that M ⊂ M1. If η ∈ M with ℓ(η) = 0, then η = 1G, hence

η ∈ M1. We proceed by induction. Suppose that η ∈ M1 for all η ∈ M with

ℓ(η) < l, l ≥ 1. Let η ∈ M with ℓ(η) = l. Factor η = wαη′ with α = α̌k ∈ ∆,

η′ ∈ M, and ℓ(η′) = l − 1. Since det(wα) = 1, it follows from the definitions

that xi(wαη′) = xi(η
′) if i 6= k + 1. Since η′ ∈ M1 by the inductive hypothesis,

xi(η
′) = 1 for all i, hence xi(η) = 1 if i 6= k + 1. Also:

xk+1(η) = signk+1(η) ηk+1 xk+2(η) = signk+1(η) ηk+1,

and we have that:

signk+1(η) = signk+1(wαη′) =
∏

j>k+1

(wαη′)−1j<(wαη′)−1(k+1)

(−1) =
∏

j>k+1

η′−1j<η′−1k

(−1),
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and:

ηk+1 = (wαη′)k+1 = (η′)k = signk(η′) =
∏

j>k

η′−1j<η′−1k

(−1) =
∏

j>k+1

η′−1j<η′−1k

(−1),

since the relation ℓ(wαη′) = ℓ(η′) + 1 implies that η′−1(k + 1) > η′−1k. Thus

xk+1(η) = 1 as well, and therefore η ∈ M1. This shows that M ⊂ M1. On the

other hand, both M and M1 have cardinality n!, hence M = M1.

To prove the second statement, first observe that if t ∈ T , then xi(t) =
∏
j≥i

τj(t).

Consequently:

τi(t) =
xi(t)

xi+1(t)
, t ∈ T.

By (1), it follows that:

xi(ntηn′) = xi(t), n, n′ ∈ N, t ∈ T, η ∈ M,

since xi(η) = 1 for all η ∈ M = M1. In other words, xi(g) = xi

(
t(g)

)
for all g ∈ G.

Thus:

τi

(
t(g)

)
=

xi

(
t(g)

)

xi+1

(
t(g)

) =
xi(g)

xi+1(g)

for all g ∈ G.

In order to compute σn(g, g′) for arbitrary g, g′ ∈ G, we use the method of

§3 Theorem 7. First, factor g = ntwα1
. . . wαℓ

n′ with n, n′ ∈ N , t ∈ T , and each

αi ∈ ∆. Here ℓ = ℓ(g). Then σn(g, g′) is equal to:

σn(t, wα1
. . .wαℓ

n′g′) σn(wα1
, wα2

. . . wαℓ
n′g′) . . . σn(wαℓ−1

, wαℓ
n′g′) σn(wαℓ

, n′g′).

Each of these terms can be computed using §3 Theorem 7(a) and the relations:

σn(t, g) = σn

(
t, t(g)

)
, t ∈ T, g ∈ G,

σn(wα, g) = σn

(
t(wαg)t(g)−1,−t(g)

)
, α ∈ ∆, g ∈ G.

§5. Calculations on the Weyl Group
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We continue to use the notation of §§3-4. Let W denote the Weyl group of

permutation matrices in G, that is, matrices with a 1 in each row and column,

and 0’s elsewhere. For every α = α̌i ∈ ∆, let sα be the monomial matrix with 1

in the α-th and −α-th positions, 1 in the j-th diagonal entry for all j 6= i, i + 1,

and 0’s elsewhere. The elements
{
sα

∣∣α ∈ ∆
}

generate W . If α = α̌k ∈ ∆, and

β = α̌l ∈ ∆, we will write α ≺ β if k < l, and α ≻ β if k > l.

Lemma 1. For all α, β ∈ ∆:

σn(sα, sβ) =

{
c(−1,−1) if 〈α, β〉 = 0 and α ≺ β,

1A otherwise.

Proof : First, suppose that α = α̌k, β = α̌l, and k 6= l. By §4 Lemma 1:

τi

(
t(sα)

)
=

{
−1 if i = k,

1 otherwise,

τi

(
t(sβ)

)
=

{
−1 if i = l,

1 otherwise.

In this case, ℓ(wαwβ) = ℓ(wα) + ℓ(wβ), hence:

σn(sα, sβ) = σn

(
t(sα)wα, t(sβ)wβ

)
= σn

(
t(sα), wαt(sβ)

)
σn

(
wα, t(sβ)

)

by §3 Lemma 10. Now:

σn

(
t(sα), wαt(sβ)

)
=
∏
i<j

c
(
τi

(
t(sα)

)
, τw−1

α j

(
t(sβ)

))−1

=
∏

k<j

c
(
− 1, τw−1

α j

(
t(sβ)

))

=

{
c(−1,−1) if wα l > k,

1A otherwise,

and:

σn

(
wα, t(sβ)

)
= c
(
− τk+1

(
t(sβ)

)
, τk

(
t(sβ)

))−1
= 1A
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since k 6= l. This proves the lemma when α 6= β. If α = β, then:

σn(sα, sα) = σK

((
1

1

)
,

(
1

1

))
= 1A

by Corollaries 8 and 9 of §3.

Proposition 2. Let w ∈ W , ℓ(w) > 0, and let α be the largest element of ∆ such

that w−1α < 0. Then σn(sα, w) = σn(sα, sαw) = 1A.

Proof : As in the proof of §4 Lemma 1:

xi(w) = signi(w)xi+1(w), w ∈ W, 1 ≤ i ≤ n,

since each wi = 1. Then:

τi

(
t(w)

)
=

xi(w)

xi+1(w)
= signi(w) =

∏
j>i

w−1j<w−1i

(−1).

Suppose that α = α̌k ∈ ∆ and w ∈ W satisfy the conditions of the proposition.

Since xi(sαw) = xi(w) for i ≥ k + 2, we have τi

(
t(sαw)

)
= τi

(
t(w)

)
if i ≥ k + 2.

Also:

τk

(
t(sαw)

)
=

∏
j>k

(sαw)−1j<(sαw)−1k

(−1).

Since w−1α < 0, it follows that (sαw)−1(k + 1) > (sαw)−1k, hence:

τk

(
t(sαw)

)
=

∏
j>k+1

(sαw)−1j<(sαw)−1k

(−1) =
∏

j>k+1

w−1j<w−1(k+1)

(−1) = τk+1

(
t(w)

)
.

For every β := α̌l ∈ ∆, β ≻ α, we have w−1β > 0, or w−1l < w−1(l + 1). Thus:

w−1(k + 1) < w−1(k + 2) < . . . < w−1(n − 1),

and this implies τi

(
t(w)

)
= signi(w) = 1 for all i > k. Consequently:

(1) τi

(
t(sαw)

)
= 1 if i = k or i ≥ k + 2.
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Now factor sαw = t(sαw)η with η ∈ M. Since ℓ(wαη) = ℓ(wα) + ℓ(η):

σn(sα, sαw) = σn

(
t(sα)wα, t(sαw)η

)
= σn

(
t(sα), wαt(sαw)

)
σn

(
wα, t(sαw)

)

by §3 Lemma 10. Using (1), we have:

σn

(
t(sα), wαt(sαw)

)
=
∏
i<j

c
(
τi

(
t(sα)

)
, τw−1

α j

(
t(sαw)

))−1

=
∏

j>k

c
(
− 1, τw−1

α j

(
t(sαw)

))−1
,

= c
(
− 1, τk

(
t(sαw)

))−1 ∏
j>k+1

c
(
− 1, τj

(
t(sαw)

))−1
= 1A,

and:

σn

(
wα, t(sαw)

)
= c
(
− τk+1

(
t(sαw)

)
, τk

(
t(sαw)

))−1
= 1A.

Thus, σn(sα, sαw) = 1A. Also:

σn(sα, w) = σn(sα, s2
αw) σn(sα, sαw) = σn(sα, sα) σn(1G, w) = 1A

by Lemma 1. This completes the proof.

Given the 2-cocycle σn ∈ Z2(G;A), the central extension G̃ of G by A can be

constructed as follows. As a set, G̃ := G ×A, with multiplication defined by:

(g, a)·(g′, a′) :=
(
gg′, aa′σn(g, g′)

)
, g, g′ ∈ G, a, a′ ∈ A.

Let sn : G → G̃ be the section g 7→ (g, 1A). Then:

σn(g, g′) = sn(g) sn(g′) sn(gg′)−1, g, g′ ∈ G.

With this notation, define s̃α := sn(sα) for all α ∈ Φ. Note that 1
G̃

:= sn(1G) is

the identity in G̃.

Let F [∆] be the free group generated by
{
sα

∣∣α ∈ Φ
}
. Using the ordering on ∆,

we order the elements of F [∆] lexicographically. For every w ∈ W , a reduced expres-

sion for w is an expression of the form w = sα1
. . . sαℓ

with ℓ = ℓ(w). Regarding
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each reduced expression as a word in F [∆], we will define the canonical expression

for w to be the largest reduced expression with respect to the lexicographic ordering

on F [∆]. Alternatively, we can define the canonical expression inductively as fol-

lows. If w = 1G, then the canonical expression for w is 1G. Next, suppose that we

have already defined the canonical expression for all w ∈ W with ℓ(w) < ℓ, ℓ ≥ 1.

If w ∈ W , ℓ(w) = ℓ, let α1 be the largest element of ∆ such that w−1α1 < 0. Note

that α1 = α̌k, where k is the largest integer i such that τi

(
t(w)

)
= signi(w) = −1.

Then w = sα1
w′ with w′ ∈ W , ℓ(w′) = ℓ − 1. If the canonical expression for w′ is

sα2
. . . sαℓ

, then we define the canonical expression for w to be sα1
. . . sαℓ

. It can

be shown that the two definitions are equivalent.

Corollary 3. Let w ∈ W , and let w = sα1
. . . sαℓ

be its canonical expression. Then

sn(w) = s̃α1
. . . s̃αℓ

.

Proof : This follows immediately from Proposition 2.

Lemma 4. We have:

s̃2
α = 1

G̃
α ∈ Φ,

s̃α s̃β = c(−1,−1) s̃β s̃α α, β ∈ Φ, 〈α, β〉 = 0,

s̃α s̃β s̃α = c(−1,−1) s̃β s̃α s̃β α, β ∈ Φ, 〈α, β〉 = −1.

Proof : The first two relations follow from Lemma 1. Now suppose that α, β ∈ ∆,

〈α, β〉 = −1, α ≻ β. Since sαsβsα is the canonical expression for w := sαsβsα,

sn(w) = s̃αs̃β s̃α by Corollary 3. On the other hand:

sn(w) = sn(sβsαsβ) = s̃β s̃αs̃β σn(sβ, sαsβ) σn(sα, sβ).

As σn(sα, sβ) = 1A by Lemma 1, it suffices to show that σn(sβ , sαsβ) = c(−1,−1).
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If α = α̌k, then β = α̌k−1, and:

τi

(
t(sβ)

)
=

{
−1 if i = k − 1,

1 otherwise,

τi

(
t(sαsβ)

)
=

{
−1 if i = k − 1 or i = k,

1 otherwise.

Factor sαsβ = t(sαsβ)η with η ∈ M. Since ℓ(wβη) = ℓ(wβ) + ℓ(η):

σn(sβ, sαsβ) = σn

(
t(sβ)wβ , t(sαsβ)η

)
= σn

(
t(sβ), wβt(sαsβ)

)
σn

(
wβ , t(sαsβ)

)

by §3 Lemma 10. We have:

σn

(
t(sβ), wβt(sαsβ)

)
=
∏
i<j

c
(
τi

(
t(sβ)

)
, τw−1

β
j

(
t(sαsβ)

))−1

=
∏

j>k−1

c
(
− 1, τw−1

β
j

(
t(sαsβ)

))−1

= c
(
− 1, τk−1

(
t(sαsβ)

))−1 ∏
j>k

c
(
− 1, τj

(
t(sαsβ)

))−1

= c(−1,−1),

and:

σn

(
wβ , t(sαsβ)

)
= c
(
− τk

(
t(sαsβ)

)
, τk−1

(
t(sαsβ)

))−1
= 1A.

This proves the lemma in this case. Finally, if α, β ∈ ∆, 〈α, β〉 = −1, β ≻ α, then

we have shown that s̃β s̃αs̃β = c(−1,−1) s̃αs̃β s̃α, hence s̃αs̃β s̃α = c(−1,−1) s̃β s̃αs̃β .

This completes the proof.

In order to compute σn(w, w′) for arbitrary w, w′ ∈ W , we first determine the

canonical expressions for w, w′, and ww′:

w = sα1
. . . sαk

,

w′ = sβ1
. . . sβl

,

ww′ = sγ1
. . . sγm

.
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By Corollary 3, we have:

σn(w, w′) = sn(w) sn(w′) sn(ww′)−1 = s̃α1
. . . s̃αk

s̃β1
. . . s̃βk

(s̃γ1
. . . s̃γm

)−1.

The relations of Lemma 4 are then used to compute the cocycle.
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