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This paper is a comprehensive study of a certain generalization of Whitney-type and Stirling-type numbers which unifies the
classical Whitney numbers, the translated Whitney numbers, the classical Stirling numbers, and the noncentral Stirling (or 𝑟-
Stirling) numbers. Several identities, applications, and occurrences are also presented.

1. Introduction

For a finite group𝐺 of order𝑚 > 0, theDowling lattice of rank
𝑛, denoted by𝑄

𝑛
(𝐺), associated with𝐺 is defined by Dowling

[1] as a class of geometric lattices and is known to generalize
the partition lattice. Following this, Benoumhani [2] defined
the Whitney numbers of the first and second kind of 𝑄

𝑛
(𝐺),

denoted by𝑤
𝑚
(𝑛, 𝑘) and𝑊

𝑚
(𝑛, 𝑘), respectively, as coefficients

in the expansions of the relations

𝑚
𝑛

(𝑥)
𝑛
=

𝑛

∑

𝑘=0

𝑤
𝑚
(𝑛, 𝑘) (𝑚𝑥 + 1)

𝑘

,

(𝑚𝑥 + 1)
𝑛

=

𝑛

∑

𝑘=0

𝑚
𝑘

𝑊
𝑚
(𝑛, 𝑘) (𝑥)

𝑘
,

(1)

where

(𝑥)
𝑘
= 𝑥 (𝑥 − 1) (𝑥 − 2) ⋅ ⋅ ⋅ (𝑥 − 𝑘 + 1) . (2)

Fundamental properties of these numbers were mostly estab-
lished by Benoumhani [2–4].

In a recent paper, Belbachir and Bousbaa [5] defined
the translated Whitney numbers of the first kind [ 𝑛

𝑘
]
(𝛼) and

second kind { 𝑛
𝑘
}
(𝛼) to be the number of permutations (resp.,

partitions) of 𝑛 elements with 𝑘 cycles (resp., parts) such that
the elements of each cycle (resp., parts) can mutate in 𝛼 ways
except for the dominant one. These numbers are known to
obey the following relations:

(𝑥 | −𝛼)
𝑛
=

𝑛

∑

𝑘=0

[

𝑛

𝑘

]

(𝛼)

𝑥
𝑘

, (3)

𝑥
𝑛

=

𝑛

∑

𝑘=0

{

𝑛

𝑘

}

(𝛼)

(𝑥 | 𝛼)
𝑘
, (4)

where

(𝑥 | 𝛼)
𝑛
=

𝑛−1

∏

𝑖=0

(𝑥 − 𝑖𝛼) . (5)

Further study of these numbers was done due to Mangontar-
um et al. [6] and Mangontarum and Dibagulun [7].

It is important to note that the numbers in (1), (3), and
(4) are known to be generalizations of the well-known Stirling
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numbers [8]. To be more precise, if𝐺 is the trivial group (𝑚 =

1), it can be easily verified that

𝑤
1
(𝑛, 𝑘) = [

𝑛 + 1

𝑘 + 1

] ,

𝑊
1
(𝑛, 𝑘) = {

𝑛 + 1

𝑘 + 1

} .

(6)

Similarly, when 𝛼 = −1 in (3) and 𝛼 = 1 in (4),

[

𝑛

𝑘

]

(−1)

= [

𝑛

𝑘

] ,

{

𝑛

𝑘

}

(1)

= {

𝑛

𝑘

} ,

(7)

where [ 𝑛
𝑘
] and { 𝑛

𝑘
} denote the classical Stirling numbers of

the first and second kind, respectively. Moreover, we have

[

𝑛

𝑘

]

(𝛼)

= (−𝛼)
𝑛−𝑘

[

𝑛

𝑘

] ,

{

𝑛

𝑘

}

(𝛼)

= 𝛼
𝑛−𝑘

{

𝑛

𝑘

} .

(8)

In line with this, Mező [9] defined the 𝑟-Whitney numbers
𝑤
𝑚,𝑟
(𝑛, 𝑘) and 𝑊

𝑚,𝑟
(𝑛, 𝑘) of the first and second kind via

expressions

𝑚
𝑛

(𝑥)
𝑛
=

𝑛

∑

𝑘=0

𝑤
𝑚,𝑟
(𝑛, 𝑘) (𝑚𝑥 + 𝑟)

𝑘

, (9)

(𝑚𝑥 + 𝑟)
𝑛

=

𝑛

∑

𝑘=0

𝑚
𝑘

𝑊
𝑚,𝑟
(𝑛, 𝑘) (𝑥)

𝑘
, (10)

respectively, to obtain remarkable formulas related to the
Bernoulli and Harmonic polynomials. Notice that by suitable
assignments of parameters, the previously mentioned num-
bers appear to be particular cases of (9) and (10). Further
combinatorial and algebraic properties of these numberswere
later on studied by Cheon and Jung [10] and Mező and
Ramirez [11].

The motivation of this paper is partly influenced by the
pair of generalizations of the numbers [ 𝑛

𝑘
] and { 𝑛

𝑘
} earlier

considered by Koutras [12] which were defined by the rela-
tions

(𝑡)
𝑛
=

𝑛

∑

𝑘=0

1

𝑘!

[

𝑑
𝑘

𝑑𝑡
𝑘
(𝑡)
𝑛
]

𝑡=𝑎

(𝑡 − 𝑎)
𝑘

, (11)

(𝑡 − 𝑎)
𝑛

=

𝑛

∑

𝑘=0

1

𝑘!

[Δ
𝑘

(𝑡 − 𝑎)
𝑛

]
𝑡=0

(𝑡)
𝑘
, (12)

where the following notations are used:

𝑠
𝑎
(𝑛, 𝑘) = (1/𝑘!)[(𝑑

𝑘

/𝑑𝑡
𝑘

)(𝑡)
𝑛
]
𝑡=𝑎

fl noncentral
Stirling numbers of the first kind,

𝑆
𝑎
(𝑛, 𝑘) = (1/𝑘!)[Δ

𝑘

(𝑡 − 𝑎)
𝑛

]
𝑡=0

fl noncentral Stirling
numbers of the second kind.

Note that these numbers can be shown to be equivalent
to Broder’s [13] 𝑟-Stirling numbers. However, the methods
by which the former were defined appear to be of distinct
motivation (cf. [13, equations (3) and (4)]). Keeping this
in mind, we propose “noncentral” versions for the classical
Whitney numbers parallel to the work of Koutras as seen in
(11) and (12). These will serve as unified generalizations of
all the abovementioned sequences of special numbers. In this
comprehensive study, we present fundamental combinatorial
properties such as recurrence relations, generating functions
and explicit formulas, and derive more results such as the
orthogonality and the inverse relations, matrix decomposi-
tions, Hankel transform, and other notable identities. Several
conjectures and questions are also mentioned for further
research.

2. Definitions and Basic Properties

2.1. Noncentral Whitney Numbers of the First Kind. For any
real numbers 𝑎, 𝑡, nonnegative integer 𝑛, and positive integer
𝑚, the expansion of (𝑡 | 𝑚)

𝑛
in a Taylor series gives

(𝑡 | 𝑚)
𝑛
=

𝑛

∑

𝑘=0

1

𝑘!

[

𝑑
𝑘

𝑑𝑡
𝑘
(𝑡 | 𝑚)

𝑛
]

𝑡=𝑎

(𝑡 − 𝑎)
𝑘

. (13)

We define the noncentral Whitney numbers of the first kind,
denoted by �̃�

𝑚,𝑎
(𝑛, 𝑘), as

�̃�
𝑚,𝑎
(𝑛, 𝑘) =

1

𝑘!

[

𝑑
𝑘

𝑑𝑡
𝑘
(𝑡 | 𝑚)

𝑛
]

𝑡=𝑎

(14)

with the initial conditions �̃�
𝑚,𝑎
(0, 0) = 1 and �̃�

𝑚,𝑎
(𝑛, 𝑘) = 0

if 𝑛 < 𝑘 or 𝑛, 𝑘 < 0. Obviously, we have the next identity.

Proposition 1. The numbers �̃�
𝑚,𝑎
(𝑛, 𝑘) satisfy the horizontal

generating function

(𝑡 | 𝑚)
𝑛
=

𝑛

∑

𝑘=0

�̃�
𝑚,𝑎
(𝑛, 𝑘) (𝑡 − 𝑎)

𝑘

. (15)

Notice that (15) is equivalent to

𝑚
𝑛

(𝑥)
𝑛
=

𝑛

∑

𝑘=0

�̃�
𝑚,𝑎
(𝑛, 𝑘) (𝑚𝑥 − 𝑎)

𝑘 (16)

when 𝑡 is replaced with 𝑚𝑥. Hence, we can see that from (9)
and (11)

�̃�
𝑚,−𝑟

(𝑛, 𝑘) = 𝑤
𝑚,𝑟
(𝑛, 𝑘) ,

�̃�
1,𝑎
(𝑛, 𝑘) = 𝑠

𝑎
(𝑛, 𝑘) .

(17)

Moreover,

�̃�
−𝛼,0

(𝑛, 𝑘) = [

𝑛

𝑘

]

(𝛼)

,

�̃�
1,0
(𝑛, 𝑘) = [

𝑛

𝑘

] .

(18)
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From (15), one has
𝑛+1

∑

𝑘=0

�̃�
𝑚,𝑎
(𝑛 + 1, 𝑘) (𝑚𝑥 − 𝑎)

𝑘

=

𝑛

∑

𝑘=0

�̃�
𝑚,𝑎
(𝑛, 𝑘)

⋅ (𝑚𝑥 − 𝑎)
𝑘

(𝑚𝑥 − 𝑛𝑚)

=

𝑛+1

∑

𝑘=0

{�̃�
𝑚,𝑎
(𝑛, 𝑘 − 1) + (𝑎 − 𝑛𝑚) �̃�

𝑚,𝑎
(𝑛, 𝑘)}

⋅ (𝑚𝑥 − 𝑎)
𝑘

.

(19)

Comparing coefficients of (𝑚𝑥 − 𝑎)𝑘 yields the next identity
useful in finding the values of �̃�

𝑚,𝑎
(𝑛, 𝑘).

Proposition 2. The noncentral Whitney numbers of the first
kind satisfy the following triangular recurrence relation:

�̃�
𝑚,𝑎
(𝑛 + 1, 𝑘) = �̃�

𝑚,𝑎
(𝑛, 𝑘 − 1)

+ (𝑎 − 𝑛𝑚) �̃�
𝑚,𝑎
(𝑛, 𝑘) .

(20)

It can be seen from this recurrence relation that

�̃�
𝑚,𝑎
(𝑛, 0) = (𝑎 | 𝑚)

𝑛
, (21)

�̃�
𝑚,𝑎
(𝑛, 𝑘) = 1, 𝑘 = 𝑛. (22)

The next corollary can be obtained by successive application
of (20).

Corollary 3. ThenoncentralWhitney numbers of the first kind
satisfy the following recurrence relations:

�̃�
𝑚,𝑎
(𝑛 + 1, 𝑘 + 1) =

𝑛

∑

𝑗=𝑘

(𝑎 | 𝑚)
𝑛+1

(𝑎 | 𝑚)
𝑗+1

�̃�
𝑚,𝑎
(𝑗, 𝑘) ,

�̃�
𝑚,𝑎
(𝑛, 𝑘) =

𝑛−𝑘

∑

𝑗=0

(𝑚𝑛 − 𝑎)
𝑗

�̃�
𝑚,𝑎
(𝑛 + 1, 𝑘 + 𝑗 + 1) .

(23)

Note that (15) can be written as

𝑚
𝑛

𝑛!(

𝑥 + 𝑎

𝑚

𝑛

) =

𝑛

∑

𝑘=0

�̃�
𝑚,𝑎
(𝑛, 𝑘) 𝑥

𝑘 (24)

when 𝑥 is replaced with 𝑥 + 𝑎. We are now ready to state the
following proposition.

Proposition 4. The exponential generating function of the se-
quence {�̃�

𝑚,𝑎
(𝑛, 𝑘)} is given by

∞

∑

𝑛=𝑘

�̃�
𝑚,𝑎
(𝑛, 𝑘)

𝑧
𝑛

𝑛!

= (1 + 𝑚𝑧)
𝑎/𝑚

[log (1 + 𝑚𝑧)]𝑘

𝑚
𝑘
𝑘!

. (25)

Proof. Multiplying both sides of (24) by 𝑧𝑛/𝑛! and summing
over 𝑛 gives us

∞

∑

𝑛=0

(

𝑥 + 𝑎

𝑚

𝑛

)𝑚
𝑛

𝑧
𝑛

=

∞

∑

𝑛=0

𝑛

∑

𝑘=0

�̃�
𝑚,𝑎
(𝑛, 𝑘) 𝑥

𝑘
𝑧
𝑛

𝑛!

. (26)

Since the left-hand side is just
(𝑥+𝑎)/𝑚

∑

𝑛=0

(

𝑥 + 𝑎

𝑚

𝑛

) (𝑚𝑧)
𝑛

= (1 + 𝑚𝑧)
𝑎/𝑚

∞

∑

𝑘=0

(

𝑥

𝑚

)

[log (1 + 𝑚𝑧)]𝑘

𝑘!

,

(27)

then we have
∞

∑

𝑘=0

{

∞

∑

𝑛=𝑘

�̃�
𝑚,𝑎
(𝑛, 𝑘)

𝑧
𝑛

𝑛!

} 𝑥
𝑘

=

∞

∑

𝑘=0

{

(1 + 𝑚𝑧)
𝑎/𝑚

𝑘!

⋅ [

log (1 + 𝑚𝑧)
𝑚

]

𝑘

}𝑥
𝑘

.

(28)

Comparing the coefficients of 𝑥𝑘 completes the proof.

Theorem 5. The noncentral Whitney numbers �̃�
𝑚,𝑎
(𝑛, 𝑘) sat-

isfy the following relations:

�̃�
𝑚,𝑎
(𝑛, 𝑘) =

𝑛

∑

𝑖=𝑘

(

𝑖

𝑘

) 𝑎
𝑖−𝑘

𝑚
𝑛−𝑖

[

𝑛

𝑖

] , (29)

�̃�
𝑚,𝑎
(𝑛, 𝑘) =

𝑛

∑

𝑖=𝑘

(

𝑖

𝑘

) 𝑎
𝑖−𝑘

[

𝑛

𝑖

]

(𝑚)

. (30)

Proof. Notice that (30) is an obvious consequence of (29).
Hence, we only choose to prove (29). Note that multiplying
by𝑚𝑛 the defining relation for the Stirling numbers [ 𝑛

𝑘
] given

by

(𝑥)
𝑛
=

𝑛

∑

𝑖=0

[

𝑛

𝑖

] 𝑥
𝑖 (31)

yields

𝑚
𝑛

(𝑥)
𝑛
= 𝑚

𝑛

𝑛

∑

𝑖=0

[

𝑛

𝑖

] (

𝑚𝑥 − 𝑎 + 𝑎

𝑚

)

𝑖

= 𝑚
𝑛

𝑛

∑

𝑖=0

[

𝑛

𝑖

]

𝑖

∑

𝑘=0

(

𝑖

𝑘

) 𝑎
𝑖−𝑘

(𝑚𝑥 − 𝑎)
𝑘
1

𝑚
𝑖

=

𝑛

∑

𝑘=0

{

𝑛

∑

𝑖=𝑘

𝑚
𝑛−𝑖

[

𝑛

𝑖

](

𝑖

𝑘

) 𝑎
𝑖−𝑘

} (𝑚𝑥 − 𝑎)
𝑘

.

(32)

Comparing the coefficients of (𝑚𝑥 − 𝑎)𝑘 with (16) gives the
desired result.

It is known that there is no simple method in expressing
first kind Stirling-type numbers explicitly. In the next theorem,
we express the numbers �̃�

𝑚,𝑎
(𝑛, 𝑘) in elementary symmetric

polynomial form by induction.

Theorem 6. The numbers �̃�
𝑚,𝑎
(𝑛, 𝑘) satisfy the explicit for-

mula

�̃�
𝑚,𝑎
(𝑛, 𝑘) = ∑

0≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑛−𝑘
≤𝑛−1

𝑛−𝑘

∏

𝑗=1

(𝑎 − 𝑖
𝑗
𝑚) . (33)
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Proof. Note that the theorem yields �̃�
𝑚,𝑎
(0, 0) = 1, which

is in line with the initial value of �̃�
𝑚,𝑎
(𝑛, 𝑘) stated earlier in

this section. Now, suppose the theorem holds up to 𝑛 for
𝑘 = 0, 1, 2, . . . , 𝑛. Then by (20),

�̃�
𝑚,𝑎
(𝑛 + 1, 𝑘)

= ∑

0≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑛+1−𝑘

≤𝑛−1

𝑛+1−𝑘

∏

𝑗=1

(𝑎 − 𝑖
𝑗
𝑚)

+ (𝑎 − 𝑛𝑚) ∑

0≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑛−𝑘
≤𝑛−1

𝑛−𝑘

∏

𝑗=1

(𝑎 − 𝑖
𝑗
𝑚)

= ∑

0≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑛+1−𝑘

≤𝑛

𝑛+1−𝑘

∏

𝑗=1

(𝑎 − 𝑖
𝑗
𝑚) .

(34)

Finally (33) yields �̃�
𝑚,𝑎
(𝑛 + 1, 𝑘) = 1 when 𝑘 = 𝑛 + 1. This is

in accordance with (22).

2.2. Noncentral Whitney Numbers of the Second Kind. Anal-
ogous to what is being done in (12), we define the noncentral
Whitney numbers of the second kind by

𝑚
𝑘

𝑘!�̃�
𝑚,𝑎
(𝑛, 𝑘) = [Δ

𝑘

(𝑚𝑡 − 𝑎)
𝑛

]
𝑡=0

, (35)

for any real numbers 𝑎 and 𝑡, nonnegative integer 𝑛, and pos-
itive integer𝑚. Now, let 𝑓(𝑥) = (𝑚𝑥−𝑎)𝑛. The known differ-
ence operator

Δ
𝑘

𝑓 (𝑥) =

𝑘

∑

𝑗=0

(−1)
𝑘−𝑗

(

𝑘

𝑗

)𝑓 (𝑥 + 𝑗) (36)

yields the explicit formula

[Δ
𝑘

(𝑚𝑥 − 𝑎)
𝑛

]
𝑥=0

=

𝑘

∑

𝑗=0

(−1)
𝑘−𝑗

(

𝑘

𝑗

) (𝑚𝑗 − 𝑎)
𝑛

. (37)

Hence we propose the following combinatorial properties of
the numbers �̃�

𝑚,𝑎
(𝑛, 𝑘).

Proposition 7. An explicit formula for �̃�
𝑚,𝑎
(𝑛, 𝑘) is given by

�̃�
𝑚,𝑎
(𝑛, 𝑘) =

1

𝑚
𝑘
𝑘!

𝑘

∑

𝑗=0

(−1)
𝑘−𝑗

(

𝑘

𝑗

) (𝑚𝑗 − 𝑎)
𝑛

. (38)

Moreover, the exponential generating function of the sequence
{�̃�

𝑚,𝑎
(𝑛, 𝑘)} is given by

∞

∑

𝑛=𝑘

�̃�
𝑚,𝑎
(𝑛, 𝑘)

𝑧
𝑛

𝑛!

=

𝑒
−𝑎𝑧

𝑚
𝑘
𝑘!

(𝑒
𝑚𝑧

− 1)
𝑘 (39)

while the horizontal generating function is

(𝑡 − 𝑎)
𝑛

=

𝑛

∑

𝑘=0

�̃�
𝑚,𝑎
(𝑛, 𝑘) (𝑡 | 𝑚)

𝑘
. (40)

Replacing 𝑡 with𝑚𝑥 in (40) yields

(𝑚𝑥 − 𝑎)
𝑘

=

𝑛

∑

𝑘=0

𝑚
𝑘

�̃�
𝑚,𝑎
(𝑛, 𝑘) (𝑥)

𝑘
. (41)

Hence,

�̃�
𝑚,−𝑟

(𝑛, 𝑘) = 𝑊
𝑚,𝑟
(𝑛, 𝑘) ,

�̃�
1,𝑎
(𝑛, 𝑘) = 𝑆

𝑎
(𝑛, 𝑘) ,

�̃�
𝛼,0
(𝑛, 𝑘) = {

𝑛

𝑘

}

(𝛼)

,

�̃�
1,0
(𝑛, 𝑘) = {

𝑛

𝑘

} .

(42)

The next identity is also immediately obtained.

Proposition 8. The noncentral Whitney numbers of the sec-
ond kind satisfy the following triangular recurrence relation:

�̃�
𝑚,𝑎
(𝑛 + 1, 𝑘) = �̃�

𝑚,𝑎
(𝑛, 𝑘 − 1)

+ (𝑘𝑚 − 𝑎) �̃�
𝑚,𝑎
(𝑛, 𝑘) .

(43)

Obviously,

�̃�
𝑚,𝑎
(𝑛, 0) = (−𝑎)

𝑛

,

�̃�
𝑚,𝑎
(𝑛, 𝑘) = 1

(44)

when 𝑘 = 𝑛. Also, from (23), we deduce the following.

Corollary 9. The noncentral Whitney numbers of the second
kind satisfy the following recurrence relations:

�̃�
𝑚,𝑎
(𝑛 + 1, 𝑘 + 1)

=

𝑛

∑

𝑗=𝑘

[𝑚 (𝑘 + 1) − 𝑎]
𝑛−𝑗

�̃�
𝑚,𝑎
(𝑗, 𝑘) ;

�̃�
𝑚,𝑎
(𝑛, 𝑘)

=

𝑛−𝑘

∑

𝑗=0

(−1)
𝑗
(−𝑎 | 𝑚)

𝑛+1

(−𝑎 | 𝑚)
𝑛−𝑗+1

�̃�
𝑚,𝑎
(𝑛 + 1, 𝑘 + 𝑗 + 1) .

(45)

It is also possible to express �̃�
𝑚,𝑎
(𝑛, 𝑘) in terms of the

classical Stirling numbers of the second kind. To do so, note
that

(𝑚𝑥 − 𝑎)
𝑛

=

𝑛

∑

𝑗=0

(

𝑛

𝑗

) (−𝑎)
𝑛−𝑗

𝑚
𝑗

𝑥
𝑗

. (46)

Using the defining relation

𝑥
𝑛

=

𝑛

∑

𝑘=0

{

𝑛

𝑘

} (𝑥)
𝑘

(47)
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of the Stirling numbers of the second kind, we obtain

(𝑚𝑥 − 𝑎)
𝑛

=

𝑛

∑

𝑗=0

(

𝑛

𝑗

) (−𝑎)
𝑛−𝑗

𝑚
𝑗

𝑗

∑

𝑘=0

{

𝑗

𝑘

} (𝑥)
𝑘

=

𝑛

∑

𝑘=0

{

{

{

𝑛

∑

𝑗=𝑘

(

𝑛

𝑗

) (−𝑎)
𝑛−𝑗

𝑚
𝑗

{

𝑗

𝑘

}

}

}

}

(𝑥)
𝑘
.

(48)

Comparing the coefficients of (𝑥)
𝑘
with (40) yields

�̃�
𝑚,𝑎
(𝑛, 𝑘) =

𝑛

∑

𝑗=𝑘

(

𝑛

𝑗

) (−𝑎)
𝑛−𝑗

𝑚
𝑗−𝑘

{

𝑗

𝑘

} . (49)

Let us formally state this in the next theorem.

Theorem 10. The numbers �̃�
𝑚,𝑎
(𝑛, 𝑘) satisfy the following

identities:

�̃�
𝑚,𝑎
(𝑛, 𝑘) =

𝑛

∑

𝑗=𝑘

(

𝑛

𝑗

) (−𝑎)
𝑛−𝑗

𝑚
𝑗−𝑘

{

𝑗

𝑘

} , (50)

�̃�
𝑚,𝑎
(𝑛, 𝑘) =

𝑛

∑

𝑗=𝑘

(

𝑛

𝑗

) (−𝑎)
𝑛−𝑗

{

𝑗

𝑘

}

(𝑚)

. (51)

Proof. The other equality follows directly.

The next theorem can be proved by similar method used
to prove (33).

Theorem 11. The numbers �̃�
𝑚,𝑎
(𝑛, 𝑘) satisfy the explicit for-

mula in complete symmetric polynomial form given by

�̃�
𝑚,𝑎
(𝑛, 𝑘) = (−1)

𝑛−𝑘

∑

0≤𝑖
1
≤𝑖
2
≤⋅⋅⋅≤𝑖
𝑛−𝑘
≤𝑘

𝑛−𝑘

∏

𝑗=1

(𝑎 − 𝑖
𝑗
𝑚) . (52)

2.3. Application to the Bernoulli Polynomials. The well-
known Bernoulli polynomials 𝐵

𝑛
(𝑥) defined by the exponen-

tial generating function [9]
∞

∑

𝑛=0

𝐵
𝑛
(𝑥)

𝑧
𝑛

𝑛!

=

𝑧𝑒
𝑧𝑥

𝑒
𝑧
− 1

, (53)

where 𝐵
𝑛
(0) = 𝐵

𝑛
are the Bernoulli numbers. In relation

to this, Mező [9] obtained some identities showing interest-
ing relationships between the 𝑟-Whitney numbers and the
Bernoulli polynomials. The said identities are as follows:

(

𝑛 + 1

𝑙

)𝐵
𝑛−𝑙+1

=

𝑛 + 1

𝑚
𝑛−𝑙+1

𝑛

∑

𝑘=0

𝑊
𝑚,𝑟
(𝑛, 𝑘)

𝑤
𝑚,𝑟
(𝑘 + 1, 𝑙)

𝑘 + 1

,

(54)

(

𝑛 + 1

𝑙

)𝐵
𝑛−𝑙+1

(

𝑟

𝑚

)

=

𝑛 + 1

𝑚
𝑛

𝑛

∑

𝑘=0

𝑚
𝑘

𝑘 + 1

𝑊
𝑚,𝑟
(𝑛, 𝑘) [

𝑘 + 1

𝑙

] .

(55)

Note that when 𝑚 = 1 and 𝑟 = 0 in both (54) and (55), we
obtain the classical identity [14]

(

𝑛 + 1

𝑙

)𝐵
𝑛−𝑙+1

= (𝑛 + 1)

𝑛

∑

𝑘=0

{

𝑛

𝑘

}[

𝑘 + 1

𝑙

]

1

𝑘 + 1

. (56)

Following the same method used by Mező [9] and
through the aid of the exponential generating function in (25)
and the identity

∞

∑

𝑛=𝑘

[

𝑛

𝑘

]

𝑧
𝑛

𝑛!

=

[log (1 + 𝑧)]𝑙

𝑙!

, (57)

we propose an analogous relationship between the Bernoulli
polynomials and the noncentral Whitney numbers of both
kinds as follows.

Proposition 12. The noncentral translated Whitney numbers
�̃�
𝑚,𝑎
(𝑛, 𝑘) and �̃�

𝑚,𝑎
(𝑘 + 1, 𝑙) satisfy the following identities:

(

𝑛 + 1

𝑙

)𝐵
𝑛−𝑙+1

=

𝑛 + 1

𝑚
𝑛−𝑙+1

𝑛

∑

𝑘=0

�̃�
𝑚,𝑎
(𝑛, 𝑘)

�̃�
𝑚,𝑎
(𝑘 + 1, 𝑙)

𝑘 + 1

,

(

𝑛 + 1

𝑙

)𝐵
𝑛−𝑙+1

(−

𝑎

𝑚

)

=

𝑛 + 1

𝑚
𝑛

𝑛

∑

𝑘=0

𝑚
𝑘

𝑘 + 1

�̃�
𝑚,𝑎
(𝑛, 𝑘) [

𝑘 + 1

𝑙

] .

(58)

3. Matrix Relations for the Noncentral
Whitney Numbers

3.1. Orthogonality and Inverse Relations

Proposition 13. The noncentral Whitney numbers of the first
and second kind satisfy the following orthogonality relations:

𝑛

∑

𝑘=𝑗

�̃�
𝑚,𝑎
(𝑛, 𝑘) �̃�

𝑚,𝑎
(𝑘, 𝑗) =

𝑛

∑

𝑘=𝑗

�̃�
𝑚,𝑎
(𝑛, 𝑘) �̃�

𝑚,𝑎
(𝑘, 𝑗)

= 𝛿
𝑛𝑗
,

(59)

where

𝛿
𝑛𝑗
=

{

{

{

0, 𝑖𝑓 𝑗 ̸= 𝑛

1, 𝑖𝑓 𝑗 = 𝑛

(60)

is the Kronecker delta.

This proposition can be easily proved by combining (16)
and (40).
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Now, since �̃�
𝑚,𝑎
(𝑛, 𝑘) = �̃�

𝑚,𝑎
(𝑛, 𝑘) = 0 when 𝑛 < 𝑘, then

we have
∞

∑

𝑘=0

�̃�
𝑚,𝑎
(𝑛, 𝑘) �̃�

𝑚,𝑎
(𝑘, 𝑗) =

∞

∑

𝑘=0

�̃�
𝑚,𝑎
(𝑛, 𝑘) �̃�

𝑚,𝑎
(𝑘, 𝑗)

= 𝛿
𝑛𝑗
.

(61)

If we defineN
𝑚,𝑎

= (�̃�
𝑚,𝑎
(𝑖, 𝑙)) to be the infinite matrix with

�̃�
𝑚,𝑎
(𝑖, 𝑙) as the (𝑖, 𝑙)th entries for 𝑖, 𝑙 = 0, 1, 2, 3, . . . and

M
𝑚,𝑎

= (�̃�
𝑚,𝑎
(𝑖, 𝑙)) as similar matrix for �̃�

𝑚,𝑎
(𝑖, 𝑙) then we

have
N
𝑚,𝑎

⋅M
𝑚,𝑎

=M
𝑚,𝑎

⋅N
𝑚,𝑎

= I, (62)
where I is the infinite-dimensional identity matrix. Thus,
M

𝑚,𝑎
=N−1

𝑚,𝑎
, whereN−1

𝑚,𝑎
is the inverse ofN

𝑚,𝑎
.

Corollary 14. The following inverse relations hold:

𝑓
𝑛
=

𝑛

∑

𝑘=0

�̃�
𝑚,𝑎
(𝑛, 𝑘) 𝑔

𝑘
⇐⇒

𝑔
𝑛
=

𝑛

∑

𝑘=0

�̃�
𝑚,𝑎
(𝑛, 𝑘) 𝑓

𝑘
,

𝑓
𝑘
=

∞

∑

𝑛=𝑘

�̃�
𝑚,𝑎
(𝑛, 𝑘) 𝑔

𝑛
⇐⇒

𝑔
𝑘
=

∞

∑

𝑛=𝑘

�̃�
𝑚,𝑎
(𝑛, 𝑘) 𝑓

𝑛
.

(63)

3.2. Matrix Decomposition of the Noncentral Whitney Num-
bers. In a recent paper, Pan [15] introduced a remarkable
matrix decomposition to give an explicit and nonrecursive
way of computing the Unified Generalized Stirling numbers
of Hsu and Shiue [16]. The said result is as follows [15,
Theorem 7]:

S
𝛼,𝛽,𝛾

= S
𝛼,0,0

⋅S
0,0,𝛾

⋅S
0,𝛽,0

. (64)
Here, the matrix S

𝛼,𝛽,𝛾
is given by

S
𝛼,𝛽,𝛾

= (𝑆 (𝑛, 𝑘; 𝛼, 𝛽, 𝛾)) , (65)
where 𝑆(𝑛, 𝑘; 𝛼, 𝛽, 𝛾) is Hsu and Shiue’s [16] generalized Stir-
ling numbers defined by

(𝑥 | 𝛼)
𝑛
=

∞

∑

𝑘=0

𝑆 (𝑛, 𝑘; 𝛼, 𝛽, 𝛾) (𝑥 − 𝛾 | 𝛽)
𝑘
. (66)

It can be verified that the (𝑛, 𝑘)th entries of thematricesS
𝛼,0,0

,
S
0,𝛽,0

, and S
0,0,𝛾

are

𝛼
𝑛−𝑘

[

𝑛

𝑘

] ,

𝛽
𝑛−𝑘

{

𝑛

𝑘

} ,

𝛾
𝑛−𝑘

(

𝑛

𝑘

) ,

(67)

respectively.

Although the noncentral Whitney numbers can be writ-
ten as

𝑆 (𝑛, 𝑘; −𝑎,𝑚, 0) = �̃�
𝑚,𝑎
(𝑛, 𝑘) ,

𝑆 (𝑛, 𝑘; 0, 𝑚, −𝑎) = �̃�
𝑚,𝑎
(𝑛, 𝑘) ,

(68)

it is not wise to assume that

M
𝑚,𝑎

fl S
−𝑎,𝑚,0

= S
−𝑎,0,0

⋅S
0,0,0

⋅S
0,𝑚,0

,

N
𝑚,𝑎

fl S
0,𝑚,𝑚

= S
0,0,0

⋅S
0,0,−𝑎

⋅S
0,𝑚,0

.

(69)

Hence, it is justifiable to establish the matrix decomposition
for the noncentral Whitney numbers of both kinds. For
convenience, we will refer to the matrices M

𝑚,𝑎
and N

𝑚,𝑎

as noncentral Whitney matrix of the first and second kind,
respectively. Also, we let

V
𝛼
(𝑥) = (1, 𝑥, (𝑥 | 𝛼)

2
, (𝑥 | 𝛼)

3
, . . . , (𝑥 | 𝛼)

𝑛
, . . .)

𝑇 (70)

be an infinite column vector.

Remark 15. In reference to the relations in (15) and (40), the
following identities seem natural:

V
𝑚
(𝑥) =M

𝑚,𝑎
⋅V

0
(𝑥 − 𝑎) , (71)

V
0
(𝑥 − 𝑎) =N

𝑚,𝑎
⋅V

𝑚
(𝑥) . (72)

Since �̃�
𝑚,0
(𝑛, 𝑘) = [

𝑛

𝑘
]
(−𝑚) and �̃�

𝑚,0
(𝑛, 𝑘) = {

𝑛

𝑘
}
(𝑚), then

we have the following matrices:

M
𝑚,0

= ([

𝑛

𝑘

]

(−𝑚)

) ,

N
𝑚,0

= ({

𝑛

𝑘

}

(𝑚)

) .

(73)

By using the “signed” translatedWhitney numbers𝑤∗
(𝑚)
(𝑛, 𝑘)

[7], the matrixM
𝑚,0

can also be rewritten as

M
𝑚,0

= (𝑤
∗

(𝑚)
(𝑛, 𝑘)) . (74)

Now, from (15),

0 =

𝑛

∑

𝑘=0

�̃�
0,𝑎
(𝑛, 𝑘) (−𝑎)

𝑘 (75)

while the binomial theorem yields

0 = (−𝑎 + 𝑎)
𝑛

=

𝑛

∑

𝑘=0

(

𝑛

𝑘

)𝑎
𝑛−𝑘

(−𝑎)
𝑘

. (76)

Thus, we have

�̃�
0,𝑎
(𝑛, 𝑘) = 𝑎

𝑛−𝑘

(

𝑛

𝑘

) . (77)
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It can be shown using a similar manner that

�̃�
0,𝑎
(𝑛, 𝑘) = (−𝑎)

𝑛−𝑘

(

𝑛

𝑘

) . (78)

It then follows that

M
0,𝑎
= (𝑎

𝑛−𝑘

(

𝑛

𝑘

)) ,

N
0,𝑎
= ((−𝑎)

𝑛−𝑘

(

𝑛

𝑘

)) .

(79)

We are now ready to state the next theorem.

Theorem 16. The decomposition formulas of the matrices
M

𝑚,𝑎
andN

𝑚,𝑎
are

M
𝑚,𝑎

=M
𝑚,0

⋅M
0,𝑎
, (80)

N
𝑚,𝑎

=N
0,𝑎
⋅N

𝑚,0
. (81)

Proof. Since

V
𝑚
(𝑥) =M

𝑚,0
⋅V

0
(𝑥) ,

V
0
(𝑥) =M

0,𝑎
⋅V

0
(𝑥 − 𝑎)

(82)

then

V
𝑚
(𝑥) =M

𝑚,0
M

0,𝑎
⋅V

0
(𝑥 − 𝑎) . (83)

Combining this with (71) gives us

(M
𝑚,𝑎

−M
𝑚,0

⋅M
0,𝑎
)V

0
(𝑥 − 𝑎) = 0, (84)

where 0 denotes an infinite-dimensional zero matrix. Conse-
quently, because 𝑥 is an arbitrary real or complex number and
V
0
(𝑥 − 𝑎) is a nonzero vector, then

M
𝑚,𝑎

=M
𝑚,0

⋅M
0,𝑎
. (85)

Equation (81) can be shown similarly.

4. Noncentral Dowling and Noncentral
Tanny-Dowling Polynomials

Benoumhani [2, 3] was the first to introduce the following
familiar polynomials:

𝐷
𝑚
(𝑛; 𝑥) =

𝑛

∑

𝑘=0

𝑊
𝑚
(𝑛, 𝑘) 𝑥

𝑘

, (86)

F
𝑚
(𝑛; 𝑥) =

𝑛

∑

𝑘=0

𝑘!𝑊
𝑚
(𝑛, 𝑘) 𝑥

𝑘

. (87)

𝐷
𝑚
(𝑛; 𝑥) and F

𝑚
(𝑛; 𝑥) are known as the Dowling and the

Tanny-Dowling polynomials. Moreover, when𝑚 = 1 in (87),
the resulting polynomial

F
1
(𝑛; 𝑥) =

𝑛

∑

𝑘=0

𝑘! {

𝑛

𝑘

}𝑥
𝑘 (88)

is called geometric polynomials [17] and was earlier studied
by Tanny [18].

Denoted by ̃D
𝑚,𝑎
(𝑛; 𝑥) and ̃F

𝑚,𝑎
(𝑛; 𝑥), the noncentral

Dowling and the noncentral Tanny-Dowling polynomials
can be defined as

̃D
𝑚,𝑎
(𝑛; 𝑥) =

𝑛

∑

𝑘=0

�̃�
𝑚,𝑎
(𝑛, 𝑘) 𝑥

𝑘

, (89)

̃F
𝑚,𝑎
(𝑛; 𝑥) =

𝑛

∑

𝑘=0

𝑘!�̃�
𝑚,𝑎
(𝑛, 𝑘) 𝑥

𝑘

. (90)

For brevity, we also call ̃D
𝑚,𝑎
(𝑛; 1) ≡

̃D
𝑚,𝑎
(𝑛) and ̃F

𝑚,𝑎
(𝑛;

1) ≡
̃F
𝑚,𝑎
(𝑛) as the noncentral Dowling and the noncentral

Tanny-Dowling numbers, respectively. Notice that through
the use of the exponential generating function in (39) and the
explicit formula (38), the noncentral Dowling polynomials
can be defined alternatively by (91) or explicitly by the
Dobinski-type identity (92) in the following proposition.

Proposition 17. The following identities hold:
∞

∑

𝑛=0

̃D
𝑚,𝑎
(𝑛; 𝑥)

𝑧
𝑛

𝑛!

= 𝑒
−𝑎𝑧+(𝑒

𝑚𝑧
−1)(𝑥/𝑚)

, (91)

̃D
𝑚,𝑎
(𝑛; 𝑥) = 𝑒

−𝑥/𝑚

∞

∑

𝑖=0

(

𝑥

𝑚

)

𝑖
(𝑚𝑖 − 𝑎)

𝑛

𝑖!

. (92)

These identities are actually equivalent to those of the 𝑟-
Whitney polynomials when 𝑎 = −𝑟 and are generalizations
of the translated Dowling polynomials (cf. [6, equations (22)
and (25)]). As for the noncentral Tanny-Dowling polynomi-
als, since (39) can be rewritten as

∞

∑

𝑛=𝑘

𝑘!�̃�
𝑚,𝑎
(𝑛, 𝑘)

𝑧
𝑛

𝑛!

= 𝑒
−𝑎𝑧

(

𝑒
𝑚𝑧

− 1

𝑚

)

𝑘

, (93)

then we get
∞

∑

𝑛=𝑘

̃F
𝑚,𝑎
(𝑛; 𝑥)

𝑧
𝑛

𝑛!

=

∞

∑

𝑛=0

𝑛

∑

𝑘=0

𝑘!�̃�
𝑚,𝑎
(𝑛, 𝑘)

𝑧
𝑛

𝑛!

=

∞

∑

𝑘=0

𝑒
−𝑎𝑧

(

𝑒
𝑚𝑧

− 1

𝑚

)

𝑘

= 𝑒
−𝑎𝑧

(

1

1 − (𝑒
𝑚𝑧
− 1) 𝑥/𝑚

) .

(94)

This is equivalent to (95) in the next theorem.

Theorem 18. The polynomials̃F
𝑚,𝑎
(𝑛; 𝑥) satisfy the exponen-

tial generating function
∞

∑

𝑛=𝑘

̃F
𝑚,𝑎
(𝑛; 𝑥)

𝑧
𝑛

𝑛!

=

𝑚𝑒
−𝑎𝑧

𝑚 − 𝑥 (𝑒
𝑚𝑧
− 1)

. (95)

The case in (95), where 𝑥 = 𝑚𝑦, immediately yields
∞

∑

𝑛=𝑘

̃F
𝑚,𝑎
(𝑛;𝑚𝑦)

𝑧
𝑛

𝑛!

=

𝑒
−𝑎𝑧

1 − 𝑦 (𝑒
𝑚𝑧
− 1)

. (96)
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Equations (95) and (96) reduce to Benoumhani’s results (cf.
[3, Theorem 3]) when 𝑎 = −1. The next theorem presents the
explicit formula for the polynomials ̃F

𝑚,𝑎
(𝑛; 𝑥).

Theorem 19. The following explicit formula holds:

̃F
𝑚,𝑎
(𝑛; 𝑥) =

𝑚

𝑥 + 𝑚

∞

∑

𝑘=0

(

𝑥

𝑥 + 𝑚

)

𝑘

(𝑚𝑘 − 𝑎)
𝑛

. (97)

Proof. To prove this theorem, we first show that

̃F
𝑚,𝑎
(𝑛;𝑚𝑦) =

1

1 + 𝑦

∞

∑

𝑘=0

(

𝑦

1 + 𝑦

)

𝑘

(𝑚𝑘 − 𝑎)
𝑛

. (98)

Note that by algebraic manipulation, one readily gets
∞

∑

𝑛=0

(

1

1 + 𝑦

∞

∑

𝑘=0

(

𝑦

1 + 𝑦

)

𝑘

(𝑚𝑘 − 𝑎)
𝑛

)

𝑧
𝑛

𝑛!

=

∞

∑

𝑛=0

(

1

1 + 𝑦

⋅

∞

∑

𝑘=0

(

𝑦

1 + 𝑦

)

𝑘

⋅

𝑛

∑

𝑖=0

(

𝑛

𝑖

) (𝑘𝑚)
𝑛−𝑖

(−𝑎)
𝑖

)

𝑧
𝑛

𝑛!

=

1

1 + 𝑦

∞

∑

𝑖=0

(−𝑎𝑧)
𝑖

𝑖!

∞

∑

𝑘=0

(

𝑦

1 + 𝑦

)

𝑘

⋅

∞

∑

𝑛=𝑖

(𝑘𝑚)
𝑛−𝑖

(𝑛 − 𝑖)!

𝑧
𝑛−𝑖

.

(99)

Reindexing the third sum and using (96), we get

1

1 + 𝑦

∞

∑

𝑖=0

(−𝑎𝑧)
𝑖

𝑖!

∞

∑

𝑘=0

(

𝑦

1 + 𝑦

)

𝑘 ∞

∑

𝑛=𝑖

(𝑘𝑚𝑧)
𝑛−𝑖

(𝑛 − 𝑖)!

=

1

1 + 𝑦

𝑒
−𝑎𝑧

∞

∑

𝑘=0

(

𝑦

1 + 𝑦

)

𝑘 ∞

∑

ℓ=0

(𝑘𝑚𝑧)
ℓ

ℓ!

=

1

1 + 𝑦

𝑒
−𝑎𝑧

∞

∑

𝑘=0

(

𝑦

1 + 𝑦

)

𝑘

𝑒
𝑘𝑚𝑧

=

1

1 + 𝑦

⋅

𝑒
−𝑎𝑧

1 − (𝑦/ (1 + 𝑦)) 𝑒
𝑚𝑧

=

∞

∑

𝑛=0

̃F
𝑚,𝑎
(𝑛;𝑚𝑦)

𝑧
𝑛

𝑛!

.

(100)

Comparing the coefficients of 𝑧𝑛 yields (98).The proof is then
completed when𝑚𝑦 is replaced with 𝑥 in (98).

Identity (98) used in the proof of the previous theorem
is a generalization of Benoumhani’s [3, Theorem 4]. On the
other hand, when 𝑥 = 1,

̃F
𝑚,𝑎
(𝑛) =

∞

∑

𝑘=0

1

2
𝑘+1

(𝑚𝑘 − 𝑎)
𝑛

. (101)

Moreover, we get the familiar representation ofF
𝑚
(𝑛; 1) due

to Rota [19] given by

̃F
𝑚,−1

(𝑛; 1) =

∞

∑

𝑘=0

1

2
𝑘+1

(𝑚𝑘 + 1)
𝑛 (102)

when 𝑎 = −1 in (101).

It is well-known that the binomial coefficients ( 𝑛
𝑘
) satisfy

the binomial inversion formula

𝑓
𝑘
=

𝑘

∑

𝑗=0

(

𝑘

𝑗

)𝑔
𝑗
⇐⇒

𝑔
𝑘
=

𝑘

∑

𝑗=0

(−1)
𝑘−𝑗

(

𝑘

𝑗

)𝑓
𝑗
.

(103)

The rest of this section contains corollaries which are ob-
tained through the use of this.

Theorem 20. The noncentral Whitney numbers of the second
kind satisfy the following recursion formula:

�̃�
𝑚,𝑎+1

(𝑛, 𝑘) =

𝑛

∑

𝑗=0

(−1)
𝑛−𝑗

(

𝑛

𝑗

) �̃�
𝑚,𝑎
(𝑗, 𝑘) . (104)

Proof. Using the explicit formula (38) gives us

�̃�
𝑚,𝑎+1

(𝑛, 𝑘) =

1

𝑚
𝑘
𝑘!

𝑘

∑

𝑖=0

(−1)
𝑘−𝑖

(

𝑘

𝑖

) (𝑚𝑖 − 𝑎 − 1)
𝑛

=

1

𝑚
𝑘
𝑘!

𝑘

∑

𝑖=0

(−1)
𝑘−𝑖

(

𝑘

𝑖

)

𝑛

∑

𝑗=0

(

𝑛

𝑗

) (𝑚𝑖 − 𝑎)
𝑛−𝑗

(−1)
𝑗

=

𝑛

∑

𝑗=0

(−1)
𝑗

(

𝑛

𝑗

)

⋅

1

𝑚
𝑘
𝑘!

𝑘

∑

𝑖=0

(

𝑘

𝑖

) (−1)
𝑘−𝑖

(𝑚𝑖 − 𝑎)
𝑛−𝑗

=

𝑛

∑

𝑗=0

(−1)
𝑗

(

𝑛

𝑗

) �̃�
𝑚,𝑎
(𝑛 − 𝑗, 𝑘) .

(105)

Reindexing the summation yields (104).

Applying the abovementioned binomial inversion for-
mula for 𝑔

𝑘
= �̃�

𝑚,𝑎+1
(𝑛, 𝑘) and 𝑓

𝑗
= �̃�

𝑚,𝑎
(𝑗, 𝑘), we get the

following corollary.

Corollary 21. The noncentral Whitney numbers of the second
kind satisfy the relation given by

�̃�
𝑚,𝑎
(𝑛, 𝑘) =

𝑛

∑

𝑗=0

(

𝑛

𝑗

) �̃�
𝑚,𝑎+1

(𝑗, 𝑘) . (106)

Using (104), we have
𝑛

∑

𝑘=0

�̃�
𝑚,𝑎+1

(𝑛, 𝑘) 𝑥
𝑘

=

𝑛

∑

𝑘=0

𝑛

∑

𝑗=0

(−1)
𝑗

(

𝑛

𝑗

) �̃�
𝑚,𝑎
(𝑛 − 𝑗, 𝑘) 𝑥

𝑘

=

𝑛

∑

𝑗=0

(−1)
𝑛−𝑗

(

𝑛

𝑗

)

𝑛

∑

𝑘=0

�̃�
𝑚,𝑎
(𝑗, 𝑘) 𝑥

𝑘

.

(107)
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Similarly, we have

𝑛

∑

𝑘=0

𝑘!�̃�
𝑚,𝑎+1

(𝑛, 𝑘) 𝑥
𝑘

=

𝑛

∑

𝑘=0

𝑛

∑

𝑗=0

(−1)
𝑗

(

𝑛

𝑗

) 𝑘!�̃�
𝑚,𝑎
(𝑛 − 𝑗, 𝑘) 𝑥

𝑘

=

𝑛

∑

𝑗=0

(−1)
𝑛−𝑗

(

𝑛

𝑗

)

𝑛

∑

𝑘=0

𝑘!�̃�
𝑚,𝑎
(𝑗, 𝑘) 𝑥

𝑘

.

(108)

Thus, we have the following theorem.

Theorem22. ThenoncentralDowling and the noncentral Tan-
ny-Dowling polynomials satisfy the following recursions:

̃D
𝑚,𝑎+1

(𝑛; 𝑥) =

𝑛

∑

𝑗=0

(−1)
𝑛−𝑗

(

𝑛

𝑗

)
̃D
𝑚,𝑎
(𝑗; 𝑥) , (109)

̃F
𝑚,𝑎+1

(𝑛; 𝑥) =

𝑛

∑

𝑗=0

(−1)
𝑛−𝑗

(

𝑛

𝑗

)
̃F
𝑚,𝑎
(𝑗; 𝑥) . (110)

Consequently, we have the following.

Corollary 23. The noncentral Dowling and Tanny-Dowling
polynomials satisfy the relations given by

̃D
𝑚,𝑎
(𝑛; 𝑥) =

𝑛

∑

𝑗=0

(

𝑛

𝑗

)
̃D
𝑚,𝑎+1

(𝑗; 𝑥) , (111)

̃F
𝑚,𝑎
(𝑛; 𝑥) =

𝑛

∑

𝑗=0

(

𝑛

𝑗

)
̃F
𝑚,𝑎+1

(𝑗; 𝑥) . (112)

Theorem 24. For nonnegative real number 𝑚, the noncentral
Whitney numbers of the second kind satisfy

�̃�
𝑚+1,𝑎

(𝑛, 𝑘)

=

1

(𝑚 + 1)
𝑘

𝑚
𝑛−𝑘

𝑛

∑

𝑗=0

(

𝑛

𝑗

) 𝑎
𝑛−𝑗

(𝑚 + 1)
𝑗

�̃�
𝑚,𝑎
(𝑗, 𝑘) .

(113)

Proof. We can rewrite the explicit formula (38) as

�̃�
𝑚+1,𝑎

(𝑛, 𝑘) =

(𝑚 + 1)
𝑛−𝑘

𝑘!

⋅

𝑘

∑

𝑖=0

(−1)
𝑘−𝑖

(

𝑘

𝑖

)(𝑖 −

𝑎

𝑚 + 1

)

𝑛

=

(𝑚 + 1)
𝑛−𝑘

𝑘!

⋅

𝑘

∑

𝑖=0

(−1)
𝑘−𝑖

(

𝑘

𝑖

)(𝑖 −

𝑎

𝑚

+

𝑎

𝑚 (𝑚 + 1)

)

𝑛

=

(𝑚 + 1)
𝑛−𝑘

𝑘!

𝑘

∑

𝑖=0

(−1)
𝑘−𝑖

(

𝑘

𝑖

)

𝑛

∑

𝑗=0

(

𝑛

𝑗

)(𝑖 −

𝑎

𝑚

)

𝑛−𝑗

⋅ (

𝑎

𝑚 (𝑚 + 1)

)

𝑗

= (𝑚 + 1)
𝑛

⋅

𝑛

∑

𝑗=0

(

𝑛

𝑗

)

𝑚
𝑘

(𝑚 + 1)
𝑘

𝑚
𝑛−𝑗

(

𝑎

𝑚 (𝑚 + 1)

)

𝑗

⋅

1

𝑚
𝑘
𝑘!

⋅

𝑘

∑

𝑖=0

(

𝑘

𝑖

) (−1)
𝑘−𝑖

(𝑚𝑖 − 𝑎)
𝑛−𝑗

=

1

(𝑚 + 1)
𝑘

𝑚
𝑛−𝑘

⋅

𝑛

∑

𝑗=0

(

𝑛

𝑗

) 𝑎
𝑗

(𝑚 + 1)
𝑛−𝑗

�̃�
𝑚,𝑎
(𝑛 − 𝑗, 𝑘) .

(114)

Reindexing the summation yields (113).

The next corollary is easily obtained by applying binomial
inversion formula to (113).

Corollary 25. The noncentral Whitney numbers of the second
kind satisfy the relation given by

�̃�
𝑚,𝑎
(𝑛, 𝑘)

=

1

(𝑚 + 1)
𝑛−𝑘

𝑛

∑

𝑗=0

(

𝑛

𝑗

) (−𝑎)
𝑛−𝑗

(𝑚)
𝑗−𝑘

�̃�
𝑚+1,𝑎

(𝑗, 𝑘) .

(115)

Theorem 26. The noncentral Dowling and the noncentral
Tanny-Dowling polynomials satisfy the following recursions:

̃D
𝑚+1,𝑎

(𝑛; 𝑥)

=

1

𝑚
𝑛

𝑛

∑

𝑗=0

𝑎
𝑛−𝑗

(

𝑛

𝑗

) (𝑚 + 1)
𝑗̃D

𝑚,𝑎
(𝑗;

𝑚

𝑚 + 1

𝑥) ,

̃F
𝑚+1,𝑎

(𝑛; 𝑥)

=

1

𝑚
𝑛

𝑛

∑

𝑗=0

𝑎
𝑛−𝑗

(

𝑛

𝑗

) (𝑚 + 1)
𝑗
̃F
𝑚,𝑎
(𝑗;

𝑚

𝑚 + 1

𝑥) .

(116)

Proof. Combining (89) and (113) gives us

̃D
𝑚+1,𝑎

(𝑛; 𝑥) =

𝑛

∑

𝑘=0

�̃�
𝑚+1,𝑎

(𝑛, 𝑘) 𝑥
𝑘

=

𝑛

∑

𝑘=0

1

(𝑚 + 1)
𝑘

𝑚
𝑛−𝑘

⋅

𝑛

∑

𝑗=0

(

𝑛

𝑗

) 𝑎
𝑗

(𝑚 + 1)
𝑛−𝑗

�̃�
𝑚,𝑎
(𝑛 − 𝑗, 𝑘) 𝑥

𝑘

=

1

𝑚
𝑛

⋅

𝑛

∑

𝑗=0

𝑎
𝑗

(

𝑛

𝑗

) (𝑚 + 1)
𝑛−𝑗

𝑛

∑

𝑘=0

�̃�
𝑚,𝑎
(𝑛 − 𝑗, 𝑘)

⋅ (

𝑚𝑥

𝑚 + 1

)

𝑘

=

1

𝑚
𝑛

𝑛

∑

𝑗=0

𝑎
𝑛−𝑗

(

𝑛

𝑗

) (𝑚 + 1)
𝑗
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⋅

𝑛

∑

𝑘=0

�̃�
𝑚,𝑎
(𝑗, 𝑘) (

𝑚𝑥

𝑚 + 1

)

𝑘

=

1

𝑚
𝑛

⋅

𝑛

∑

𝑗=0

𝑎
𝑛−𝑗

(

𝑛

𝑗

) (𝑚 + 1)
𝑗̃D

𝑚,𝑎
(𝑗,

𝑚𝑥

𝑚 + 1

) .

(117)

Similarly, (90) and (113) give us

̃F
𝑚+1,𝑎

(𝑛; 𝑥) =

𝑛

∑

𝑘=0

𝑘!�̃�
𝑚+1,𝑎

(𝑛, 𝑘) 𝑥
𝑘

=

𝑛

∑

𝑘=0

𝑘!

(𝑚 + 1)
𝑘

𝑚
𝑛−𝑘

𝑛

∑

𝑗=0

(

𝑛

𝑗

) 𝑎
𝑗

(𝑚 + 1)
𝑛−𝑗

�̃�
𝑚,𝑎

⋅ (𝑛 − 𝑗, 𝑘) 𝑥
𝑘

=

1

𝑚
𝑛

𝑛

∑

𝑗=0

𝑎
𝑗

(

𝑛

𝑗

) (𝑚 + 1)
𝑛−𝑗

⋅

𝑛

∑

𝑘=0

𝑘!�̃�
𝑚,𝑎
(𝑛 − 𝑗, 𝑘) (

𝑚𝑥

𝑚 + 1

)

𝑘

=

1

𝑚
𝑛

⋅

𝑛

∑

𝑗=0

𝑎
𝑛−𝑗

(

𝑛

𝑗

) (𝑚 + 1)
𝑗

𝑛

∑

𝑘=0

𝑘!�̃�
𝑚,𝑎
(𝑗, 𝑘) (

𝑚𝑥

𝑚 + 1

)

𝑘

=

1

𝑚
𝑛

𝑛

∑

𝑗=0

𝑎
𝑛−𝑗

(

𝑛

𝑗

) (𝑚 + 1)
𝑗
̃F
𝑚,𝑎
(𝑗,

𝑚𝑥

𝑚 + 1

) .

(118)

Remark 27. When 𝑎 = −𝑟, we get

𝐷
𝑚+1,𝑟

(𝑛; 𝑥)

=

1

𝑚
𝑛

𝑛

∑

𝑗=0

(−𝑟)
𝑛−𝑗

(

𝑛

𝑗

) (𝑚 + 1)
𝑗

𝐷
𝑚,𝑟
(𝑗;

𝑚

𝑚 + 1

𝑥) ,

̃F
𝑚+1,−𝑟

(𝑛; 𝑥)

=

1

𝑚
𝑛

𝑛

∑

𝑗=0

(−𝑟)
𝑛−𝑗

(

𝑛

𝑗

) (𝑚 + 1)
𝑗
̃F
𝑚,−𝑟

(𝑗;

𝑚

𝑚 + 1

𝑥) ,

(119)

where 𝐷
𝑚,𝑟
(𝑛; 𝑥) are the 𝑟-Dowling polynomials [10, 17].

Moreover, the case where 𝑎 = −1 yields [17, Theorems 2 and
3]

𝐷
𝑚+1

(𝑛; 𝑥)

=

1

𝑚
𝑛

𝑛

∑

𝑗=0

(−1)
𝑛−𝑗

(

𝑛

𝑗

) (𝑚 + 1)
𝑗

𝐷
𝑚
(𝑗;

𝑚

𝑚 + 1

𝑥) ,

F
𝑚+1

(𝑛; 𝑥)

=

1

𝑚
𝑛

𝑛

∑

𝑗=0

(−𝑟)
𝑛−𝑗

(

𝑛

𝑗

) (𝑚 + 1)
𝑗

F
𝑚
(𝑗;

𝑚

𝑚 + 1

𝑥) .

(120)

The binomial inversion formula readily yields the follow-
ing.

Corollary 28. The noncentral Dowling and Tanny-Dowling
polynomials satisfy the relations given by

̃D
𝑚,𝑎
(𝑛;

𝑚

𝑚 + 1

𝑥)

=

1

(𝑚 + 1)
𝑛

𝑛

∑

𝑗=0

(−𝑎)
𝑛−𝑗

(

𝑛

𝑗

)𝑚
𝑗̃D

𝑚+1,𝑎
(𝑗; 𝑥) ,

̃F
𝑚,𝑎
(𝑛;

𝑚

𝑚 + 1

𝑥)

=

1

(𝑚 + 1)
𝑛

𝑛

∑

𝑗=0

(−𝑎)
𝑛−𝑗

(

𝑛

𝑗

)𝑚
𝑗
̃F
𝑚+1,𝑎

(𝑗; 𝑥) .

(121)

The next theorem and corollary can be obtained by simi-
lar method as the previous ones. The proof is left as exercise.

Theorem 29. The following recursion formulas hold:

�̃�
𝑚+1,𝑎+1

(𝑛, 𝑘) =

1

(𝑚 + 1)
𝑘

𝑚
𝑛−𝑘

𝑛

∑

𝑗=0

(

𝑛

𝑗

) (𝑎 − 𝑚)
𝑛−𝑗

⋅ (𝑚 + 1)
𝑗

�̃�
𝑚,𝑎
(𝑗, 𝑘) ,

̃D
𝑚+1,𝑎+1

(𝑛; 𝑥) =

1

𝑚
𝑛

𝑛

∑

𝑗=0

(𝑎 − 𝑚)
𝑛−𝑗

(

𝑛

𝑗

) (𝑚 + 1)
𝑗

⋅
̃D
𝑚,𝑎
(𝑗;

𝑚

𝑚 + 1

𝑥) ,

̃F
𝑚+1,𝑎+1

(𝑛; 𝑥) =

1

𝑚
𝑛

𝑛

∑

𝑗=0

(𝑎 − 𝑚)
𝑛−𝑗

(

𝑛

𝑗

) (𝑚 + 1)
𝑗

⋅
̃F
𝑚,𝑎
(𝑗;

𝑚

𝑚 + 1

𝑥) .

(122)

Corollary 30. The following recursion formulas hold:

�̃�
𝑚,𝑎
(𝑛, 𝑘) =

1

(𝑚 + 1)
𝑛−𝑘

𝑚
𝑘

𝑛

∑

𝑗=0

(

𝑛

𝑗

) (𝑚 − 𝑎)
𝑛−𝑗

⋅ 𝑚
𝑗

�̃�
𝑚+1,𝑎+1

(𝑗, 𝑘) ,

̃D
𝑚,𝑎
(𝑛;

𝑚

𝑚 + 1

𝑥) =

1

(𝑚 + 1)
𝑛

𝑛

∑

𝑗=0

(𝑚 − 𝑎)
𝑛−𝑗

⋅ (

𝑛

𝑗

)𝑚
𝑗̃D

𝑚+1,𝑎+1
(𝑗; 𝑥) ,

̃F
𝑚,𝑎
(𝑛;

𝑚

𝑚 + 1

𝑥) =

1

(𝑚 + 1)
𝑛

𝑛

∑

𝑗=0

(𝑚 − 𝑎)
𝑛−𝑗

⋅ (

𝑛

𝑗

)𝑚
𝑗
̃F
𝑚+1,𝑎+1

(𝑗; 𝑥) .

(123)

The 𝑛th Bell polynomial

𝜙
𝑛
(𝑥) =

𝑛

∑

𝑘=0

{

𝑛

𝑘

}𝑥
𝑘 (124)
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is known to satisfy the explicit formula

𝜙
𝑛
(𝑥) = (

1

𝑒

)

𝑥 ∞

∑

𝑖=0

𝑖
𝑛

𝑖!

𝑥
𝑖

. (125)

Now, from (50), we have

̃D
𝑚,𝑎
(𝑛; 𝑥) =

𝑛

∑

𝑘=0

𝑛

∑

𝑗=0

(

𝑛

𝑗

) (−𝑎)
𝑛−𝑗

𝑚
𝑗−𝑘

{

𝑗

𝑘

}𝑥
𝑘

=

𝑛

∑

𝑗=0

(

𝑛

𝑗

) (−𝑎)
𝑛−𝑗

𝑚
𝑗

𝑛

∑

𝑘=0

{

𝑗

𝑘

}(

𝑥

𝑚

)

𝑘

.

(126)

Thus we have the next theorem.

Theorem 31. The noncentral Dowling polynomials satisfy

̃D
𝑚,𝑎
(𝑛; 𝑥) =

𝑛

∑

𝑗=0

(−𝑎)
𝑛−𝑗

(

𝑛

𝑗

)𝑚
𝑗

𝜙
𝑗
(

𝑥

𝑚

) . (127)

Corollary 32. The Bell polynomials satisfy the following iden-
tity:

𝜙
𝑛
(

𝑥

𝑚

) =

1

𝑚
𝑛

𝑛

∑

𝑗=0

𝑎
𝑛−𝑗

(

𝑛

𝑗

)
̃D
𝑚,𝑎
(𝑗; 𝑥) . (128)

The case where 𝑎 = −1 in (127) and (128) is due to
Rahmani (cf. [17, Theorem 4 and Corollary 1]). Obviously,
̃D
𝑚,𝑎
(𝑛; 𝑥) is the binomial transform of 𝑎𝑛−𝑗𝑚𝑗𝜙

𝑗
(𝑥/𝑚). The

curious identity

ℓ

∑

𝑘=0

(

ℓ

𝑘

)(

𝑛 + 𝑘

𝑠

)𝛼
𝑛+𝑘−𝑠

=

ℓ

∑

𝑘=0

(

𝑛

𝑘

)(

ℓ + 𝑘

𝑠

) (−1)
𝑛−𝑘

𝛽
ℓ+𝑘−𝑠

(129)

is due to Chen [20, Theorem 3.2]. When ℓ = 𝑠 = 𝑛, and if we
let 𝛼

𝑘
= 𝑎

𝑛−𝑘

𝑚
𝑘

𝜙
𝑘
(𝑥/𝑚) and 𝛽

𝑘
=
̃D
𝑚,𝑎
(𝑘; 𝑥), then we have

the following.

Corollary 33. The noncentral Dowling polynomials and the
Bell polynomials can be related as follows:

𝑛

∑

𝑘=0

(

𝑛

𝑘

)(

𝑛 + 𝑘

𝑠

) 𝑎
𝑛−𝑘

𝑚
𝑘

𝜙
𝑘
(

𝑥

𝑚

)

=

𝑛

∑

𝑘=0

(

𝑛

𝑘

)(

𝑛 + 𝑘

𝑠

) (−1)
𝑛−𝑘̃D

𝑚,𝑎
(𝑘; 𝑥) .

(130)

5. The Hankel Transform of
Noncentral Dowling Numbers

Hankel matrices had been studied by several mathematicians
because of their connections in some areas of mathematics,
physics, and computer science. Further theories and appli-
cations of these matrices have been established including

the Hankel determinant and Hankel transform. The Hankel
transform was first introduced in Sloane’s sequence 𝐴055878
[21] and was later on studied by Layman [22]. Layman [22]
first defined the Hankel transform of an integer sequence as
the sequence of Hankel determinants of order 𝑛 of a given
sequence. Among the remarkable properties established by
Layman [22] is the property that any integer sequence has the
same Hankel transform as its binomial transform, as well as
its invert transform. In this section, we thoroughly investigate
the Hankel transform of the noncentral Dowling numbers
using this property.

Let Γ = (𝑏
𝑛,𝑘
) be the infinite lower triangular matrix

defined recursively by

𝑏
𝑛,𝑘
= 𝑏

𝑛−𝑘,𝑘−1
+ (𝑚𝑘 + 1) 𝑏

𝑛−1,𝑘
+ 𝑚 (𝑘 + 1) 𝑏

𝑛−1,𝑘+1
, (131)

where 𝑛 ≥ 1, 𝑏
0,0
= 1, 𝑏

0,𝑘
= 0 if 𝑘 > 0 and 𝑏

𝑛,𝑘
= 0 if 𝑛 < 𝑘.

The next proposition shows that (131) is a recurrence
relation of the infinite lower triangular matrix Γ = (𝑏

𝑛,𝑘
),

where the entries in the 0-column are the numbers �̃�
𝑚,0
(𝑛).

Proposition 34. Let Φ
𝑘
(𝑧) be the exponential generating

function of the 𝑘th column of matrix Γ. Then

Φ
𝑘
(𝑧) = 𝑒

𝑚
−1
(𝑒
𝑚𝑧
−1)
(𝑒
𝑚𝑧

− 1)
𝑘

𝑚
𝑘
𝑘!

,
(132)

where 𝑘 ≥ 0 and the 0-column entries of Γ are the numbers
�̃�
𝑚,0
(𝑛).

To obtain the Hankel transform of the noncentral Dowl-
ing numbers, the next lemma which may be proved by
induction is essential.

Lemma 35. Let 𝑐
𝑛
be the 𝑛th row of Γ = (𝑏

𝑛,𝑘
). Define

𝑐
𝑛
∘ 𝑐
𝑝
= ∑

𝑘≥0

𝑏
𝑛,𝑘
𝑏
𝑝,𝑘
𝑚
𝑘

𝑘!. (133)

Then for all nonnegative integers 𝑛 and 𝑝

𝑐
𝑛
∘ 𝑐
𝑝
= 𝑏

𝑛+𝑝,0
= �̃�

𝑚,0
(𝑛 + 𝑝) . (134)

Before stating the next theorem, we first let

D
𝑚,𝑎

=
(

(

̃D
𝑚,𝑎
(0)

̃D
𝑚,𝑎
(1) ⋅ ⋅ ⋅

̃D
𝑚,𝑎
(𝑛)

̃D
𝑚,𝑎
(1)

̃D
𝑚,𝑎
(2) ⋅ ⋅ ⋅

̃D
𝑚,𝑎
(𝑛 + 1)

.

.

.

.

.

. ⋅ ⋅ ⋅

.

.

.

̃D
𝑚,𝑎
(𝑛)

̃D
𝑚,𝑎
(𝑛 + 1) ⋅ ⋅ ⋅

̃D
𝑚,𝑎
(2𝑛)

)

)

(135)

and 𝐻{D
𝑚,𝑎
} be the Hankel transform of the numbers

̃D
𝑚,𝑎
(𝑛).

Theorem 36. The Hankel transform of the numbers ̃D
𝑚,0
(𝑛)

is given by

𝐻{D
𝑚,0
} = 𝑚

(
𝑛+1

2
)

∏

𝑗≥0

𝑗!. (136)
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Proof. Suppose Γ
𝑛
is the lower triangular submatrix of Γ con-

sisting of the rows and columns numbered from 0 to 𝑛. Then
det Γ𝑇

𝑛
= 1. Let Γ

𝑛
= (𝑚

𝑗

𝑗!𝑏
𝑖,𝑗
)
0≤𝑖,𝑖≤𝑛

. It implies that

det Γ
𝑛
=

𝑛

∏

𝑗=0

𝑚
𝑗

𝑗!. (137)

On the other hand, by (134), we have Γ
𝑛
⋅ Γ

𝑇

𝑛
= (𝑐

𝑖,𝑗
)
0≤𝑖,𝑗≤𝑛

,
where

𝑐
𝑖,𝑗
= ∑

𝑘≥0

𝑏
𝑖,𝑗
𝑏
𝑗,𝑘
𝑚
𝑗

𝑗! = 𝑏
𝑖+𝑗,0

= �̃�
𝑚,0
(𝑖 + 𝑗) . (138)

That is, Γ
𝑛
⋅ Γ
𝑇

𝑛
= (�̃�

𝑚,0
(𝑖 + 𝑗))

0≤𝑖,𝑗≤𝑛
. Thus, we have

det (Γ
𝑛
⋅ Γ
𝑇

𝑛
) = (det Γ

𝑛
) (det Γ𝑇

𝑛
) =

𝑛

∏

𝑗=0

𝑚
𝑗

𝑗!

= 𝑚
𝑛(𝑛+1)/2

𝑛

∏

𝑗=0

𝑗! = 𝑚
(
𝑛+1

2
)

𝑛

∏

𝑗=0

𝑗!.

(139)

This is the desired result.

Notice that by (109) and (111), �̃�
𝑚,𝑎+1

(𝑛) is the binomial
transformof �̃�

𝑚,𝑎
(𝑛). Hence by the abovementionedproperty

of Layman’s [22], �̃�
𝑚,0
(𝑛) and �̃�

𝑚,𝑎
(𝑛) have the same Hankel

transform. Finally, we have the following theorem.

Theorem37. TheHankel transform of the noncentral Dowling
numbers is given by

𝐻{D
𝑚,𝑎
} = 𝑚

(
𝑛+1

2
)

∏

𝑗≥0

𝑗!. (140)

6. More Theorems on ̃D
𝑚,𝑎
(𝑛;𝑥)

Proposition 38. The noncentral Whitney numbers of the sec-
ond kind satisfy the rational generating function

∞

∑

𝑛=𝑘

�̃�
𝑚,𝑎
(𝑛, 𝑘) 𝑧

𝑛−𝑘

=

1

∏
𝑘

𝑖=0
(1 − (𝑚𝑖 − 𝑎) 𝑧)

. (141)

It is easy to express this identity as

∞

∑

𝑛=𝑘

�̃�
𝑚,𝑎
(𝑛, 𝑘) 𝑧

𝑛

=

1

𝑚
𝑘
(1 + 𝑎𝑧)

⋅

(−1)
𝑘

⟨((𝑚 − 𝑎) 𝑧 − 1) /𝑚𝑧⟩
𝑘

,

(142)

where ⟨𝑥⟩
𝑘
= 𝑥(𝑥 + 1)(𝑥 + 2) ⋅ ⋅ ⋅ (𝑥 + 𝑘 − 1). Hence, we have

∞

∑

𝑘=0

(

∞

∑

𝑛=𝑘

�̃�
𝑚,𝑎
(𝑛, 𝑘) 𝑧

𝑛

)𝑥
𝑘

=

1

1 + 𝑎𝑧

∞

∑

𝑘=0

⟨1⟩
𝑘

⟨((𝑚 − 𝑎) 𝑧 − 1) /𝑚𝑧⟩
𝑘

⋅

(−𝑥/𝑚)
𝑘

𝑘!

.

(143)

Since the left-hand side is just

∞

∑

𝑛=0

(

∞

∑

𝑘=0

�̃�
𝑚,𝑎
(𝑛, 𝑘) 𝑥

𝑘

)𝑧
𝑛

=

∞

∑

𝑛=0

̃D
𝑚,𝑎
(𝑛; 𝑥) 𝑧

𝑛

, (144)

then by using the hypergeometric function defined by

𝑝
𝐹
𝑞

(

𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑝

𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑞

| 𝑡)

=

∞

∑

𝑘=0

⟨𝑎
1
⟩
𝑘
⟨𝑎
2
⟩
𝑘
⋅ ⋅ ⋅ ⟨𝑎

𝑝
⟩
𝑘

⟨𝑏
1
⟩
𝑘
⟨𝑏
2
⟩
𝑘
⋅ ⋅ ⋅ ⟨𝑏

𝑞
⟩
𝑘

𝑡
𝑘

𝑘!

,

(145)

we get

∞

∑

𝑛=0

̃D
𝑚,𝑎
(𝑛; 𝑥) 𝑧

𝑛

=

1

1 + 𝑎𝑧
1
𝐹
1
(

1

(𝑚 − 𝑎) 𝑧 − 1

𝑚𝑧

| −

𝑥

𝑚

) .

(146)

Theorem 39. The noncentral Dowling polynomials satisfy the
generating function

∞

∑

𝑛=0

̃D
𝑚,𝑎
(𝑛; 𝑥) 𝑧

𝑛

=

1

1 + 𝑎𝑧

(

1

𝑒

)

𝑥/𝑚

1
𝐹
1
(

−𝑎𝑧 − 1

𝑚𝑧

(𝑚 − 𝑎) 𝑧 − 1

𝑚𝑧

|

𝑥

𝑚

) .

(147)

Proof. Applying Kummer’s formula [23, page 505] given by

𝑒
−𝑥

1
𝐹
1
(

𝛼

𝛽

| 𝑥) =
1
𝐹
1
(

𝛽 − 𝛼

𝛽

| −𝑥) (148)

to (146) with 𝛼 = (−𝑎𝑧 − 1)/𝑚𝑧 and 𝛽 = ((𝑚 − 𝑎)𝑧 − 1)/𝑚𝑧

yields the desired result.

Remark 40. When 𝑚 = 1 and 𝑎 = −𝑟, we get [24,
Theorem 3.2]

−1

𝑟𝑧 − 1

(

1

𝑒

)

𝑥

1
𝐹
1
(

𝑟𝑧 − 1

𝑧

𝑟𝑧 + 𝑧 − 1

𝑚𝑧

|

𝑥

𝑚

)

=

∞

∑

𝑛=0

𝜙
𝑛,𝑟
(𝑥) 𝑧

𝑛

,

(149)

where 𝜙
𝑛,𝑟
(𝑥)𝑧

𝑛 denotes the 𝑟-Bell polynomials. In a similar
manner, we get [7, page 10]

(

1

𝑒

)

𝑥/𝛼

1
𝐹
1
(

−

1

𝛼𝑧

𝛼𝑧 − 1

𝛼𝑧

|

𝑥

𝛼

) =

∞

∑

𝑛=0

�̃�
(𝛼)
(𝑛; 𝑥) 𝑧

𝑛

, (150)
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where �̃�
(𝛼)
(𝑛; 𝑥) denotes the translated Dowling polynomials

if we set𝑚 = 𝛼 and 𝑎 = 0.
An equivalent of the result in the previous theorem is due

toR. B.Corcino andC. B.Corcino [25,Theorem 4.1] obtained
when 𝑚 = 𝛽 and 𝑎 = −𝑟. This identity is established for the
(𝑟, 𝛽)-Bell polynomials 𝐺

𝑛,𝛽,𝑟
(𝑥).

Definition 41 (see [26, page 268]). A real sequence V
𝑘
, 𝑘 =

0, 1, 2, . . . is called convex on an interval [𝑎, 𝑏], where [𝑎, 𝑏]
contains at least 3 consecutive integers, if

V
𝑘
≤

1

2

(V
𝑘−1

+ V
𝑘+1
) , 𝑘 ∈ [𝑎 + 1, 𝑏 − 1] . (151)

The above inequality is often referred to as the convexity
property.

Theorem 42. For 𝑎,𝑚 ≥ 0, the sequence of noncentral Dowl-
ing polynomials̃D

𝑚,𝑎
(𝑛; 𝑥), 𝑥 > 0, satisfies the convexity prop-

erty.

Proof. Suppose𝑚𝑘 − 𝑎 ≥ 0. Then

0 ≤ [1 − (𝑚𝑘 − 𝑎)]
2

,

0 ≤ 1 − 2 (𝑚𝑘 − 𝑎) + (𝑚𝑘 − 𝑎)
2

,

𝑚𝑘 − 𝑎 ≤

1

2

[1 + (𝑚𝑘 − 𝑎)
2

] ,

(𝑚𝑘 − 𝑎)
𝑛+1

≤

1

2

[(𝑚𝑘 − 𝑎)
𝑛

+ (𝑚𝑘 − 𝑎)
𝑛+2

] .

(152)

Multiplying the above inequality by (𝑥/𝑚)𝑖(1/𝑖!) and sum-
ming over 𝑖 give

̃D
𝑚,𝑎
(𝑛 + 1; 𝑥) ≤

1

2

[
̃D
𝑚,𝑎
(𝑛; 𝑥) +

̃D
𝑚,𝑎
(𝑛 + 2; 𝑥)] . (153)

This is precisely the desired result.

Cesàro [27] obtained an integral representation of the Bell
numbers 𝜙

𝑛
fl 𝜙

𝑛
(1), namely,

𝜙
𝑛
=

2𝑛!

𝜋𝑒

Im∫

𝜋

0

𝑒
𝑒
𝑒
𝑖𝜃

sin (𝑛𝜃) 𝑑𝜃. (154)

Several generalizations of this remarkable representation
were presented by Mező [24], Mangontarum et al. [6], and R.
B. Corcino and C. B. Corcino [25]. To establish an analogous
representation for̃D

𝑚,𝑎
(𝑛; 𝑥), we take the explicit formula in

(38) and substitute it to the right-hand side of Callan’s [28]
integral identity given by

Im∫

𝜋

0

𝑒
𝑗𝑒
𝑖𝜃

sin (𝑛𝜃) 𝑑𝜃 = 𝜋
2

𝑗
𝑛

𝑛!

. (155)

That is, we obtain

�̃�
𝑚,𝑎
(𝑛, 𝑘) =

2𝑛!

𝑚
𝑘
𝑘!𝜋

𝑘

∑

𝑗=0

(−1)
𝑘−𝑗

(

𝑘

𝑗

) Im∫

𝜋

0

𝑒
(𝑚𝑗−𝑎)𝑒

𝑖𝜃

⋅ sin (𝑛𝜃) 𝑑𝜃 = 2𝑛!

𝑚
𝑘
𝑘!𝜋

⋅ Im∫

𝜋

0

[

[

𝑘

∑

𝑗=0

(−1)
𝑘−𝑗

(

𝑘

𝑗

) (𝑒
𝑚𝑒
𝑖𝜃

)

𝑗

]

]

𝑒
−𝑎𝑒
𝑖𝜃

⋅ sin (𝑛𝜃) 𝑑𝜃 = 2𝑛!
𝜋

⋅ Im∫

𝜋

0

((𝑒
𝑚𝑒
𝑖𝜃

− 1) /𝑚)

𝑘

𝑘!

𝑒
−𝑎𝑒
𝑖𝜃

sin (𝑛𝜃) 𝑑𝜃.

(156)

Multiplying both sides by 𝑥𝑘 and summing over 𝑘 give

∞

∑

𝑘=0

�̃�
𝑚,𝑎
(𝑛, 𝑘) 𝑥

𝑘

=

2𝑛!

𝜋

⋅ Im∫

𝜋

0

{
{

{
{

{

∞

∑

𝑘=0

(((𝑒
𝑚𝑒
𝑖𝜃

− 1) /𝑚)𝑥)

𝑘

𝑘!

}
}

}
}

}

𝑒
−𝑎𝑒
𝑖𝜃

⋅ sin (𝑛𝜃) 𝑑𝜃 = 2𝑛!
𝜋

Im∫

𝜋

0

𝑒
(𝑒
𝑚𝑒
𝑖𝜃

−1)𝑥/𝑚−𝑎𝑒
𝑖𝜃

⋅ sin (𝑛𝜃) 𝑑𝜃.

(157)

Hence,

̃D
𝑚,𝑎
(𝑛; 𝑥) =

2𝑛!

𝜋𝑒
𝑥/𝑚

Im∫

𝜋

0

𝑒
𝑥(𝑒
𝑚𝑒
𝑖𝜃

/𝑚)−𝑎𝑒
𝑖𝜃

sin (𝑛𝜃) 𝑑𝜃 (158)

and we have the following theorem.

Theorem 43. The noncentral Dowling polynomials have the
integral representation

̃D
𝑚,𝑎
(𝑛; 𝑥)

=

2𝑛!

𝜋𝑒
𝑥/𝑚

Im∫

𝜋

0

𝑒
𝑥𝑚
−1
𝑒
𝑚𝑒
𝑖𝜃

𝑒
−𝑎𝑒
𝑖𝜃

sin (𝑛𝜃) 𝑑𝜃.
(159)

Remark 44. The earlier mentioned results due toMező, Man-
gontarum et al., and R. B. Corcino and C. B. Corcino can
be obtained from this theorem by carefully assigning values
to the parameters 𝑚, 𝑎, and 𝑥 (cf. [24, Theorem 6.1], [6,
Theorems 10], and [25, Equation (4.12)]).

Another interesting fact on the Bell polynomials is the
relation

𝐸
𝜆
[𝑋

𝑛

] = 𝜙
𝑛
(𝜆) , (160)
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where 𝐸
𝜆
[𝑋

𝑛

] denotes the 𝑛th moment of a Poisson random
variable 𝑋 with mean 𝜆. From this point on, we use 𝑋 to
denote such random variable. Another identity in line with
this was obtained by Privault [29], namely,

𝐸
𝜆
[(𝑋 + 𝑦 − 𝜆)

𝑛

] = 𝜙
𝑛
(𝑦, −𝜆) , (161)

where 𝜙
𝑛
(𝑦, 𝜆) is an extension of Bell polynomials satisfying

∞

∑

𝑘=0

𝜙
𝑛
(𝑦, 𝜆)

𝑡
𝑘

𝑘!

= 𝑒
𝑡𝑦−𝜆(𝑒

𝑡
−𝑡−1)

, (162)

𝜙
𝑛
(𝑦, −𝜆) =

𝑛

∑

𝑘=0

(

𝑛

𝑘

) (𝑦 − 𝜆)
𝑛−𝑘

𝑘

∑

𝑗=0

{

𝑘

𝑗

}𝜆
𝑗

. (163)

It is also known that the 𝑛th factorial moment of𝑋 is

𝐸
𝜆
[(𝑋)

𝑛
] = 𝜆

𝑛

. (164)

Now, if we take the expectation of (40), we get

𝐸
𝜆
[(𝑚𝑋 − 𝑎)

𝑛

] =

∞

∑

𝑘=0

𝑚
𝑘

�̃�
𝑚,𝑎
(𝑛, 𝑘) 𝐸

𝜆
[(𝑋)

𝑘
]

=

∞

∑

𝑘=0

1

𝑘!

𝑘

∑

𝑗=0

(−1)
𝑗

(

𝑘

𝑗

) (𝑚 (𝑗 − 𝑘) − 𝑎)
𝑛

𝜆
𝑘

=

∞

∑

𝑗=0

∞

∑

𝑘=𝑗

(−1)
𝑗

(𝑚 (𝑗 − 𝑘) − 𝑎)
𝑛

𝜆
𝑘

𝑗! (𝑘 − 𝑗)!

(165)

through the aid of (38). Reindexing the sum yields

𝐸
𝜆
[(𝑚𝑋 − 𝑎)

𝑛

] =

∞

∑

𝑗=0

(−1)
𝑗

𝑗!

∞

∑

𝑖=0

(𝑚𝑖 − 𝑎)
𝑛

𝑖!

𝜆
𝑖

= 𝑒
−𝜆

∞

∑

𝑖=0

(𝑚𝑖 − 𝑎)
𝑛

𝑖!

𝜆
𝑖

.

(166)

Clearly, when 𝜆 is replaced with 𝜆/𝑚,

𝐸
𝜆/𝑚

[(𝑚𝑋 − 𝑎)
𝑛

] =
̃D
𝑚,𝑎
(𝑛; 𝜆) . (167)

On the other hand, using the binomial theorem,

𝐸
𝜆
[(𝑚𝑋 − 𝑎)

𝑛

] =

𝑛

∑

𝑘=0

(

𝑛

𝑘

) (−𝑎)
𝑛−𝑘

𝑚
𝑘

𝐸
𝜆
[𝑋

𝑘

]

=

𝑛

∑

𝑘=0

(

𝑛

𝑘

) (−𝑎)
𝑛−𝑘

𝑚
𝑘

𝜙
𝑘
(𝜆) .

(168)

The above results are compiled in the next theorem.

Theorem 45. The following identities hold:

𝐸
𝜆
[(𝑚𝑋 − 𝑎)

𝑛

] = 𝑒
−𝜆

∞

∑

𝑖=0

(𝑚𝑖 − 𝑎)
𝑛

𝑖!

𝜆
𝑖

, (169)

𝐸
𝜆
[(𝑚𝑋 − 𝑎)

𝑛

] =

𝑛

∑

𝑘=0

(

𝑛

𝑘

) (−𝑎)
𝑛−𝑘

𝑚
𝑘

𝜙
𝑘
(𝜆) , (170)

𝐸
𝜆/𝑚

[(𝑚𝑋 − 𝑎)
𝑛

] =
̃D
𝑚,𝑎
(𝑛; 𝜆) . (171)

Remark 46. When 𝑚 = 1 and 𝑎 = 0 in (169), we get the
classical identity (160). Similarly, if 𝑚 = 1 and 𝑎 = 𝜆 − 𝑦

in (170), we recover Privault’s identities in (161) and (163).
Some results reported by Mangontarum and Corcino [30,
Remarks 1, 2, and 3] can also be obtained from this theorem.

7. Some Questions and Conjectures

There are a number of further applications and possible
extensions of the numbers introduced in this paper. The
authors would like to direct the attention of the readers to
some questions and conjectures.

Several studies regarding the identification of the index
for which certain Stirling-type numbers attain their maxi-
mum value were conducted earlier by some mathematicians,
for instance, Mező [24, 31] for the 𝑟-Stirling and 𝑟-Bell
numbers, R. B. Corcino and C. B. Corcino [32] for the
generalized Stirling numbers, and recently, Corcino et al. [33]
for the noncentral Stirling numbers of the first kind.

Question 1. Is it possible to identify the maximizing index of
the noncentral Whitney numbers of both kinds? Will these
be different from the said earlier results?

Perhaps this question may be answered by the so-called
“Erdős and StoneTheorem” mentioned in [33].

The study of asymptotic estimates/approximations and
asymptotic formulas for Stirling-type numbers (such as the
(𝑟, 𝛽)-Stirling numbers and the 𝑟-Whitney numbers of the
second kind) has been the interest of several mathematicians,
especially C. B. Corcino and R. B. Corcino [34, 35], Corcino
et al. [36], and Corcino et al. [37]. The next question is an
interesting motivation for further study.

Question 2. It is compelling to study asymptotic approxi-
mations and obtain formulas for the noncentral Whitney
numbers. However, will these formulas be distinct from those
results found in [34–37] or will they be equivalent?

Corcino et al. [38] defined distinct “𝑞-analogues” for
the noncentral Stirling numbers of the second kind. Using
Definition 47, the said 𝑞-noncentral Stirling numbers of the
second kind were given a combinatorial interpretation in the
context of 𝐴-tableaux. A more general study can actually be
seen in the work of de Médicis and Leroux [39].

Definition 47 (see [39]). An 𝐴-tableau is a list Φ of columns
𝑐 of Ferrer’s diagram of a partition Λ (by decreasing order of
length) such that the lengths |𝑐| are part of the sequence 𝐴 =

(𝑎
𝑖
)
𝑖≥0

, a strictly increasing sequence of nonnegative integers.

In line with this, denoting by 𝑇𝐴(𝑥, 𝑦) the set of 𝐴-
tableaux with 𝐴 = {0, 1, 2, . . . , 𝑥} and exactly 𝑦 columns and
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letting 𝜔
𝐴
(Φ) = ∏

𝑐∈Φ
𝜔(|𝑐|), Φ ∈ 𝑇

𝐴

(𝑥, 𝑦), we have the
following conjecture.

Conjecture 48. For complex numbers𝑚 and 𝑎, and 𝜔 : 𝑁 →

𝐾 a function from the set of nonnegative integers 𝑁 to a ring
𝐾, defined by

𝜔 (|𝑐|) = 𝑚 |𝑐| − 𝑎, (172)

where |𝑐| is the length of column 𝑐 of an𝐴-tableaux in𝑇𝐴(𝑘, 𝑛−
𝑘), one has

�̃�
𝑚,𝑎
(𝑛, 𝑘) = ∑

Φ∈𝑇
𝐴
(𝑘,𝑛−𝑘)

∏

𝑐∈Φ

𝜔 (|𝑐|) . (173)

The key to proving this remarkable observation might be
achieved using the explicit formula in (52).

A “multiparameter version” of the noncentral Stirling
numbers of Koutras [12] was introduced by El-Desouky
[40]. This extended the number of parameters from the
usual one that is 𝑎 to a sequence 𝑎

𝑖
, 𝑖 = 0, 1, . . . , 𝑎

𝑛−1
. 𝑞-

analogues of these numbers were then defined by Corcino
and Mangontarum [41].

Conjecture 49. It is possible to establish a multiparameter
version of the noncentral Whitney numbers of both kinds (may
be called multiparameter noncentral Whitney numbers) either
by means of a triangular recurrence relation or by a certain
generating function.

Before ending this section, let us first note that Man-
gontarum and Katriel [42] investigated a connection of the
defining relations of the 𝑟-Whitney numbers of both kinds in
(9) and (10) and the Boson operators 𝑎 and 𝑎† known to satisfy
the commutation relation

[𝑎, 𝑎
†

] ≡ 𝑎𝑎
†

− 𝑎
†

𝑎 = 1. (174)

Using their observations in this matter, they were able to
define a remarkable 𝑞-deformation of the 𝑟-Whitney numbers
using the 𝑞-Boson operators of Arik and Coon [43] which
satisfies

[𝑎, 𝑎
†

]
𝑞

≡ 𝑎𝑎
†

− 𝑞𝑎
†

𝑎 = 1. (175)
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