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Abstract. The last years have seen impressive progress in hadron structure calculations in dynami-
cal lattice QCD. Form factors, moments of PDFs and GPDs, and many other important observables
have been studied with increasing accuracy, giving access to fundamental physics questions, for
example related to the distribution of charge and momentum in hadrons and the spin structure of
the nucleon. We illustrate the recent achievements and remaining challenges by reviewing a small
number of selected lattice results.

Keywords: lattice QCD, hadron structure
PACS: 12.38.Gc, 14.20.Dh

Introduction

The enormous efforts during the last decades in theoreticaland experimental stud-
ies of elastic and deeply inelastic lepton-hadron scattering and related processes have
provided detailed insights into many aspects of the structure of the nucleon. Comple-
mentary to these efforts, lattice QCD represents an excellent tool to investigate many
fundamental hadron properties from first principles. Quantities which have been mea-
sured experimentally to a high precision, for example the axial vector coupling constant
gA or the nucleon magnetic momentµ, may be regarded as benchmark observables and
indeed still pose a significant challenge for lattice calculations, see, e.g., [1, 2, 3]. In
other cases, for example with respect to the energy momentumtensor and quark helicity
flip (generalized) form factors, the lattice approach has distinct advantages over phe-
nomenological studies, and provides already now great additional insight into the quark
substructure of hadrons [4, 5, 6, 7].

As will become clear in the following sections, even the lattice hadron structure
calculations at comparatively low pion masses of≈ 300 MeV that have been reached in
recent years still require highly non-trivial extrapolations to the physical point. Therefore
solid predictions from chiral perturbation theory for the pion mass (and ideally also
volume) dependence of the lattice data are of crucial importance.

Below, we first give a short overview of dynamical lattice calculations of the pion and
the nucleon charge radius. This is followed by an update on moments of generalized
parton distributions (GPDs) and the nucleon spin sum rule from the LHP collaboration.
Finally, we present a first exploratory lattice study of transverse momentum dependent
PDFs. For more detailed reviews of lattice hadron structurecalculations, we refer to
[8, 9, 10, 11].
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FIGURE 1. Overview of dynamical lattice QCD results for the chirally extrapolated pion mean square
radius at the physical pion mass (references are provided inthe text).

Hadron form factors and charge radii

The pion. Remarkable progress, mostly based on combinations of new methods
and techniques, has been made in recent years with respect tolattice calculations of
the pion electromagnetic form factorFπ(Q2), see, e.g., Refs. [12, 13, 14, 15, 16]. An
illustrative example is the work by the RBC-UKQCD collaboration[16] that is based
on nf = 2+ 1 flavors of domain wall fermions, with a pion mass ofmπ = 330 MeV, a
lattice spacing ofa≈ 0.114 fm, and a volume ofV ≈ (2.74 fm)3. In that study, the cost
of the calculations was significantly reduced, and a high precision achieved, by using
random wall sources instead of the conventional point sources for the computation of
the quark propagators. Most importantly, very small, non-zero values of the momentum
transfer in the rangeQ2 ≈ 0.01, . . . ,0.04 GeV2 have been accessed by employing so-
called partially twisted boundary conditions [17, 18]. It is remarkable that the smallest
non-zeroQ2 reached in this lattice calculation is below the lowestQ2 that could be so
far accessed in experimental studies ofFπ(Q2). Finally, from a chiral fit to the lattice
data points using the original chiral perturbation theory result by Gasser and Leutwyler
for Fπ(Q2) [19], a pion charge radius of〈r2

π〉= 0.418(31) fm2 was found at the physical
pion mass. This value is shown and compared to other recent lattice results and the
experimental value in Fig. 1. Noting that the lattice valueswere obtained for a number
of different lattice actions and chiral extrapolations, itis encouraging to see that they
mostly agree within errors. It will be interesting to track down the origin of the slight
discrepancy between the lattice average and experiment in future studies of the pion
form factor.

The nucleon. During the recent years, a number of dynamical lattice calculations of
the nucleon form factors were performed by different collaborations, with pion masses
as low as≈ 300 MeV [20, 21, 22, 23, 24, 25]. A fundamental observable derived from
form factors is the mean square (ms) radius〈r2〉 ∝ −(dF(Q2)/dQ2)Q2=0. Figure 2 gives
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FIGURE 2. Overview of dynamical lattice QCD results for the isovectorDirac mean square radius
(references are provided in the text). The dashed curve represents the leading 1-loop HBChPT prediction
Bernard et al. [26], and the dotted-dashed curve the result obtained in the SSE Göckeler et al. [27].

on overview of results for the isovector Dirac ms radius〈r2
1〉u−d as a function of the pion

mass. Overall, the lattice data points obtained for the different actions and forNf = 2 and
Nf = 2+1 flavors are in good agreement within the statistical errors. Although the lattice
values are slowly increasing towards smaller pion masses, they are still almost a factor
of two below the phenomenological values, even at the lowestaccessible lattice pion
masses. Notwithstanding possible systematic uncertainties, this indicates that a strong
chiral dynamics has to set in formπ < 300 MeV, and ChPT calculations indeed predict
that 〈r2

1〉 rises as ln(mπ) towards the chiral limit, as illustrated by the curves in Fig. 2.
It is a major challenge to numerically demonstrate the presence of the predicted chiral
singularity in lattice calculations at lower pion masses.

GPDs and the nucleon spin sum rule

One of the main motivations for the study of nucleon GPDsH(x,ξ , t),E(x,ξ , t), . . .
(for reviews, see [28, 29, 30]) is their direct relation to the nucleon spin sum rule. As has
already been shown in [31], the nucleon spin can be decomposed as
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Jq +Jg , (1)

and is therefore, in addition to the momentum fractions〈x〉 carried by the quarks and
gluons, fully determined by the form factorsBq,g(t) of the energy-momentum tensor
at vanishing momentum transfer,t = 0 1. It turns out that the form factorsBq,g(t) are

1 Bq,g(t = 0) is also known asanomalous gravitomagnetic moment[32]



FIGURE 3. Contributions to the nucleon spin in theMS scheme at a scale ofµ = 2 GeV.

identical to the secondx-moments of the GPDsEq,g(x,ξ , t) at ξ = 0,

Bq,g(t) =
∫ 1

−1
dxxEq,g(x,ξ = 0, t) . (2)

Furthermore, the total angular momentum of quarks can be naturally decomposed in a
gauge-invariant manner in terms of quark spin and orbital angular momentum contribu-
tions,Jq = ∆Σ/2+ Lq. Substantial progress has been made since the first lattice QCD
calculations of moments of GPDs by the LHPC and QCDSF collaborations in 2003
[33, 34]. The so far most comprehensive lattice study of GPDshas been presented in
[7] by LHPC based on a mixed action approach, which has been updated recently by
inclusion of an additional ensemble at a lower pion mass ofmπ ≈ 300 MeV and by an
increase in statistics by a factor of 8 [35]. Together with corresponding results for the
quark spin fraction∆Σ/2, the lattice data for the form factorsA(t) andB(t) was used
to calculate the OAM carried by the quarks, displayed in Fig.3 for (u+ d)-quarks as
a function ofm2

π . Results from a covariant chiral perturbation theory calculation [36]
were employed to simultaneously extrapolate the energy momentum tensor form factors
to t = 0 and the physical pion mass. This was combined with a heavy baryon ChPT fit of
∆Σ/2 to obtain a chiral extrapolation ofLu+d, as illustrated by the error bands in Fig. 3.
While the total quark spin turns out to be in very good agreement with results from
HERMES [37], a very small OAM contribution of onlyLu+d ≈ (5±5)% is found at the
physical pion mass. This is at first sight in striking disagreement with expectations from
relativistic quark models, which predict that the quark OAMamounts to≈ 30−40% of
the total nucleon spin. It has been noted, however, that the model calculations generi-
cally correspond to a low hadronic scale≪ 1 GeV, while the lattice scale is typically
≈ 2 GeV (with lattice results usually transformed to theMS-scheme) [38, 39]. A naive,
direct comparison of lattice and model results is thereforein general meaningless. In-
stead, one might attempt to employ QCD evolution to evolve thelattice values down
to the lower model scale. This is displayed in Fig. 4 using NLOevolution. Indeed, the
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FIGURE 4. Evolution of contributions to the nucleon spin.

quark OAM increases substantial at lower scales, and a very good agreement with rela-
tivistic quark model results is found at the model scale, which has been fixed to the value
at which the gluon contribution vanishes,Jg = 0 (indicated by the dashed vertical line in
Fig. 4).

TMDs and the transverse nucleon spin structure

Another important class of observables is given by the so-called transverse momen-
tum dependent parton distribution functions (TMDs). They encode fundamental infor-
mation about hadron structure that is mostly complementaryto the physics content of
PDFs and GPDs. TMDs are generically denoted by[ f ,g,h](x,k2

⊥), and depend, in addi-
tion to the longitudinal momentum fractionx, also on the intrinsic transverse momentum
k⊥ carried by the partons. They have in general a probability density interpretation (for
issues related to the high-k⊥ behavior and the integrability of TMDs we refer to [40]),
similar to the generalized parton distributions (GPDs) in impact parameter (b⊥)-space
[41]. It is interesting to note that although the transversemomentum,k⊥, and the coor-
dinate,b⊥, arenot Fourier-conjugated variables, a number ofapproximaterelations be-
tween TMDs and GPDs have been established and conjectured [42, 43, 44]. TMDs play
a central role in the phenomenology of semi-inclusive deep inelastic scattering (SIDIS)
and the Drell-Yan-process, where correlations between theintrinsic transverse momenta
of the partons, the hadron momenta, and their spins lead to a variety of interesting asym-
metries. A lot of attention has been attracted by the Sivers-and Collins-effect [45, 46],
which give rise to single spin azimuthal asymmetries in SIDIS, and which have already
been studied experimentally at HERMES, COMPASS and BELLE [47, 48, 49].

Recently, we have performed a first lattice QCD study ofk⊥-distributions [50, 51, 52].
The calculations were based on (nucleon matrix elements of)manifestly non-local,
gauge invariant quark operators, giving access to a number of invariant amplitudes.
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FIGURE 5. Transverse momentum densities of quarks in the nucleon.

The numerical lattice results for these amplitudes can in turn be parametrized and then
Fourier-transformed to obtain thek⊥-distributions. A very useful interpretation of the
variousk⊥-dependent PDFs can be given in form of quark densities in thetransverse
momentum plane. For transversely polarized quarks with spin s⊥ in a longitudinally
polarized nucleon with helicityΛ, the density is given by [43]

ρT =
1
2

(

f1 +s⊥ ·S⊥h1 +

[

sjε ji ki

mN
h⊥1

]

+
sj(2k jki −k2

⊥δ ji )Si

2m2
N

h⊥1T +Λ
k⊥ ·s⊥

mN
h⊥1L

)

, (3)

similar to a multipole-expansion, with monopole terms∝ f1,h1, dipole structures∝
h⊥1 ,h⊥1L, and a quadrupole term∝ h⊥1T . Note that all TMDs in Eq. 3 depend onx and
k2
⊥, and that the term in square brackets is absent for our choiceof non-local lattice

operators. The lattice results for the lowestx-moment of the densityρT(x,k⊥) are
illustrated in Fig. 5 for up- and down-quarks on the left and the right, respectively, with
s⊥ = (1,0) and Λ = +1. Due to the non-zero results for the distributionsh⊥,u

1L < 0,

h⊥,d
1L > 0 in particular, we observe a significant correlation between the quark transverse

spin and intrinsic transverse momentum, leading to clearlyvisible dipole deformations
in opposite directions for up- and for down-quarks in Fig. 5 .Since the distributionh⊥1L
has, in contrast to nearly all others TMDs, no analog in the framework of GPDs due to
time reversal symmetry, the deformations may be seen as a genuine effect of intrinsick⊥
of quarks in the nucleon. We note that it is very illustrativeto contrast thek⊥-densities
in Fig. 5 with lattice results for impact-parameter (b⊥-) densities based on moments of
GPDs, presented in [5] for the nucleon, and in [6] for the pion.
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