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Principles of the control and regulation of steady-state metabolic systems have been identified in terms of the
concepts and laws of metabolic control analysis (MCA). With respect to the control of periodic phenomena
MCA has not been equally successful. This paper shows why in case of autonomous (self-sustained) oscillations
for the concentrations and reaction rates, time-dependent control coefficients are not useful to characterize
the system: they are neither constant nor periodic and diverge as time progresses. This is because a controlling
parameter tends to change the frequency and causes a phase shift that continuously increases with time. This
recognition is important in the extension of MCA for periodic phenomena. For oscillations that are enforced
with an externally determined frequency, the time-dependent control coefficients over metabolite concentration
and fluxes (reaction rates) are shown to have a complete meaning. Two such time-dependent control
coefficients are defined for forced oscillations. One, the so-called periodic control coefficient, measures
how the stationary periodic movement depends on the activities of one of the enzymes. The other, the so-
called transient control coefficient, measures the control over the transition of the system between two stationary
oscillations, as induced by a change in one of the enzyme activities. For forced oscillations, the two control
coefficients become equal as time tends to infinity. Neither in the case of forced oscillations nor in the case
of autonomous oscillations is the sum of the time-dependent control coefficients time-independent, not even
in the limit of infinite time. The sums of either type of control coefficients with respect to time-independent
characteristics of the oscillations, such as amplitudes and time averages, do fulfill simple laws. These
summation laws differ between forced oscillations and autonomous oscillations. The difference in control
aspects between autonomous and forced oscillations is illustrated by examples.

Introduction

Quantitative approaches have led to significant advances in
the understanding of the control of metabolic and information
pathways under stationary conditions.1-9 In a biochemical/
biophysical reaction system such as a metabolic pathway in a
living cell the control exerted by any enzyme on any steady-
state flux (reaction rate) or concentration can be quantified in
terms of the corresponding control coefficient defined by
metabolic control analysis (MCA). The (stationary) control
coefficient is the relative difference between the two steady-
states in pathway flux or metabolite concentration, divided by
the causative fractional change in the enzyme’s activity,
extrapolated to infinitesimally small change.4-6 This quantifies
the ability of an enzyme to influence the steady-state pathway
rate or the concentration of a metabolite. It also makes it
possible to assess the relative importance of different enzymes
to the control of the flux, since in an ideal pathway10 the sum
of the control coefficients of all the enzymes is equal to 14-6

(see ref 11 for a review). Basic relationships of MCA, i.e. so-
called summation and connectivity theorems, enable one to
calculate the control coefficients in terms of the (local) kinetic
properties of single reactions, i.e. their elasticity coefficients.12-14

Consequently, the control of steady-state phenomena in meta-
bolic networks is fairly well understood at the theoretical level.

Living cells also exhibit various important time-dependent
phenomena however.15 For instance, fluctuations in metabolic
variables give rise to time-dependent transient processes which
are ultimately responsible for the stability of the steady state.8,16

Permanent perturbations of parameter values lead to transitions
to new steady states. Some stationary movements, i.e., self-
sustained (limit cycle) oscillations, are themselves time-depend-
ent and stable to fluctuations.16,17 In physics and chemistry,
oscillations have been observed in many complex reaction
mixtures.18 The study of various features of oscillations
appeared to be useful for determining the essential parts of
complex reaction mechanisms.18-20 In biology, limit cycle
systems are of particular interest, since some of them provide
the mechanisms for various biological clocks, including the one
governing the cell cycle.21,22 Metabolic oscillations occur in
yeast extracts, in populations of yeast cells (see, for example,
refs 23-32), and in photosynthesis.33 There is a growing
interest in the yeast oscillations because they involve active
cell-cell synchronization.32,34 Oscillations have been proposed
to be functional, as they may increase thermodynamic ef-
ficiency.35 Baconier et al.36 and Teusink et al.37 calculated the
control exerted by enzymes on the period of oscillation using
particular models of glycolytic oscillations. They found subtly
distributed control. Yet, the most intriguing issue about the
control of oscillations in biological systems has not been studied
in detail, e.g., which laws govern the magnitudes and distribution
of the control.

In close vicinity of the (asymptotically) stable steady state
the control over a relaxation process has been analyzed by
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Heinrich and Reder38 (see also refs 39, 40). Definitions of time-
dependent control coefficients were generalized to include
perturbations of any parameter affecting the enzyme rate, i.e.
not necessarily of enzyme concentrations. For relaxations to
asymptotically stable steady states, it was shown that time-
dependent control coefficients tend to steady-state control
coefficients when time tends to infinity.38 An elegant attempt
to extend control analysis to arbitrarily time-dependent trajec-
tories was made by Acerenza et al.41 These authors introduced
an “operational” definition of a time-dependent control coef-
ficient as the relative difference between the reaction rates
(concentrations) in the original and the perturbed system
observed at timet, after a perturbation of a parameter at time
0, divided by the relative change in that parameter. A number
of relationships considered to be analogous to the summation
and connectivity theorems for systems at steady states41 were
derived. However, below we shall see that for stationary
periodic phenomena, e.g., for self-sustained (“autonomous”)
oscillations (limit cycles), neither these theorems nor the
“operational” definitions of time-dependent control coefficients41

apply as time tends to infinity.
The present paper addresses these problems and develops

metabolic control theory for stationary periodic phenomena in
biological systems. It first defines time-dependent control
coefficients for forced oscillations. Then it shows that for
autonomous oscillations the same definitions are not useful. The
control of autonomous oscillations can only be quantified by
the control coefficients with respect to those characteristics of
oscillations that do not depend on the phase of periodic
movement. For both autonomous and forced oscillations,
summation theorems for control coefficients with respect to the
phase-independent properties are then derived. In a simple
example of forced oscillations we show that the contributions
of different enzymes to the control of the fluxes can change
dramatically during the period.

Results

A. Definitions of Time-Dependent Control Coefficients.
A1. Forced Oscillations. Let us suppose that a system under
study is exposed to periodic changes in the environment,
resulting in periodic changes of some system parameters, e.g.,
kinetic constants and the concentration of “external” metabolites.
Such a situation can also be described in terms of some periodic
external force influencing the system.42 We shall assume that
at fixed parameter values a single (asymptotically) stable steady
state of the system exists. When kinetic parameters change
periodically, metabolic concentrations (xi) and reaction rates,
Jk (called fluxes in the framework of MCA), become periodic
functions of time:

HereT is the period of the external force ande) (e1, e2, ...,en)
is the vector of the enzyme concentrations. Stationary periodic
behavior caused by a periodic external force is called a forced
oscillation. During the period of such an oscillation (T), the
vector of metabolite concentrations (x) follows a closed trajec-
tory.
The system behavior described by eq 1, as well as the system

behavior outside that closed trajectory is dictated by chemical
processes developing in time according to the kinetic rate
equations. Combination of these rates with the map of the
chemical network leads to differential equations for all of the

independent metabolic variables (x), the so-called chemical
kinetics differential equations (eq A1 in Appendix A). The
correspondence between the physical system and the math-
ematical equations allows one to use the work “solution” to
refer to “system behavior”.
We shall assume that the eigenvalues of the Jacobian of this

system of differential equations have negative real parts at all
the points of the periodic trajectory. Under these conditions,
the periodic solution,xi

per(t), to eq A1 is unique and asymp-
totically stable.17 So-called “conservative” systems (often
considered in physics) lack the dissipation of free energy. Such
systems usually have an infinitely large number (continuum)
of periodic solutions determined by the initial conditions and
will not be considered here. Here we consider isothermal,
isobaric systems that continuously dissipate free energy, as found
in chemical reaction systems16 and living cells.8

Let t* be an arbitrary time moment andx* be a point on the
periodic solution corresponding to that momentt* (such a
correspondence is unambiguously determined by the periodical
external force, see Appendix A). Oncet* and x* have been
chosen as the initial condition, the corresponding periodic
solution is designated asxper(t,e;t*,x*). If now another point
(x) in close vicinity tox* is chosen as the initial condition, i.e.
x(t*) ) x* + ∆x, then due to the asymptotical stability ofxper,
the ensuing trajectory (xtr) tends toxperas time tends to infinity:

Considering (fractional) changes in a steady-state periodic
solution caused by a change in a particular enzyme concentration
(ej), one can define (steady-state) “periodic” control coefficients
over metabolite concentrations and reaction rates (fluxes) as
follows:

Since the periodT does not depend on system parameters, it
follows from eq 1 that the control coefficients,Cj

x(t), are
periodic functions ofT. If the periodic solutions for the reaction
rates can assume zero values at some time values, one should
consider the non-normalized flux control coefficients13 in eq 3.
In eq 3 periodic control coefficients are defined as formal

derivatives of the asymptotically stable periodic solution (eq
1) with respect to a parameter of choice (e.g.,ej) (cf. ref 43).
This definition corresponds to the comparison of two steady-
state periodic solutions (closed trajectories) that differ inej by
an infinitesimal change,∆ej. Most importantly, these two
solutions are synchronized by the periodic external force. In
fact, a one-to-one correspondence exists between any point of
either closed trajectory and a value of the periodic force. Hence,
also between pairs of the points of the two different trajectories,
a one-to-one correspondence exists. This synchronization makes
it possible to assign an operational meaning to the (steady-state)
periodic control coefficients in terms of (infinitesimal) perturba-
tions (see below and Appendix A).
Alternativley, let us consider the periodic solutionxper-

(t,e;t*,x*) and the other solutionxtr(t,e+∆e;t*,x*) that occurs
when a particular enzyme concentration (ej) is perturbed by∆ej
at the momentt* (here and below the superscript “tr” specifies
the transition process). The functionxtr(t,e+∆e;t*,x*) is not
periodic. It describes the transition process from the periodic
solution corresponding to the valueej to the periodic solution
corresponding to the valueej + ∆ej. Initially (t ) t*), the two

xi ) xi
per(t,e) ) xi

per(t+T,e),

Jk ) Jk
per(t,e) ) Jk

per(t+T,e) (1)

lim
tf∞

(xtr(t,e;t*,x*+∆x) - xper(t,e;t*,x*)) ) 0 (2)

Cy
xi(t) ) (dxi

per(t,e)/dej)(ej/xi
per) ) d ln xi

per(t,e)/d ln ej

Cj
Jk(t) ) (dJk

per(t,e)/dej)(ej/Jk
per) ) d ln Jk

per(t,e)/d ln ej (3)
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solutions coincide. At any timet > t*, the relative difference
betweenxtr andxper divided by∆ej/ej shows how the particular
enzymeej affects the metabolite concentration or flux during
the transition. The resulting function, obtained in the limit of
infinitesimally small∆ej, is called a transient (time-dependent)
control coefficient:

Contrary to periodic control coefficients transient control
coefficients do not depend on time periodically, although they
do depend on time.
Appendix A shows that in the case of forced oscillations the

transient control coefficients (eq 4) tend to the corresponding
periodic control coefficients (eq 3) as time tends to infinity:

This clarifies the operational meaning of the formal periodic
control coefficients defined by eq 3. They quantify the control
when a system has already relaxed to a new oscillation pattern
after a change in the activity of a particular enzyme.
Appendix B shows that the periodic and the transient control

coefficients satisfy the same variation equation. Periodic control
coefficients are given by the unique periodic solution of the
variation equation, whereas transient control coefficients are
determined as a time-dependent solution, assuming the initial
conditions equal to zero. To come to grips with this result,
one may revisit the definitions given by eqs 3 and 4 and note
that both the periodic and the transient solutions for metabolite
concentrations and fluxes must satisfy the same kinetic equations
(see Appendix A, eq A1). For explicit expressions for the
periodic and transient control coefficients see Appendix B (cf.
ref 38).
It is instructive to compare these periodic and transient control

coefficients, which describe the control of forced oscillations,
to the corresponding control coefficients defined for perturba-
tions near asymptotically stable steady states.38,44 The periodic
control coefficients (eq 3) defined by the formal differentiation
of steady-state periodic solution correspond to the traditional
steady-state control coefficients. Indeed, in standard MCA, eq
3 will define the usual control coefficients if the steady-state
concentrations and fluxes are substituted in this equation for
the periodic ones. The transient control coefficients of an
oscillating system (eq 4) correspond to the time-dependent
control coefficients, as introduced by Acerenza et al.41 and
Heinrich44 and by Heinrich and Reder38 for relaxation behavior
around steady states after infinitesimal perturbations in param-
eters. These coefficients can be obtained if in eq 4 steady-
state concentrations (xi

0) and fluxes (Jk
0) are substituted for the

periodic time-dependent solutions,xi
per and Jk

per, or if the
amplitude of the forcing function approaches zero. Definition
(4) and the corresponding definition of time-dependent control
coefficients in refs 38 and 41 have the clear operational meaning
of relating fractional changes in a particular enzyme concentra-
tion at given initial conditions to resulting changes in metabolic
concentration or flux at any subsequent point in time. It has
been shown in ref 41 that time-dependent control coefficients
describing a relaxation process near a steady state tend to the
corresponding control coefficients over the steady-state (time-
independent) metabolite concentrations and fluxes, as time tends
to infinity (cf. eq 5).
A2. Autonomous Oscillations (Limit Cycles). The forced

oscillations considered above arose from the influence of a
periodic external force on a system that exhibited asymptotically
stable steady states in the absence of that force. By contrast,
autonomous oscillations occur at time-independent (internal and
external) parameter values in systems in which the correspond-
ing steady states are unstable.16,17,45 In mathematical terms, the
latter systems are called autonomous, whereas the former are
nonautonomous, as their right-hand sides depend on time
periodically and explicitly (see eq A1 in the Appendix A).
Physically, a principal difference between forced and autono-
mous oscillations is that an influence that synchronizes with
respect to an external clock is lacking in the latter case, whereas
in the former case a periodic external force synchronizes the
oscillations in the systems with the initial parameter values to
the oscillations in the system with the perturbed values of
parameters. Due to lack of a synchronization influence, a stable
periodic solution of an autonomous system cannot be asymptoti-
cally stable in the strictest sense of convergence to a singlex(t).
An initial difference in the phase of oscillations cannot vanish
with time in the general case. Although there is convergence
to a trajectory of a single form, there is no convergence to a
certain phase.
For autonomous oscillations one can define formally the

control coefficients,Cj
x(t) andCj

J(t), analogously to eq 3, i.e.,
as the log-log derivatives of a unique periodic solution with
respect to the enzyme concentrations (or as the non-normalized
derivatives if periodic reaction rates assume zero values at some
time moments). However, in contrast to the case of forced
oscillations these control coefficients do not depend on time
strictly periodically. Moreover, they do not exist when time
tends to infinity.
To illustrate this, let us present a periodic solution (xk

per) by
its Fourier series. We emphasize that both the Fourier coef-
ficients and the frequency (ω) depend on systemic parameters,
i.e., on enzyme concentrations (e):

Herexk
h(e) denoteshth Fourier coefficient and i is the imagi-

nary unity. Differentiating the Fourier series (6) with respect
to a particular enzyme concentration,ej (see eq 3), one obtains
for the control coefficients,Cj

xk(t),

Because of the second term on the right-hand side of this

trCj
xx(t) ) lim

∆ejf0

xi
tr(t,ej+∆ej;t*,x*) - xi

per(t,ej;t*,x*)

∆ej
×

(ej/xi
per(t,ej;t*,x*))

trCj
Jk(t) ) lim

∆ejf0

Jk
tr(t,ej+∆ej;t*,x*) - Jk

per(t,ej;t*,x*)

∆ej
×

(ej/Jk
per(t,ej;t*,x*)) (4)

lim
tf∞

(trCj
xi(t) - Cj

xi(t)) ) 0

lim
tf∞

(trCj
J(t) - Cj

J(t)) ) 0 (5)

xk
per(t,e) ) ∑

h)-∞

∞

xk
h(e) exp(ihω(e)t) (6)

Cj
xk(t) ) (ej/xk

per)( ∑
h)-∞

∞

(dxk
h(e)/dej) exp(ihω(e)t) +

it ∑
h)-∞

∞

xk
h(e)(dω(e)/dej) exp(ihω(e)t)) (7)
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equation, which is proportional tot, the control coefficients,
Cj
xk(t), do not depend on time periodically. Since this term

becomes unlimited with time, the coefficientsCj
xk(t) cannot be

defined when time tends to infinity.

The transient control coefficients,trCj
xk(t), are defined ac-

cording to eq 4. Hence, they can be found by solving the
variation equation (cf. ref 38 and Appendix B). mor the case
of autonomous oscillations it has been proved46 that no solution
of the variation equation exists at time tending to infinity.
Therefore, also the transient control coefficients with respect
to metabolic concentrations or fluxes during the transition from
the initial to a perturbed closed trajectory can only be defined
for limited time intervals. In the limit of infinite time this
control coefficient does not exist either.

The question arises why both control coefficients,Cj
x(t) and

trCj
x(t), fail to exist when the time of the observation of the

periodic or transition process tends to infinity. For the control
coefficients,Cj

x(t), this is explained by the phase difference
between the original and perturbed oscillations, which continues
to increase with time. For the control coefficientstrCj

x(t), the
time-dependent phase difference between the transition and the
periodic movements is the culprit. Although the initial and the
perturbed trajectories are very close in concentration space, due
to the dependence of oscillation frequency on a perturbed
parameter,ej, the phase difference does not vanish with
vanishing of∆ej when time tends to infinity; the infinitesimal
difference in phase is amplified infinitely.
From the reasoning above one may conclude that in the case

of autonomous oscillations due to divergence of the initial and
the perturbed movements, the control coefficients determined
by either eq 3 or eq 4 cannot describe the control exerted by
enzymes over periodic values of metabolic concentrations and
reaction rates. However, the same reasoning shows that the
control over those characteristics of self-sustained oscillations
that do not depend on the phase of the movement can be defined
(at any time of observation). The log-log derivatives of these
time characteristics (Y) with respect to enzyme concentrations
determine the coefficients,Cj

Y, that describe the control of
(stationary) self-sustained oscillations. For instance, the control
coefficients over the amplitude and period of oscillations and
over various mean values do exist.
B. Properties of Time-Dependent Control Coefficients in

an Example of Forced Oscillations. We shall consider a
simple example where a periodic solution (eq 1) and, hence,
periodic control coefficients (eq 3) can be found analytically,
as functions of time and parameters. This will make it possible
to illustrate a number of the control properties, such as the
variations of the control distribution with time, and to test
whether the summation theorem that is true for steady-state
control coefficients continues to apply in the case of forced
oscillations.
Scheme 1 shows a metabolic chain of two reactions,

We shall suppose that the substrate concentration (S) changes
periodically, and the product concentration (P) is kept zero:

HereS0 is the substrate concentration in the absence of (external)
periodic force,ω0 is the frequency of the periodic force, anda
< 1 is the amplitude of the oscillation of the substrate

concentration. Let us assume that the reaction rates,V1 andV2,
are linear functions of metabolite concentrations:

Herek(i, i ) 1, 2, are the kinetic constants;e1, e2 are the total
enzyme concentrations; andx is the concentration of the
intermediate. Thanks to the linearity of eq 9 with respect tox,
its periodic solution (under the influence of the periodic force
described by eq 8) can be found readily (see Appendix C):

Herex0 ) x0 (e1,e2) is the concentration at the asymptotically
stable steady state in the neighborhood where the forced
oscillations occur. -æ is the initial (at t ) 0) phase of
oscillations, for which an explicit expression is given in
Appendix C. With respect to the input oscillation (eq 8) the
resulting oscillation inx is deformed as a function of the
frequency of the former. This is due to the capacitive effect of
the concentration ofx.

Substituting eq 10 into the rate equations (9), the periodic
solution for the fluxes through the first (J1) and the second (J2)
reactions are obtained:

HereJ0 is the steady-state flux.A1 andA2 are the amplitudes
of the oscillations of the reaction rates, andø is the initial phase
of oscillations of theJ1 (the explicit expressions forA1, A2, and
ø are given in Appendix C). From eqs 11 it follows that the
fluxes through the first and the second reactions differ at most
times. Only their averages are equal. Consequently, in contrast
to the case of systems at steady states, the control coefficients
over the time-dependent fluxes through sequential reactions in
oscillating systems will differ (see Figure 1).47

The periodic control coefficients of enzymes 1 and 2 over
the flux through either reaction can be obtained by differentiating
eq 11 with respect to lne1 and lne2 (see Appendix C). Figure
2 exemplifies the behavior of enzyme control coefficients for
the case when the amplitude of the oscillation of the concentra-
tion of the pathway substrate (a in eq 8) is comparable with its
average concentration (S0). One can see that in some time
intervals during the period of the oscillation the time-dependent
control coefficients are above, whereas in the other intervals
they are below the corresponding control coefficients at steady
state (whena) 0). Moreover, these periodic control coefficients
of enzymes 1 and 2 cross several times. As a consequence, in
some intervals of time the control exerted by enzyme 1 exceeds
the control by enzyme 2, whereas during other intervals the
opposite is the case. It should be noted that when the ampli-

V1 ) e1(k1S- k-1x)

V2 ) e2k2x (9)

xper(t) ) x0 +
k1S0ae1

[(k-1e1 + k2e2)
2 + ω0

2]1/2
sin(ω0t-æ)

x0 )
k1s0e1

k-1e1 + k2e2
(10)

J1(t) ) J0 + A1(e,ω0) sin(ω0t+ø)

J2(t) ) J0 + A2(e,ω0) sin(ω0t-æ)

J0 )
e1e2k1k2S0
k-1e1 + k2e2

(11)

Sf X f P (scheme 1)

S(t) ) S0(1+ a sin (ω0t)) (8)
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tude of the substrate oscillation increases further, even the
direction of reaction rates changes during the period and such
that they equal zero at some moments. In this case the control
can become infinite. If the amplitude of the oscillation of the
pathway substrate is small (a , S0), the periodic control
coefficients do not cross, but oscillate near the corresponding
steady-state values (not shown).
Using the explicit expressions for periodic control coefficients

(see Appendix C), one can show readily that the summation
theorem, which governs the steady-state control coefficients4

and time-dependent control coefficients for the relaxation near
steady states38 (it requires the sum of these coefficients to be

equal to 1), is not valid for periodic control coefficients:

C. Summation Theorems. C1. Summations in the Case
of a Forced Oscillation. Since the reactions rates depend
linearly on the enzyme concentrations (activities), simultaneous
transformation of these concentrations, of the time, and of the
frequency of a periodic external force,

leads to a new equation system that coincides with the initial
system after eliminating the superscript (*). Therefore, if the
initial conditions are the same, metabolite concentrations of the
transformed system at the momentt/λ will coincide with
concentrations of the initial system at the momentt, whereas
the fluxes will increase by factorλ (proportional to the new
enzyme activities):

Applying to eq 14 Euler’s theorem on homogeneous functions,
one arrives at

Although for forced oscillations the control coefficients with
respect to the frequency of the external force (Cω0

x , Cω0

J ) can be
defined formally as the derivative of the periodic solution with
respect toω0, they become unlimited as time tends to infinity.
This is explained by the phase divergence of the initial periodic
movement with the frequencyω0 and the perturbed one with
the frequencyω0 + dω0, corresponding to the infinitesimal
change inω0. This phase difference does not remain infini-
tesimal at infinite times (cf. the case of autonomous oscillations
above). Moreover, also the transient control coefficients defined
by eq 4, in which the derivatives should be taken with respect
to ω0 (instead ofej), become unlimited at infinitely large time.
Hence, in a general case the summation theorems given by eqs
15 and 16 have no operational meaning ast tends to infinity.
Note, however, that the sums given by the first terms in eqs 15
and 16 do exist at infinitely large times. For the above example
of forced oscillations, eq 12 shows that the sum of flux control
coefficients (the first term in eq 16) depends periodically on
time.
One may note that if the form (amplitude) of the oscillation

in x were independent of the forcing frequencyω0, x could be
written as

In this case, the second and third term of eqs 16 disappear and
the classical summation theorems, but now for periodic control
coefficients, are retrieved. This condition holds in electrical
networks without capacitances, and in linear chemical networks
where the variable metabolites occur in such small volumes that
the corresponding relaxation times are much smaller than the
period of the applied oscillation. As illustrated by eq 10,

Figure 1. Comparison of periodic control coefficients over the time-
dependent fluxes through sequential reactions in the oscillating system
depicted by scheme 1: (1) control coefficient over fluxJ1 with respect
to concentration of the first enzyme; (2) control coefficient over flux
J2 with respect to concentration of the first enzyme. The magnitudes
of the constants werek1 ) 35, k2 ) 30, k-1 ) 25, k-2 ) 1, S0 ) 20,
e1 ) 0.1,e2 ) 0.05,a ) 0.5, andω ) 1.

Figure 2. Dependencies of periodic and steady-state enzyme control
coefficients of the linear pathway of scheme 1 on time. Lines 1 and
3 refer to the periodic control coefficients over fluxJ1 with respect to
the first (1) and the second (3) enzyme. Lines 2 and 4 refer to steady-
state control coefficients over fluxJ1 with respect to the first (2) and
the second (4) enzyme. The magnitudes of the parameters werek1 )
35,k2 ) 30,k-1 ) 25,k-2 ) 1,S0 ) 20,e1 ) 0.1,e2 ) 0.05,a ) 0.1,
andω ) 1.

Ce1

J2(t) + Ce2

J2(t) ) 1+ (A2/J2(t)){[(k2e2)
2 + ω0

2]1/2 sin(ω0t+

ú1) + [(k-1e1)
2 + ω0

2]1/2 sin(ω0t+ú2)} (12)

e*i ) λei, t* ) t/λ, ω*0 ) λω0 (13)

xi(t/λ,λe) ) xi(t,e)

Jk(t/λ,λe) ) λJk(t,e) (14)

∑
j

Cj
xi(t) - d ln xi/d ln t + d ln xi/d lnω0 ) 0 (15)

∑
j

Cj
J
k(t) - d ln Jk/d ln t + d ln Jk/d lnω0 ) 1 (16)

x(ω0,t) ) x(ω0t)
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through the frequency dependence of the amplitude of the
oscillation inxper, the form of oscillations in a metabolic network
often depends on the frequency of the applied oscillations.48

Accordingly, in the more general case, the second and third
term of eq 16 do not cancel, and the simple summation theorems
do not apply.
As in the case of autonomous oscillations (below), one should

go to functions of metabolic concentrations and reaction rates
that do not depend on the phase of the movement for summation
theorems to become practicable. In particular, the control
coefficients with respect to the frequency can be defined for
time-independent characteristics, such as for the averages over
the period or amplitudes of oscillations.
The following summation theorems hold for the control

coefficients of enzymes over the amplitude of stationary
oscillations of metabolic concentrations (Ax) or fluxes (AJ) and
their average values over the period (xj, Jh) in the case of
oscillations forced at a frequencyω0:

In the example considered above (section B) the control
coefficients over the amplitudes of metabolic concentrations and
fluxes with respect to the frequency of the external force and
of the enzyme concentrations can be calculated readily (see
Appendix C). One can see that they satisfy the summation
theorems given by eq 17. Figure 3 compares the control
coefficients over the amplitudeA11 of the periodic fluxJ1
(curves 1 and 2) with the flux control coefficients for the steady-
state system (curves 3 and 4). One can see that the relative
distribution of the amplitude control between the enzymes of
oscillating systems depends dramatically on the frequency of
the periodic external force. Moreover, no predictions for this

distribution can be made on the basis of the magnitudes of the
corresponding flux control coefficients at the steady state.
C2. Summation Theorems for Autonomous Oscillation. As

was the case for forced oscillations, simultaneous transformation
(13) of the enzyme concentrations (activities) and of the time,

leads to a new equation system that coincides with the initial
system after eliminating the superscript (*). Therefore, eqs 14
continue to apply. This results in the following relationships
for the control coefficients defined by eq 3:41

where the control coefficients are defined as formal derivatives
of concentrations and fluxes with respect toej at the momentt
(eq 3). However, for autonomous oscillations the relationships
(19) are not very useful because the control coefficients become
unlimited with time, unless it is emphasized that the enzymes
have an excessive and oscillatory control on the metabolite
concentrations. We shall illustrate this by the simplest possible
example, i.e. that of the sinusoidal oscillation in the concentra-
tion (x),

Equation 19 implies

which, as illustrated by Figure 4, is quasi periodic with a
continuously increasing amplitude. This unlimited increase in
the amplitude of the sum of the control coefficients is because
any difference in frequency between the perturbed and unper-
turbed system causes a phase difference increasing continuously
with time, as if the clock speed of the two systems differs. Note
that in steady states the second term in eq 19 is zero and the
traditional summation theorems are found.
The relationships involving the control coefficients over time-

independent properties are useful for analyzing the control on

Figure 3. Comparison of the amplitude control coefficients with the
steady-state control coefficients for the linear pathway depicted in
scheme 1. Curves 1 and 2 are dependencies of control coefficients
over the amplitudeA1 of the periodic flux J1 with respect to
concentrations of enzymes 1 and 2 on frequency of external periodic
force. Curves 3 and 4 are steady-state control coefficients with respect
to enzymes 1 and 2, respectively. The magnitudes of the constants
werek1 ) 35, k2 ) 30, k-1 ) 25, k-2 ) 1, S0 ) 20, e1 ) 0.1, ande2
) 0.05.

∑
j

Cj
Ax + Cω0

Ax ) 0, ∑
j

Cj
xj + Cω0

xj ) 0

∑
j

Cj
AJ + Cω0

AJ ) 1, ∑
j

Cj
Jh + Cω0

Jh ) 1 (17)

Figure 4. Dependency of the sum of the time-dependent control
coefficients on time in the case of sinusoidal autonomous oscillations.

e*i ) λei, t* ) t/λ (18)

∑
j

Cj
xi(t) - d ln xi/d ln t ) 0

∑
j

Cj
Jk(t) - d ln Jk/d ln t ) 1 (19)

xper(t) ) A[2 + sin(ωt+æ)]

∑
j

Cj
x ) (ωt) cos(ωt+æ)/[2 + sin(ωt+æ)]
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a periodic trajectory. Considering eq 14 on a periodic trajectory,
one can conclude that the amplitude (Ax) of oscillations of
metabolite concentrations and their average values (xj) over a
period remain unchanged under the transformation (18):

whereas the amplitude (AJ) of oscillations of fluxes, their
averages (Jh), and the period (T) of oscillations satisfy the
relationships

Therefore, the control coefficients of enzymes over the ampli-
tude of oscillations of metabolite concentrations and fluxes, their
averages, and the period of oscillations obey the simple
summation theorems47 (cf. ref 49):

Discussion

To calculate the fluxes and concentrations in a chemical
reaction system from all the parameter values, numerical
integration of complex equations is required especially if it
pertains to a living cell (e.g., refs 43, 50). To calculate how
steady-state properties are controlled by the parameters of that
system, an analytical method exists, called metabolic control
analysis (MCA)4,43 provided that one defines control in terms
of infinitesimal influences. The method has a parallel in
biochemical systems analysis,2,3 has had important practical
applications (e.g., ref 51), and has increased biochemical insight
into what controls metabolic gene expression and signal
transduction9 networks.
Some of the most important biological processes are not

(always) at steady state however.15 Therefore various attempts
have been made to extend MCA to time-dependent systems.
The phenomenon that may seem most amenable to such an
extension is that of stationary oscillations of metabolic oscil-
lating systems. A long known example is that of yeast
glycolytic oscillations; under certain conditions yeast extracts
and populations of yeast cells exhibit oscillations in NADH and
glycolytic intermediates (e.g., refs 23-26). These oscillations
are autonomous; that is, they are not driven by an externally
imposed oscillation. The same system may also be exposed to
relevant imposed oscillations such as in glucose concentration
or in the flux. Quite interesting metabolic dynamics then
ensues.52

Attempts to develop MCA for the analysis of the control of
the time dependence of metabolite concentrations and fluxes
have led to algebraic expressions (e.g. ref 14) that have had no
implementation until now. Various authors including ourselves
have embarked on developing a more complete analysis.
Most importantly, the present paper resolves many of the

remaining issues by proving that much of what is being
attempted is impossible. It is impossible to analyze the control
of metabolic concentrations in an autonomously oscillating
system in terms of well-defined control coefficients, because
the latter tend to infinity as time proceeds. The culprit is that
system parameters will control not only the concentrations and

fluxes but also the frequency at which they oscillate. Any
parameter change may therefore cause a phase shift that
continues to increase with time. An important consequence is
that theorems such as derived in ref 41 for oscillating metabolite
concentrations cannot contribute much to the understanding of
how autonomously oscillating systems are controlled. The
relationship, considered as the connectivity theorem by Acerenza
et al.,41 is, in fact, the variation equation with respect to the
transient control coefficients. As shown in Appendix B when
time tends to infinity, the solution to this equation does exist in
the case of forced oscillations but does not exist for the case of
self-oscillations.
By showing what is impossible, this paper also highlights

what is possible. It is possible and useful to define control
coefficients and to derive summation theorems for all properties
that do not depend on the phase of the oscillations, i.e., all time-
independent properties such as amplitude and mean value. The
theorems derived here are in line with earlier results for
autonomous oscillations.33,47,49

So far, control analysis has been applied to autonomous
systems in which all the external and internal parameters are
assumed to be fixed. A distinction between autonomous and
forced oscillations is that in the latter case the equation system
is not autonomous mathematically in terms of its time depen-
dence.
Therefore it seemed that if time and phase of the oscillations

of the system were defined by the outside of the system, a
control analysis of the oscillating metabolite concentrations and
fluxes might became possible. This should apply to entrained
oscillations:20 oscillations enforced by a periodic force defined
from the outside of the system. Differences between forces
being defined by the outside world have earlier been shown to
be crucial for the understanding of biological free-energy
transduction.42,53 This paper has shown that, indeed, none of
the limitations for the application of MCA to oscillating
concentrations and reaction rates in autonomous systems are
present in periodically enforced systems.
The importance of entrainment20 reaches well beyond the

homogeneous systems discussed in this paper. Autonomous
oscillations in a population of cells are only macroscopic if cells
oscillate in phase. For sustained oscillations some continuing
mutual entrainment of the oscillations of the individual cells is
required. Recently, the conditions required to obtain sustained
glycolytic oscillations in yeast cells have been obtained31 and
the chemical identity of the synchronizing intercellular agent
has been identified.32 It is imperative to understand what
controls such oscillations in heterogeneous systems. By treating
the intercellular communications as small perturbations by an
externally oscillating agent, the system can be approached.
For the control analysis of oscillating systems, it has been

important to distinguish between two time-dependent control
coefficients. Transient control coefficients quantify the control
over a transition from the initial periodic trajectory to the
trajectory that corresponds to the perturbed enzyme concentra-
tion (cf. eq 4). Periodic control coefficients refer to dependence
of the stationary time-dependent oscillation on the concentration
of an enzyme. As for forced oscillations, the transient control
coefficients tend to the control coefficients of steady-state
periodic trajectory when time tends to infinity and the control
of periodically oscillating metabolic concentrations and reaction
rates by parameters of the system is defined properly. Ap-
pendices A and B show the mathematical reasons for that: if
all the real parts of the eigenvalues of the Jacobian matrix,N‚-
(∂v/∂x), are negative on the periodic trajectory, xper(t;e), the
solution to the variation equation (B7) exists at any (even

Ax(λe) ) Ax(e), xj(λe) ) xj(e)

AJ(λe) ) λAJ(e), Jh(λe) ) λJh(e), T(λe) ) (1/λ)T(e)

∑
j

Cj
Ax ) 0, ∑

j

Cj
xj ) 0

∑
j

Cj
AJ ) 1, ∑

j

Cj
Jh ) 1

∑
j

CT
j ) -1 (20)
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infinitely large) time moment. For autonomous oscillations both
the operational and the formal definitions of time-dependent
control coefficients are possible only in terms of the control
over time-independent properties of the oscillations. The reason
is lack of asymptotic stability for autonomous oscillations
(hence, phase instability), because one of the eigenvalues of a
monodromy matrix for a limit cycle (which corresponds to the
matrix F, see eq B11) equals 1. Explicit expressions (see eqs
B10, B11, and B16 in the Appendix B) for the periodic and
transient control coefficients with respect to parameters other
than the imposed frequency have been derived for the case of
forced oscillations.
As discussed above, only in the case of forced oscillations,

does control of time-dependent properties lend itself to relevant
control analysis. An exception here is the control by the
imposed frequency. Although for forced oscillations one can
define formally the derivative of the periodic solution of the
differential equations with respect to the frequency as a periodic
control coefficient, the corresponding transient control coef-
ficient will not tend to the latter when the time tends to infinity.
Hence, this definition does not reflect the control over the
metabolic variables themselves. Again one should go to the
averages or amplitude.
This paper also reports some model calculations. Figure 1

illustrates that the (periodic) control coefficients of enzymes
over the fluxes through sequential reactions differ significantly,
whereas the corresponding steady-state control coefficients are
identical. Explicit expressions for the control coefficients of
the enzyme 1 over fluxesJ1 andJ2 are given in Appendix C.
Similar observations in ref 47 have demonstrated that also
metabolic dynamics is subject to subtle control, perhaps even
more so than metabolic steady states.

Acknowledgment. This study was supported by the Neth-
erlands organization for Scientific Research (NWO).

Appendix

Appendix A. Transient and Periodic Control Coefficients.
The kinetic equations of a metabolic network that is exposed
to a periodic external force can be written as follows (cf. ref
38):

Herex ) [x1, ..., xm]T andv ) [V1, ..., Vn]T are the vectors of
the metabolite concentrations and the reactions rates, andN is
them by n stoichiometry matrix. Due to the periodic depen-
dence of some kinetic parameters (p) on time, the reactions rates,
Vj(t,x), depend on time explicitly. It is convenient to present
eachVj as the product of the concentration (maximal activities)
of the corresponding enzyme (ej) and some function (wj) that
depends on time periodically due to periodic changes of the
parameters (p) with time:

HereT is the period of the external force that is related to the
frequency (ω) by the relationshipT ) 2π/ω. This paper is
limited to systems in which the eigenvalues of the matrixN‚∂v/
∂x (the Jacobian) have negative real parts at all the points of
the periodic trajectory. Under this condition, eq A1 has a

unique, asymptotically stable periodic solution,xper(t,e), deter-
mined by the periodic boundary condition:

wheret* is a particular initial moment of time. The solution
for this boundary condition will be denoted byxi

per(t,e;t*,x*).
The solution is periodic with periodT,

Note thatx* cannot be arbitrary but is uniquely determined by
t* on the periodic trajectory because of an external “clock”
provided by the periodic external force. Considering the two
periodic solutions that correspond to the initial valuee and to
a perturbed value of thejth enzyme concentration (ej + ∆ej),
respectively, we present the derivative ofxi

per with respect toej
as

Our immediate goal is to construct one-to-one correspondence
between the points of the two periodic solutionsxper(t,ej) and
xper(t,ej+∆ej). The reason to expect such a correspondence is
the identity of the phase of the periodic external force for the
two solutions (external clock). During any period, e.g., within
the time interval 0e t < T, each pointx on the closed periodic
trajectory in concentration space corresponds to a unique set of
values (t, p(t)). Consequently, the following correspondences
(ø1 andø2) exist:

Importantly, these correspondences are one-to-one. Therefore,
also a one-to-one correspondence between the two periodic
solutionsxper(t,ej) and xper(t,ej+∆ej) exists, as given by the
compositionø ) ø1-1 o ø2:

Note that this one-to-one correspondence (synchronization),ø,
is imposed by the periodic external force.ø will change when
a different periodic driving force is applied.
Let us denote byx* and x** the points that belong to closed

trajectoriesxper(t,ej) andxper(t,ej+∆ej) at timet ) t*. According
to eq A6,x** can be presented as

Considering the points (t*, x*) and (t*, x**) as the initial
conditions of the two solutions,xper(t,ej,t*,x*) and xper-
(t,ej+∆ej;t*,x**), we refine eq A4 as the following:

Our next goal is to relate the transient control coefficients,
trCj

xi(t), as defined by eq 4 of the main text, to the periodic

dx/dt) N‚v(t,x,e) (A1)

Vj ) ejwj(p(t),x), p(t) ) p(t+T), hence,

Vj(t+T,x) ) Vj(t,x), j ) 1, ...,n (A2)

xper(t*,e) ) xper(t*+T,e) (A3)

xper(t,e;t*,x*) ) xper(t*+T,e;t*,x*)

Cxi
j(t) ) (dxi

per(t,e)/dej)(ej/xi
per) ) (ej/xi

per(t,e)) ×

lim
∆ejf0

xi
per(t;ej+∆ej,) - xi

per(t;ej)

∆ej
(A4)

ø1: (t, p(t)) T xper(t,ej), 0e t < T

ø2: (t, p(t)) T xper(t,ej+∆ej), 0e t < T (A5)

ø: xper(t,ej) T xper(t,ej+∆ej), 0e t < T (A6)

x** ) ø (x*) (A7)

Cxi
j(t) ) ej/xi

per(t,e) ×

lim
∆ejf0 [xiper(t,ej+∆ej;t*,ø(x*)) - xi

per(t,ej;t*,x*)

∆ej ] (A8)
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control coefficients,Cxij(t), as defined by eq A8. It follows from
eqs 4 and A8 that

with

Now for any sufficiently small∆ej, we shall estimate the
difference,∆i(t). If the initial condition forxtr in eq A10 were
ø(x*), this solution would coincide withxper, since the point
ø(x*) belongs to the periodic trajectory that is determined by
[ej] ) ej + ∆ej. Hence, the difference,∆i(t), can be expressed
in terms of the derivative with respect to the initial condition,

Here o denotes the sum of all terms of higher order with respect
to the norm,|x* - ø(x*) |, of them-dimensional vector,x* -
ø(x*). The difference in the initial conditions,x* - ø(x*),
relates to the distance between the two periodic trajectories,
corresponding to enzyme concentrationsej andej + ∆ej at time
t*. For every concentration this difference can be expressed as

whereΓl(x*) is finite. o(∆ej) represents the sum of all higher
than first-order terms with respect to∆ej. Applying eqs A10-
A12 to eq A9, one obtains

Asymptotic stability of forced oscillations implies that any
difference in the initial conditions vanishes when the time of
observation tends to infinity (due to the synchronization by the
external force). This implies that

Consequently:

This concludes our proof that for the case of asymptotically
stable forced oscillations the transition control coefficients tend
to the periodic control coefficients when time tends to infinity.

Appendix B

For the case of forced oscillations we shall derive the variation
equation for non-normalized control coefficients. Integration

of the differential equations describing the system behavior leads
to the periodic and nonperiodic solutions. These specify the
periodic and the transient control coefficients, respectively.
Analysis of the so-called variation equation identifies intrinsic
system properties (i.e., considered a part of periodic external
force) that ensure the asymptotic stability of forced oscillations
and shed light on the convergence of the transient control
coefficients to the periodic control coefficients.
To derive the variation equation, we consider two periodic

solutions of the differential equations (see eq A1), i.e., one
corresponding to the initial value,ej, and one corresponding to
a perturbed valueej + ∆ej:

Heret is any moment of time. It follows from eqs A1 and B1
that the difference (z) between these two periodic solutions,

satisfies the equation

with the following periodicity condition for anyt:

For small value sof∆ej the differencev(t,xper(t,ej+∆ej),ej+∆ej)
- v(t,xper(t,ej),ej) can be expanded into a Taylor series:

Notably,

Here the derivatives∂v/∂x and∂v/∂ej are taken at the periodic
solution (B1) at timet. The symbol o denotes the sum of all
higher order terms of the Taylor expansion.wj is the turnover
rate Vj/ej of enzymej. Dividing both sides of eq B6 by∆ej,
taking the limit to infinitesimal∆ej, and switching the order of
differentiation, one arrives at

HereΓej

x is thejth column of the matrix,Γe
x, of non-normalized

periodic control coefficients. The latter matrix is connected to
the matrix of normalized control coefficients through

The periodic control matrix,Γe
x, can be found as the solution

of eq B7 that satisfies the following boundary condition (cf. eq
B5):

The (linear) equation (B7) is called the variation equation. It is
a generalization of the equation used by Heinrich and Reder
(eq 4 in ref 38). Its unique periodic solution determined by
the boundary condition (B9) is presented as (this can be verified

xper(t,ej) ) xper(t+T,ej) (B1)

xper(t,ej+∆ej) ) xper(t+T,ej+∆ej) (B2)

z(t,∆ej) ) xper(t,ej+∆ej) - xper(t,ej) (B3)

dz/dt ) N‚[v(t,xper(t,ej+∆ej),ej+∆ej) - v(t,xper(t,ej),ej)]

(B4)

z(t,∆ej) ) z(t+T,∆ej) (B5)

dz/dt ) N‚(∂v/∂x)|x)xper(t;e)‚z+ N‚(∂v/∂ej)|x)xper(t;e)‚∆ej +
o(|(∆ej,z)|) (B6)

(∂v/∂ej)k ) δjk‚(∂Vj/∂ej) ) δjk‚wj(x
per(t,e))

dΓej

x /dt ) N‚(∂v/∂x)‚Γej

x + N‚(∂v/∂ej) (B7)

Γe
x ) (diagx)‚Ce

x‚(diage)-1 (B8)

Γej

x (t*) ) Γej

x (t*+T) (B9)

trCj
xi(t) ) (ej/xi

per(t,e;t*,x*)) ×

lim
∆ejf0

xtri(t,ej+∆ej;t*,x*) - xi
per(t,ej,t*,x*)

∆ej
)

(ej/xi
per(t,ej;t*,x*)) ×

lim
∆ejf0 {xitr(t,ej+∆ej;t*,x*) - xi

per(t,ej+∆ej;t*,ø(x*))
∆ej

+

xi
per(t,ej+∆ej;t*,ø(x*)) - xi

per(t,ej;t*,x*)
∆ej } )

(ej/xi
per(t,ej;t*,x*)) ∆ej98

lim
0

∆i(t)
∆ej

+ Cj
xi (A9)

∆i(t) ) xi
tr(t,ej+∆ej;t*,x*) - xi

per(t,ej+∆ej;t*,ø(x*)) (A10)

∆i(t) ) ∑
l)1

m

(∂xi
tr/∂x*l)(x*l - ø(x*)) + o(|x* - ø(x*) |) (A11)

øl(x*) - x*l) Γl(x*)∆ej + o(∆ej), l ) 1, ...,m (A12)

trCj
xi(t) ) Cj

xi(t) + (ej/xi
per)∑

l)1

m

(∂xi
tr/∂x*l)Γl(x*) (A13)

lim
tf0

∂xi
tr(t,e;x*,t*)

∂x*
) 0

lim
tf0

[trCj
xi(t) - Cj

xi(t)] ) 0 (A14)
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by the direct substitution)

Here F(t) is the fundamental matrix of the homogeneous
equation

I is them by m identity matrix. Explicitly,F is expressed as
follows:

For simplicity it is assumed here that themby n stoichiometry
matrix, N, has maximum rank,m, i.e., that all the metabolite
concentrations are linearly independent.
If the metabolite concentrations are constrained by the moiety

conservations, only the control coefficients with respect to
linearly independent metabolites must be considered. In this
case the stoichiometry matrix,N, can be presented as the product
of the link matrix,L , and the reduced matrixNR of the maximal
row rank ofN.13 Reducing to the independent concentration
(xR), the variation equation (B7) takes the form

Its solution is given by eq B10 after substituting the matrixNR

for N and the corresponding substitution of the matrixNR‚(∂v/
∂x)‚L for N‚(∂v/∂x) in eqs B11 and B12.
Now we shall compare the periodic solution corresponding

to the value,ej, to the transient solution that occurs when this
enzyme concentration (ej) is perturbed by∆ej at the moment
t*. Either solution satisfies eq A1 (with different values of
enzyme concentrations) and assumes the same initial value (x*)
at the initial momentt*. Their difference (y),

will satisfy eq B4. However, the periodic boundary condition
(B5) does not apply to the functiony, and instead of eq B5 the
initial condition

must be considered. Similarly as above, one can show that the
matrix (trΓe

x) of non-normalized transient control coefficients
satisfies the same variation equation (eq B7), that of the matrix
(Γe

x) of the periodic control coefficients. Most importantly,
however, the unique periodic solution (eq B10) of the variation
equation corresponding to the matrixΓe

x is determined by the
boundary condition (B9), whereas the solution corresponding
to the matrix trΓe

x is determined by the zero initial condition
(B15) (see eq B14):

The solution of eq B7 with the initial condition (B15) can be
presented in the following form:

HereF(t) is the same matrix as theF(t) of eq B10, i.e., the
fundamental matrix of the homogeneous equation given by eq

B12. Due to the dependence of∂v/∂x on t, it follows from eqs
B8, B12, and B16 that in the case of forced oscillations transient
control coefficients do not obey the summation theorems that
they would satisfy in the case of relaxation processes near the
steady states (cf. ref 38).
We limit this discussion to systems that in the absence of a

periodic external force exhibit a unique asymptotically stable
steady state. Then, all the eigenvalues of the matrix (N‚∂v/∂x)
of the system linearized at the steady state, eq B7, have negative
real parts. Due to the continuity of the derivatives,∂v/∂x, the
eigenvalues of the matrixN‚∂v/∂x continue to have negative
real parts in some vicinity of the steady state. It follows from
eq B12 that if the periodic trajectory is located inside the
vicinity, the norms of the eigenvalues of the matrixF(T) (i.e.,
the characteristic numbers of eq B11) are smaller than 1. This
ensures the existence of the solution of eq B7, hence, of the
transient control coefficients,trCj

xi(t), at any time. The con-
vergence oftrCj

xi(t) to the periodic control coefficient,Cj
xi(t), is

justified by eq A13 (see Appendix A), provided that the
derivatives, dxi

tr/dx*l, with respect to the initial conditions tend
to zero as time tends to infinity. These derivatives satisfy the
homogeneous variation equation (B11), and they can be
expressed as linear combinations of the columns of the matrix
F(t). It follows from eq B12 that any such combination vanishes
when time tends to infinity (since all the eigenvalues ofN‚∂v/
∂x have negative real parts). In the case when the amplitudes
of forced oscillations are large, the premise that the eigenvalues
of the matrixN‚∂v/∂x have negative real parts at all the points
of the periodic trajectory (see section A1 of the main text)
ensures the existence of both periodic and transient control
coefficients (expressed explicitly by eqs B10 and B16) and the
convergence of the latter to the former when time tends to
infinity.

Appendix C

The kinetic equation for the metabolic system depicted in
Scheme 1 of the main text can be written as follows:

When the substrate concentration (S) is time invariant, the
system has an asymptotically stable steady state,x0:

WhenS changes periodically,

Equation C1 can be written as

We will seek a periodic solution,xper, in the following form:

Substituting eq C5 into eq C4 and equating the terms of the
left-hand side, placing at functions sin(ω0t) and cos(ω0t), 1, to

Γe
x ) F(t)‚[(I - F(T))-1‚F(T)∫0TF(τ)-1‚N‚(∂v(τ)/∂e) dτ +

∫0tF(τ)-1‚N‚(∂v(τ)/∂e) dτ (B10)

dF/dt ) N‚(∂v/∂x)‚F (B11)

F(t) ) exp(∫0tN‚(∂v/∂x(τ)) dτ) (B12)

dΓe
xR/dt ) NR‚(∂v/∂x)‚L ‚Γe

xR + NR‚(∂v/∂e) (B13)

y(t,∆ej) ) xtr(t,ej+∆ej;t*,x*) - xper(t,ej;t*,x*)

y(t*,∆ej) ) 0 (B14)

trΓe
x(t*) ) 0 (B15)

trΓe
x(t) ) F(t)∫0tF-1 (ê)‚N‚(∂v(ê)/∂e) dê (B16)

dx/dt ) - (k-1e1 + k2e2)x+ k1e1S (C1)

x0(e) )
k1Se1

k-1e1 + k2e2
(C2)

S(t) ) S0(1+ a sin(ω0t)) (C3)

dx/dt ) - (k-1e1 + k2e2)x+ k1e1S0a sin(ω0t) + k1e1S0 (C4)

xper(t) ) x0(e1,e2) + B1(e1,e2) sin(ω0t) + B2(e1,e2) cos(ω0t)

(C5)
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those of right-hand side, one finds the periodic solution (C5)
as the following:

Here,-æ is the initial (att ) 0) phase of oscillations,

Substituting eq C6 into the rate equations (see eq 9 of the main
text), one derives expressions for the fluxes through the first
(J1) and second (J2) reactions:

HereJ0 is the steady-state flux.A1 andA2 are the amplitudes
of the oscillations of the fluxes, andø is the initial phase of
oscillations of the flux through the first reaction. Using eqs
C8-C10, the derivation of the periodic control coefficients is
straightforward:

Here,Ce1

J0 andCe2

J0 are steady-state flux control coefficients.

andúi, i ) 1, 2, 3, 4, are the initial phases of oscillations of

periodic control coefficients:

Differentiating eqs C9 and C10 with respect to lne1, ln e2, and
ω0, one obtains the control coefficients over the amplitudes of
oscillations of fluxes,A1 andA2, with respect to the enzyme
concentrations,e1 ande2, and the frequency,ω0, of a periodic
force,
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