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Control Analysis of Periodic Phenomena in Biological Systems

Introduction

Boris N. Kholodenko,*' Oleg V. Demin} and Hans V. Westerhoff/

Department of Pathology, Anatomy and Cell Biology, Thomas Jeffersaretdity, 1020 Locust Street,
Philadelphia, Pennsylnia 19107, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State
University, 119899 Moscow, Russia, Department of Microbial Physiology, Freeesify, De Boelelaan 1087,
NL-1081 HV Amsterdam, The Netherlands, and E. C. Slater Institute, Biocentrueergltyi of Amsterdam,
Plantage Muidergracht 12, The Netherlands

Receied: July 31, 1996; In Final Form: January 7, 1997

Principles of the control and regulation of steady-state metabolic systems have been identified in terms of the
concepts and laws of metabolic control analysis (MCA). With respect to the control of periodic phenomena
MCA has not been equally successful. This paper shows why in case of autonomous (self-sustained) oscillations
for the concentrations and reaction rates, time-dependent control coefficients are not useful to characterize
the system: they are neither constant nor periodic and diverge as time progresses. This is because a controlling
parameter tends to change the frequency and causes a phase shift that continuously increases with time. This
recognition is important in the extension of MCA for periodic phenomena. For oscillations that are enforced
with an externally determined frequency, the time-dependent control coefficients over metabolite concentration
and fluxes (reaction rates) are shown to have a complete meaning. Two such time-dependent control
coefficients are defined for forced oscillations. One, the so-called periodic control coefficient, measures
how the stationary periodic movement depends on the activities of one of the enzymes. The other, the so-
called transient control coefficient, measures the control over the transition of the system between two stationary
oscillations, as induced by a change in one of the enzyme activities. For forced oscillations, the two control
coefficients become equal as time tends to infinity. Neither in the case of forced oscillations nor in the case
of autonomous oscillations is the sum of the time-dependent control coefficients time-independent, not even
in the limit of infinite time. The sums of either type of control coefficients with respect to time-independent
characteristics of the oscillations, such as amplitudes and time averages, do fulfill simple laws. These
summation laws differ between forced oscillations and autonomous oscillations. The difference in control
aspects between autonomous and forced oscillations is illustrated by examples.

Living cells also exhibit various important time-dependent

Quantitative approaches have led to significant advances in phenomena howevé?. For instance, fluctuations in metabolic

the understanding of the control of metabolic and information Variables give rise to time-dependent transient processes which
pathways under stationary conditioh®. In a biochemical/  are ultimately responsible for the stability of the steady §ta‘i§._
biophysical reaction system such as a metabolic pathway in aPermanent perturbations of parameter values lead to transitions
|iving Ce” the Control exerted by any enzyme on any Steady_ to new Steady states. Some Statlonal’y mOVementS, |e, Self'
state flux (reaction rate) or concentration can be quantified in sustained (limit cycle) oscillations, are themselves time-depend-
terms of the corresponding control coefficient defined by €nt and stable to fluctuation&!'? In physics and chemistry,
metabolic control analysis (MCA). The (stationary) control Oscillations have been observed in many complex reaction
coefficient is the relative difference between the two steady- mixtures!® The study of various features of oscillations
states in pathway flux or metabolite concentration, divided by appeared to be useful for determining the essential parts of
the causative fractional change in the enzyme’s activity, complex reaction mechanisifs2° In biology, limit cycle
extrapolated to infinitesimally small chanéje. This quantifies systems are of particular interest, since some of them provide
the ability of an enzyme to influence the steady-state pathway the mechanisms for various biological clocks, including the one
rate or the concentration of a metabolite. It also makes it governing the cell cyclél22 Metabolic oscillations occur in
possible to assess the relative importance of different enzymesyeast extracts, in populations of yeast cells (see, for example,
to the control of the flux, since in an ideal pathWwaghe sum refs 23-32), and in photosynthesié. There is a growing
of the control coefficients of all the enzymes is equal fof1 interest in the yeast oscillations because they involve active
(see ref 11 for a review). Basic relationships of MCA, i.e. so- cell—cell synchronizatiod?3* Oscillations have been proposed
called summation and connectivity theorems, enable one toto be functional, as they may increase thermodynamic ef-
calculate the control coefficients in terms of the (local) kinetic ficiency35 Baconier et abé and Teusink et &’ calculated the
properties of single reactions, i.e. their elasticity coefficiéfits! control exerted by enzymes on the period of oscillation using
Consequently, the control of steady-state phenomena in metaparticular models of glycolytic oscillations. They found subtly
bolic networks is fairly well understood at the theoretical level. djstributed control. Yet, the most intriguing issue about the
* Corresponding author. .controll of oscillat.ions in biological systemg has not begn ;tud?ed
 Thomas Jefferson University. in detail, e.g., which laws govern the magnitudes and distribution
¥ Moscow State University. of the control.

§F iversity. I .
I U:ﬁselr"s?t';?f ',iymsterdam. In close vicinity of the (asymptotically) stable steady state

€ Abstract published ilAdvance ACS Abstract&ebruary 15, 1997. the control over a relaxation process has been analyzed by
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Heinrich and Redé&? (see also refs 39, 40). Definitions of time-  independent metabolic variablex),(the so-called chemical
dependent control coefficients were generalized to include kinetics differential equations (eq Al in Appendix A). The
perturbations of any parameter affecting the enzyme rate, i.e.correspondence between the physical system and the math-
not necessarily of enzyme concentrations. For relaxations toematical equations allows one to use the work “solution” to
asymptotically stable steady states, it was shown that time- refer to “system behavior”.
dependent control coefficients tend to steady-state control We shall assume that the eigenvalues of the Jacobian of this
coefficients when time tends to infinif. An elegant attempt ~ system of differential equations have negative real parts at all
to extend control analysis to arbitrarily time-dependent trajec- the points of the periodic trajectory. Under these conditions,
tories was made by Acerenza et'alThese authors introduced  the periodic solutionx®(t), to eq Al is unique and asymp-
an “operational” definition of a time-dependent control coef- totically stable!’” So-called “conservative” systems (often
ficient as the relative difference between the reaction rates considered in physics) lack the dissipation of free energy. Such
(concentrations) in the original and the perturbed system systems usually have an infinitely large number (continuum)
observed at time, after a perturbation of a parameter at time of periodic solutions determined by the initial conditions and
0, divided by the relative change in that parameter. A number will not be considered here. Here we consider isothermal,
of relationships considered to be analogous to the summationisobaric systems that continuously dissipate free energy, as found
and connectivity theorems for systems at steady $fatesre in chemical reaction systeffsand living cellsg
derived. However, below we shall see that for stationary Lett* be an arbitrary time moment and be a point on the
periodic phenomena, e.g., for self-sustained (*autonomous”) periodic solution corresponding to that momeht(such a
oscillations (limit cycles), neither these theorems nor the correspondence is unambiguously determined by the periodical
“operational” definitions of time-dependent control coefficiéhts  external force, see Appendix A). Onteand x* have been
apply as time tends to infinity. chosen as the initial condition, the corresponding periodic
The present paper addresses these problems and developsolution is designated a®e(t,e;t*,x*). If now another point
metabolic control theory for stationary periodic phenomena in (x) in close vicinity tox* is chosen as the initial condition, i.e.
biological systems. It first defines time-dependent control x(t*) = x* + Ax, then due to the asymptotical stability xi",
coefficients for forced oscillations. Then it shows that for the ensuing trajectorx() tends taxPer as time tends to infinity:
autonomous oscillations the same definitions are not useful. The
control of autonomous oscillations can only be quantified by lim(X"(t,et*, x* +Ax) — xPe(t,eit*, x*)) =0 2
the control coefficients with respect to those characteristics of oo
oscillations that do not depend on the phase of periodic
movement. For both autonomous and forced oscillations,
summation theorems for control coefficients with respect to the
phase-independent properties are then derived. In a simple
example of forced oscillations we show that the contributions
of different enzymes to the control of the fluxes can change
dramatically during the period.

Considering (fractional) changes in a steady-state periodic
solution caused by a change in a particular enzyme concentration
(g), one can define (steady-state) “periodic” control coefficients
over metabolite concentrations and reaction rates (fluxes) as
follows:

Cy(t) = (x°(t.e)/de)(e/x*) = d Inx*(t.e)/d Ing

CJ-Jk(t) = (dJ°(t.e)/de)(e/%") = d In F°(te)d Ing (3)

Results

A. Definitions of Time-Dependent Control Coefficients.
Al Forced Oscillations Let us suppose that a system under
study is exposed to periodic changes in the environment
resulting in periodic changes of some system parameters, e.g., . = . - ; -
kinetic constants and the concentration of “external” metabolites. E;:gdé;;ugggﬁﬁeojérg t/r;:iu%esng?lscoﬁgj?i?:: I/cglltjr;?s r%?lcetlcs)ﬂoul d
Such a situation can also be described in terms of some periodic . X AP

. ) consider the non-normalized flux control coefficiedia eq 3.
external force influencing the systeth.We shall assume that In eq 3 periodic control coefficients are defined as formal
at fixed parameter values a single (asymptotically) stable steady , . asp . L .
state of the system exists. When kinetic parameters changeder'v.at'ves of the asymptotically stab!e periodic solution (eq
periodically, metabolic concentrations)(and reaction rates, 1) with respect to a parameter of choice (eg). (cf. ref 43).

Jk (called fluxes in the framework of MCA), become periodic This def'?"f;‘?” c?rrf_espondls todthe_comparlsolzl oijf[;/fvo _st:eady-
functions of time- state periodic solutions (closed trajectories) that diffeg iny

an infinitesimal changeAg. Most importantly, these two
solutions are synchronized by the periodic external force. In
fact, a one-to-one correspondence exists between any point of
either closed trajectory and a value of the periodic force. Hence,

Since the periodl does not depend on system parameters, it
' follows from eq 1 that the control coefficienti;jx(t), are

x = x°(t,e) = X°(t+T,e),

J=X(te) = X (t+Te) (1) also between pairs of the points of the two different trajectories,
a one-to-one correspondence exists. This synchronization makes
HereT is the period of the external force and-= (), &, ..., &) it possible to assign an operational meaning to the (steady-state)

is the vector of the enzyme concentrations. Stationary periodic periodic control coefficients in terms of (infinitesimal) perturba-
behavior caused by a periodic external force is called a forced tions (see below and Appendix A).

oscillation. During the period of such an oscillatiof),(the Alternativley, let us consider the periodic solutiof®-
vector of metabolite concentrations) follows a closed trajec-  (t,et*,x*) and the other solutiox"(t,e+Ae;t*,x*) that occurs
tory. when a particular enzyme concentrati@y) (s perturbed by\g

The system behavior described by eq 1, as well as the systemat the moment* (here and below the superscript “tr” specifies
behavior outside that closed trajectory is dictated by chemical the transition process). The functioti(t,e+Ag;t*,x*) is not
processes developing in time according to the kinetic rate periodic. It describes the transition process from the periodic
equations. Combination of these rates with the map of the solution corresponding to the val@gto the periodic solution
chemical network leads to differential equations for all of the corresponding to the valug + Ag. Initially (t = t*), the two
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solutions coincide. At any time> t*, the relative difference  periodic time-dependent solutions?®" and J°, or if the
betweerx" andxPe" divided byAg/g shows how the particular  amplitude of the forcing function approaches zero. Definition
enzymeg affects the metabolite concentration or flux during (4) and the corresponding definition of time-dependent control
the transition. The resulting function, obtained in the limit of coefficients in refs 38 and 41 have the clear operational meaning
infinitesimally smallAg, is called a transient (time-dependent) of relating fractional changes in a particular enzyme concentra-
control coefficient: tion at given initial conditions to resulting changes in metabolic
concentration or flux at any subsequent point in time. It has
xi”(t,e‘-+Ae‘-;t*,x*) — )gPe'(t,q;t*,x*) been _shown in ref 41 that time-dependent control coefficients
"CjXX(t) = lim % describing a relaxation process near a steady state tend to the
Ag—0 Ag corresponding control coefficients over the steady-state (time-
independent) metabolite concentrations and fluxes, as time tends
erry . to infinity (cf. eq 5).
(%/Xip (t,q,t*,x*)) A2. Autonomous Oscillations (Limit Cycles)rhe forced
oscillations considered above arose from the influence of a
tr ok k) TPeI ok periodic external force on a system that exhibited asymptotically
trC_Jk(t) = lim Jk(t,e‘-+Ae‘-,t X~ X (t’%’t X%) % stable steady states in the absence of that force. By contrast,
! Ag—0 A% autonomous oscillations occur at time-independent (internal and
external) parameter values in systems in which the correspond-
per ing steady states are unstaklé’-4> In mathematical terms, the
(8/3"(t,g;t%,x%)) (4) latter systems are called autonomous, whereas the former are
nonautonomous, as their right-hand sides depend on time
Contrary to periodic control coefficients transient control periodically and explicitly (see eq Al in the Appendix A).
coefficients do not depend on time periodically, although they Physically, a principal difference between forced and autono-
do depend on time. mous oscillations is that an influence that synchronizes with
Appendix A shows that in the case of forced oscillations the respect to an external clock is lacking in the latter case, whereas
transient control coefficients (eq 4) tend to the corresponding in the former case a periodic external force synchronizes the
periodic control coefficients (eq 3) as time tends to infinity:  oscillations in the systems with the initial parameter values to
the oscillations in the system with the perturbed values of
lim (terXi(t) _ iji(t)) =0 parameters. .Due to lack of a synchronization influence, a stable
t—e periodic solution of an autonomous system cannot be asymptoti-
cally stable in the strictest sense of convergence to a skftle
lim ("CJ-J(t) - CjJ(t)) =0 (5) An initial difference in the phase of oscillations cannot vanish
e with time in the general case. Although there is convergence

) . ) ) . to a trajectory of a single form, there is no convergence to a
This clarifies the operational meaning of the formal periodic grtain phase.

control coefficients defined by eq 3. They quantify the control  £qr autonomous oscillations one can define formally the
when a system has already relaxed to a new oscillation pattern, o coefficients,cjx(t) and C]_J(t), analogously to eq 3, i.e.,

after a change in the activity of a particular enzyme. as the log-log derivatives of a unique periodic solution with

Appendix B shows that the periodic and the transient control o nec 6 the enzyme concentrations (or as the non-normalized
coefficients satisfy the same variation equation. Periodic control yo iy atives if periodic reaction rates assume zero values at some

coefficients are given by the unique periodic solution of the e moments). However, in contrast to the case of forced
variation equation, whereas transient control coefficients are oscillations these control coefficients do not depend on time
determined as a time-dependent solution, assuming the initial gty periodically. Moreover, they do not exist when time
conditions equal to zero. To come to grips with this result, . s to infinity

one may revisit the definitions given by eqs 3 and 4 and note ¢,y syrate this, let us present a periodic solutiaff}{ by
that both the periodic and the transient solutions for metabolite its Fourier series. We emphasize that both the Fourier coef-

concentrations and fluxes must satisfy the same kinetic equations; _. :

(see Appendix A, eq Al). For explicit expressions for the Tgler;tr:? Zzg;nggiﬂzgzgﬁgodg?nd on systemic parameters,

periodic and transient control coefficients see Appendix B (cf. "~ '

ref 38). o
It is instructive to compare these periodic and transient control er _ ;

coefficients, which describe the control of forced oscillations, Xt z x'Q(e) exp(ho(e)Y) ©)

to the corresponding control coefficients defined for perturba-

tions near asymptotically stable steady st&#¢4. The periodic

control coefficients (eq 3) defined by the formal differentiation

of steady-state periodic solution correspond to the traditional

steady-state control coefficients. Indeed, in standard MCA, eq

3 will define the usual control coefficients if the steady-state

concentrations and fluxes are substituted in this equation for o

the periodic ones. The transient control coefficients of an Xy — (a/yPe h _ ;

oscillating system (eq 4) correspond to the time-dependent < ® (q/xk X z (dxk(e)/dq) exp(ha(e)t) +

control coefficients, as introduced by Acerenza etlaind o

Heinrichf* and by Heinrich and Red®&for relaxation behavior it Z xE(e)(dw(e)/dq) exp(ihw(e)t)) (7)

around steady states after infinitesimal perturbations in param- hs=c

eters. These coefficients can be obtained if in eq 4 steady-

state concentrationx?o and fluxes Q(k)) are substituted for the  Because of the second term on the right-hand side of this

h==c0

Herexk“(e) denoteshth Fourier coefficient and i is the imagi-
nary unity. Differentiating the Fourier series (6) with respect
to a particular enzyme concentrati@(see eq 3), one obtains
for the control coefficientsCj«(t),

hE=e
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equation, which is proportional tg the control coefficients, concentration. Let us assume that the reaction ratemduvy,,
C¥(t), do not depend on time periodically. Since this term are linear functions of metabolite concentrations:
becomes unlimited with time, the coefficierttﬁk(t) cannot be

defined when time tends to infinity. v = e (k,S—k ;%)
The transient control coefficienté,rcjx“(t), are defined ac-
cording to eq 4. Hence, they can be found by solving the vy = ek 9)
variation equation (cf. ref 38 and Appendix B). mor the case
of autonomous oscillations it has been prd¥ahat no solution Hereky;, i = 1, 2, are the kinetic constanis;, e are the total

of the variation equation exists at time tending to |nf|n|ty enzyme Concentrations; and is the concentration of the
Therefore, also the transient control coefficients with respect intermediate. Thanks to the linearity of eq 9 with respect to
to metabolic concentrations or fluxes during the transition from jts periodic solution (under the influence of the periodic force

the initial to a perturbed closed trajectory can only be defined described by eq 8) can be found readily (see Appendix C):
for limited time intervals. In the limit of infinite time this

control coefficient does not exist either.
. . .. per, 0 leJae.l. .
The question arises why both control coefficier@t) and X)) =x + 5 51 SiN@ot—¢)
“CY(1), fail to exist when the time of the observation of the (k18 + k&))" + 0¢]
periodic or transition process tends to infinity. For the control kse
coefficients, Cf(t), this is explained by the phase difference onﬁ (10)
between the original and perturbed oscillations, which continues ko1& +kee,

to increase with time. For the control coefficien‘fé:}‘(t), the

time-dependent phase difference between the transition and thederex0 = x° (e;,&) is the concentration at the asymptotically

periodic movements is the culprit. Although the initial and the stable steady state in the neighborhood where the forced

perturbed trajectories are very close in concentration space, duescillations occur. —¢ is the initial (att = 0) phase of

to the dependence of oscillation frequency on a perturbed oscillations, for which an explicit expression is given in

parameter,g, the phase difference does not vanish with Appendix C. With respect to the input oscillation (eq 8) the

vanishing ofAg when time tends to infinity; the infinitesimal  resulting oscillation inx is deformed as a function of the

difference in phase is amplified infinitely. frequency of the former. This is due to the capacitive effect of
From the reasoning above one may conclude that in the casethe concentration ox.

of autonomous oscillations due to divergence of the initial and  gypstituting eq 10 into the rate equations (9), the periodic

the perturbed movements, the control coefficients determined gg|ution for the fluxes through the firslyj and the second{)
by either eq 3 or eq 4 cannot describe the control exerted by reactions are obtained:

enzymes over periodic values of metabolic concentrations and

reaction rates. However, the same reasoning shows that the
control over those characteristics of self-sustained oscillations

that do not depend on the phase of the movement can be defined _ .
(at any time of observation). The ledog derivatives of these (1) = J, + A(ewg) Sinfwet—¢)
time characteristicsY) with respect to enzyme concentrations _ e kS

determine the coefficientsCJY, that describe the control of 0 ke ke,

(stationary) self-sustained oscillations. For instance, the control

coefficients over the amplitude and period of oscillations and Hereds is the steady-state fluxA; andA, are the amplitudes

over various mean values do exist. o of the oscillations of the reaction rates, gnis the initial phase

B. Properties of Time-Dependent Control Coefficients in of oscillations of thel; (the explicit expressions fa, A,, and
an Example of Forced Oscillations. We shall consider a  » are given in Appendix C). From egs 11 it follows that the
simple example where a periodic solution (eq 1) and, hence, fiyxes through the first and the second reactions differ at most
periodic control coefficients (eq 3) can be found analytically, times. Only their averages are equal. Consequently, in contrast
as functions of time and parameters. This will make it possible g the case of systems at steady states, the control coefficients

to illustrate a number of the control properties, such as the gyer the time-dependent fluxes through sequential reactions in
variations of the control distribution with time, and to test qgcjllating systems will differ (see Figure ).

whether the summation theorem that is true for steady-state
control coefficients continues to apply in the case of forced
oscillations.

Scheme 1 shows a metabolic chain of two reactions,

J,(t) = 3y + A(e.wy) sin(wqt+y)

(11)

The periodic control coefficients of enzymes 1 and 2 over
the flux through either reaction can be obtained by differentiating
eq 11 with respect to le; and Ine, (see Appendix C). Figure
2 exemplifies the behavior of enzyme control coefficients for
the case when the amplitude of the oscillation of the concentra-
tion of the pathway substrata {n eq 8) is comparable with its
average concentratiorf). One can see that in some time
intervals during the period of the oscillation the time-dependent
control coefficients are above, whereas in the other intervals
) they are below the corresponding control coefficients at steady

t) = S(1 + asin (@) (8) state (wherma = 0). Moreover, these periodic control coefficients
of enzymes 1 and 2 cross several times. As a consequence, in
HereS is the substrate concentration in the absence of (external)some intervals of time the control exerted by enzyme 1 exceeds
periodic forcewy is the frequency of the periodic force, aad the control by enzyme 2, whereas during other intervals the
< 1 is the amplitude of the oscillation of the substrate opposite is the case. It should be noted that when the ampli-

S—X—P (scheme 1)

We shall suppose that the substrate concentrafpohanges
periodically, and the product concentratid?) (s kept zero:
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0.50 equal to 1), is not valid for periodic control coefficients:
2 291/2
oas Ce0) + C0) = 1+ (AL 0N [(kge,)” + 1 sin(ogt+
’ 2 20172
2 €1 T [(k_18)” + w17 sin(ot+8,)} (12)

w
i
g 0407 C. Summation Theorems. C1. Summations in the Case
2 . of a Forced Oscillation Since the reactions rates depend
] 035 4 linearly on the enzyme concentrations (activities), simultaneous
8" transformation of these concentrations, of the time, and of the
e frequency of a periodic external force,
4
E 0.30 -1 . _ .
3 e=le, t* =t, w{=Ilw, (13)

0.25 - leads to a new equation system that coincides with the initial
system after eliminating the superscript (*). Therefore, if the
initial conditions are the same, metabolite concentrations of the

0.20 , | . transformed system at the mometit will coincide with

0 5 10 15 20 concentrations of the initial system at the momgnvhereas
TIME the fluxes will increase by factot (proportional to the new

Figure 1. Comparison of periodic control coefficients over the time- enzyme activities):

dependent fluxes through sequential reactions in the oscillating system

depicted by scheme 1: (1) control coefficient over flywith respect %(UA,1€) = X(t.€)
to concentration of the first enzyme; (2) control coefficient over flux
J, with respect to concentration of the first enzyme. The magnitudes J(t/A,4e) = AJ,(t.e) (14)

of the constants werk, = 35,k, = 30,k-; = 25, k., = 1, § = 20,

e=01e=005a=05 ando = 1. Applying to eq 14 Euler’s theorem on homogeneous functions,

one arrives at

" " ” ZCj’“(t) —dinx/dInt+dinx/dInw,=0 (15)
]

1 3G —ding/dint+dingfdinw,=1 (16)
J

Although for forced oscillations the control coefficients with
respect to the frequency of the external forego( C(]UO) can be
2 defined formally as the derivative of the periodic solution with
respect tawo, they become unlimited as time tends to infinity.
4 This is explained by the phase divergence of the initial periodic
movement with the frequenay, and the perturbed one with
3 the frequencywo + dwo, corresponding to the infinitesimal
change inwo. This phase difference does not remain infini-
tesimal at infinite times (cf. the case of autonomous oscillations

CONTROL COEFFICIENTS

0 T —T T T T above). Moreover, also the transient control coefficients defined
0 2 4 6 8 10 12 by eq 4, in which the derivatives should be taken with respect
TIME to wo (instead ofg), become unlimited at infinitely large time.

Figure 2. Dependencies of periodic and steady-state enzyme control Hence, in a general case the summation theorems given by eqs
coefficients of the linear pathway of scheme 1 on time. Lines 1 and 15 and 16 have no operational meaning #snds to infinity.

3 ref_er to the periodic control coefficients over flaxwith respect to Note, however, that the sums given by the first terms in egs 15
the first (1) and the second (3) enzyme. Lines 2 and 4 refer to steady- 5 16 do exist at infinitely large times. For the above example
tsr:z;tieccoonr:gol( LBOSE;;'%':_S .?\k’]'“:rﬂfénvi\{gz ;g%g?ﬁ;tg;r:nigf;rmg of for.cgd oscillatiqns, eq 12 shows that the sum of.flux control
35k =30,k ;=25k,=1S%=20e=01e=005a=0.1, coefficients (the first term in eq 16) depends periodically on
andw = 1. time.

One may note that if the form (amplitude) of the oscillation
tude of the substrate oscillation increases further, even thein x were independent of the forcing frequensy, x could be
direction of reaction rates changes during the period and suchwyritten as
that they equal zero at some moments. In this case the control
can become infinite. If the amplitude of the oscillation of the X(@g,t) = X(wq)
pathway substrate is smalh (< &), the periodic control
coefficients do not cross, but oscillate near the corresponding In this case, the second and third term of eqs 16 disappear and
steady-state values (not shown). the classical summation theorems, but now for periodic control

Using the explicit expressions for periodic control coefficients coefficients, are retrieved. This condition holds in electrical
(see Appendix C), one can show readily that the summation networks without capacitances, and in linear chemical networks
theorem, which governs the steady-state control coeffidients where the variable metabolites occur in such small volumes that
and time-dependent control coefficients for the relaxation near the corresponding relaxation times are much smaller than the
steady staté$ (it requires the sum of these coefficients to be period of the applied oscillation. As illustrated by eq 10,
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) ' 15

\

5

-10 4

CONTROL COEFFICIENTS
-
SUM OF CONTROL COEFFICIENTS
o
I

T T T -15 T T T T T T T
0 5 10 15 20 0 5 10 15 20 25 30 35

FREQUENCY TIME

Figure 3. Comparison of the amplitude control coefficients with the  Figure 4. Dependency of the sum of the time-dependent control
steady-state control coefficients for the linear pathway depicted in coefficients on time in the case of sinusoidal autonomous oscillations.
scheme 1. Curves 1 and 2 are dependencies of control coefficients

over the amplitudeA; of the periodic flux J; with respect to distribution can be made on the basis of the magnitudes of the
concentrations of enzymes 1 and 2 on frequency of external periodic corresponding flux control coefficients at the steady state.

force. Curves 3 and 4 are steady-state control coefficients with respect C2. Summation Theorems for Autonomous Oscillatids
to enzymes 1 and 2, respectively. The magnitudes of the constants )

werek, = 35 k= 30,k 1 — 25,k s = 1. S, = 20, &, — 0.1, andes was the case for forced oscillations, simultaneous transformation
=005 ' ' ’ ' ' (13) of the enzyme concentrations (activities) and of the time,
e=le, t* =t (18)

through the frequency dependence of the amplitude of the

oscillation inxP®", the form of oscillations in a metabolic network leads to a new equation system that coincides with the initial

often depends on the frequency of the applied oscillatiéns. system after eliminating the superscript (*). Therefore, eqgs 14

Accordingly, in the more general case, the second and third ., \ine 10 apply. This results in the following relationships
term of eq 16 do not cancel, and the simple summation theoremsfor the control coefficients defined by eqs:

do not apply.
Asin the.case of autonomous oscillatiqns (below), one should ch(t) —dinx/dInt=0
go to functions of metabolic concentrations and reaction rates T
that do not depend on the phase of the movement for summation ZC’k(t) —dind/dint=1 (19)
theorems to become practicable. In particular, the control : ]

coefficients with respect to the frequency can be defined for
time-independent characteristics, such as for the averages ovewhere the control coefficients are defined as formal derivatives
the period or amplitudes of oscillations. of concentrations and fluxes with respeci@t the moment

The following summation theorems hold for the control (eq 3). However, for autonomous oscillations the relationships
coefficients of enzymes over the amplitude of stationary (19) are not very useful because the control coefficients become

oscillations of metabolic concentration) or fluxes @;) and unlimited with time, unless it is emphasized that the enzymes
their average values over the periogl () in the case of have an excessive and oscillatory control on the metabolite
oscillations forced at a frequeneyo: concentrations. We shall illustrate this by the simplest possible
example, i.e. that of the sinusoidal oscillation in the concentra-
% A X X _ tion (X),
zcj’* +Cy=0, YCG+C, =0
] J

XPel(t) = A[2 + sin(wt+g¢)]

Equation 19 implies

A Ay J J
ZCJ-J*I—CWJO—]., sz+cj)0—1 (17)
J ]

<= (ot t+¢)/[2 + sinwt+
In the example considered above (section B) the control JZCJ (wt) cos@tte)] sin@tte)]

coefficients over the amplitudes of metabolic concentrations and

fluxes with respect to the frequency of the external force and which, as illustrated by Figure 4, is quasi periodic with a
of the enzyme concentrations can be calculated readily (seecontinuously increasing amplitude. This unlimited increase in
Appendix C). One can see that they satisfy the summation the amplitude of the sum of the control coefficients is because
theorems given by eq 17. Figure 3 compares the control any difference in frequency between the perturbed and unper-
coefficients over the amplitudé;1 of the periodic fluxJ; turbed system causes a phase difference increasing continuously
(curves 1 and 2) with the flux control coefficients for the steady- with time, as if the clock speed of the two systems differs. Note
state system (curves 3 and 4). One can see that the relativahat in steady states the second term in eq 19 is zero and the
distribution of the amplitude control between the enzymes of traditional summation theorems are found.

oscillating systems depends dramatically on the frequency of The relationships involving the control coefficients over time-
the periodic external force. Moreover, no predictions for this independent properties are useful for analyzing the control on
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a periodic trajectory. Considering eq 14 on a periodic trajectory, fluxes but also the frequency at which they oscillate. Any
one can conclude that the amplitud&)( of oscillations of parameter change may therefore cause a phase shift that
metabolite concentrations and their average valug®\yer a continues to increase with time. An important consequence is
period remain unchanged under the transformation (18): that theorems such as derived in ref 41 for oscillating metabolite
concentrations cannot contribute much to the understanding of
Al1e) = A(e), X(1€) = X(e) how autonomously oscillating systems are controlled. The
whereas the amplitudeA{) of oscillations of fluxes, their

relationship, considered as the connectivity theorem by Acerenza
4 et al.# is, in fact, the variation equation with respect to the

averages J), and the period ) of oscillations satisfy the

relationships

transient control coefficients. As shown in Appendix B when
time tends to infinity, the solution to this equation does exist in
the case of forced oscillations but does not exist for the case of
self-oscillations.

By showing what is impossible, this paper also highlights
what is possible. It is possible and useful to define control
coefficients and to derive summation theorems for all properties
that do not depend on the phase of the oscillations, i.e., all time-
independent properties such as amplitude and mean value. The
theorems derived here are in line with earlier results for
autonomous oscillatior?s:4749

So far, control analysis has been applied to autonomous
systems in which all the external and internal parameters are
assumed to be fixed. A distinction between autonomous and
forced oscillations is that in the latter case the equation system
is not autonomous mathematically in terms of its time depen-
dence.

Therefore it seemed that if time and phase of the oscillations
of the system were defined by the outside of the system, a

To calculate the fluxes and concentrations in a chemical cOntrol analysis of the oscillating metabolite concentrations and
reaction system from all the parameter values, numerical lUX€S migr;tobecgmt_e possible. This should apply to entrained
integration of complex equations is required especially if it oscillations#® oscillations enforced by a periodic force defined

As1e) = AA,(e), J(ie) =AJ(e), T(Ae) = (LA)T(e)
Therefore, the control coefficients of enzymes over the ampli-
tude of oscillations of metabolite concentrations and fluxes, their

averages, and the period of oscillations obey the simple
summation theorems(cf. ref 49):

IZCJ.AX =0, JZC]?_‘ =0
yer-1 y¢-1
JZch =-1

(20)

Discussion

pertains to a living cell (e.g., refs 43, 50). To calculate how

from the outside of the system. Differences between forces

steady-state properties are controlled by the parameters of thaP®Ing defined by the outside world have earlier been shown to

system, an analytical method exists, called metabolic control
analysis (MCA}“3 provided that one defines control in terms
of infinitesimal influences. The method has a parallel in
biochemical systems analy%id,has had important practical

be crucial for the understanding of biological free-energy
transductiorf?53 This paper has shown that, indeed, none of
the limitations for the application of MCA to oscillating
concentrations and reaction rates in autonomous systems are

applications (e.g., ref 51), and has increased biochemical insightPresent in periodically enforced systems.

into what controls metabolic gene expression and signal
transductiof networks.

The importance of entrainmeftreaches well beyond the
homogeneous systems discussed in this paper. Autonomous

Some of the most important biological processes are not oscillations in a population of cells are only macroscopic if cells

(always) at steady state howeverTherefore various attempts

oscillate in phase. For sustained oscillations some continuing

have been made to extend MCA to time-dependent systems_mutual entrainment of the oscillations of the individual cells is
The phenomenon that may seem most amenable to such ariequired. Recently, the conditions required to obtain sustained
extension is that of stationary oscillations of metabolic oscil- glycolytic oscillations in yeast cells have been obtafemhd
lating systems. A long known example is that of yeast the chemical identity of the synchronizing intercellular agent
glycolytic oscillations; under certain conditions yeast extracts has been identifieé It is imperative to understand what
and populations of yeast cells exhibit oscillations in NADH and  controls such oscillations in heterogeneous systems. By treating
glycolytic intermediates (e.g., refs 226). These oscillations  the intercellular communications as small perturbations by an
are autonomous; that is, they are not driven by an externally externally oscillating agent, the system can be approached.
imposed oscillation. The same system may also be exposed to For the control analysis of oscillating systems, it has been
relevant imposed oscillations such as in glucose concentrationimportant to distinguish between two time-dependent control
or in the flux. Quite interesting metabolic dynamics then coefficients. Transient control coefficients quantify the control
ensues$? over a transition from the initial periodic trajectory to the
Attempts to develop MCA for the analysis of the control of trajectory that corresponds to the perturbed enzyme concentra-
the time dependence of metabolite concentrations and fluxestion (cf. eq 4). Periodic control coefficients refer to dependence
have led to algebraic expressions (e.g. ref 14) that have had noof the stationary time-dependent oscillation on the concentration
implementation until now. Various authors including ourselves of an enzyme. As for forced oscillations, the transient control
have embarked on developing a more complete analysis. coefficients tend to the control coefficients of steady-state
Most importantly, the present paper resolves many of the periodic trajectory when time tends to infinity and the control
remaining issues by proving that much of what is being of periodically oscillating metabolic concentrations and reaction
attempted is impossible. Itis impossible to analyze the control rates by parameters of the system is defined properly. Ap-
of metabolic concentrations in an autonomously oscillating pendices A and B show the mathematical reasons for that: if
system in terms of well-defined control coefficients, because all the real parts of the eigenvalues of the Jacobian mairix,
the latter tend to infinity as time proceeds. The culprit is that (dv/9x), are negative on the periodic trajectoryf't;e), the
system parameters will control not only the concentrations and solution to the variation equation (B7) exists at any (even
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infinitely large) time moment. For autonomous oscillations both unique, asymptotically stable periodic solutiof§(t,e), deter-
the operational and the formal definitions of time-dependent mined by the periodic boundary condition:

control coefficients are possible only in terms of the control

over time-independent properties of the oscillations. The reason xPE(tr, €) = xPE(t*+T,e) (A3)

is lack of asymptotic stability for autonomous oscillations

(hence' phase |nstab|||ty)' because one of the eigenva|ues of dl\/heret* isa particular initial moment of time. The solution
monodromy matrix for a limit cycle (which corresponds to the for this boundary condition will be denoted by*(t.e;t*,x*).
matrix F, see eq B11) equals 1. Explicit expressions (see eqgs The solution is periodic with period,

B10, B11, and B16 in the Appendix B) for the periodic and

transient control coefficients with respect to parameters other Xt etr, x*) = X"t +T et x*)

than the imposed frequency have been derived for the case of . . . .
forced oscillations. Note thatx* cannot be arbitrary but is uniquely determined by

As discussed above, only in the case of forced oscillations t* on the periodic trajectory because of an external “clock"
d ntrol of time-d ! ng nt properties lend itself to relev. n,t provided by the periodic external force. Considering the two
0€s control of ime-dependent propertes e selflo releva periodic solutions that correspond to the initial vakiand to
control analysis. An exception here is the control by the

. g a perturbed value of thgh enzyme concentratiorg(+ Asg),
imposed frequency. Although for forced oscillations one can . - i

define formally the derivative of the periodic solution of the respectively, we present the derivatived with respect to
differential equations with respect to the frequency as a periodic
control coefficient, the corresponding transient control coef-

X (1) = (dxPe Y (e/xP) = (e/xPe
ficient will not tend to the latter when the time tends to infinity. Cj(t) (dx (t,e)/dq)(el/x, (ellx‘ (te)) x

Hence, this definition does not reflect the control over the Xe(tg+Ae,) — X*(t;6)
metabolic variables themselves. Again one should go to the lim A
averages or amplitude. A§—0 Ag

This paper also reports some model calculations. Figure 1
illustrates that the (periodic) control coefficients of enzymes
over the fluxes through sequential reactions differ significantly,
whereas the corresponding steady-state control coefficients ar{;
identical. Explicit expressions for the control coefficients of
the enzyme 1 over fluxe$ andJ, are given in Appendix C.
Similar observations in ref 47 have demonstrated that also
metabolic dynamics is subject to subtle control, perhaps even
more so than metabolic steady states.

Our immediate goal is to construct one-to-one correspondence
between the points of the two periodic solutior®8(t,g) and
°(t,g+Ag). The reason to expect such a correspondence is
e identity of the phase of the periodic external force for the
two solutions (external clock). During any period, e.g., within
the time interval Q< t < T, each poink on the closed periodic
trajectory in concentration space corresponds to a unique set of
values ¢, p(t)). Consequently, the following correspondences
(x1 andy») exist:

Acknowledgmept. This sFudy was supported by the Neth- 2% (t, p(t)) < Xper(t’q)’ 0o<t<T

erlands organization for Scientific Research (NWO).
1 t p@) <= x*°te+Ae), O<t<T (A5)

Appendix 2 8708
Importantly, these correspondences are one-to-one. Therefore,
also a one-to-one correspondence between the two periodic
solutions xP®(t,g) and xPe(t,g+Ag) exists, as given by the
compositiony = y17 1o y2:

Appendix A. Transient and Periodic Control Coefficients.
The kinetic equations of a metabolic network that is exposed
to a periodic external force can be written as follows (cf. ref
38):

. per, <> e
dx/dt = Nev(tx.e (A1) X xT(tg) <= xT(tgt+Ag), O0=t<T (A6)

Note that this one-to-one correspondence (synchronization),
is imposed by the periodic external forcg.will change when
a different periodic driving force is applied.

Let us denote by* and x** the points that belong to closed
trajectoriesxP®(t,g) andxPe(t,g+Ag) at timet = t*. According
to eq A6,x** can be presented as

Herex = [Xq, ..., Xm]" @andv = [vy, ..., ] T are the vectors of
the metabolite concentrations and the reactions ratesNaad
the m by n stoichiometry matrix. Due to the periodic depen-
dence of some kinetic parametep$ ¢n time, the reactions rates,
y(t,x), depend on time explicitly. It is convenient to present
eachy; as the product of the concentration (maximal activities)

of the corresponding enzyme)and some functionvw§) that X =y (X*) (A7)
depends on time periodically due to periodic changes of the
parametersp) with time: Considering the pointst{, x*) and (t*, x**) as the initial
conditions of the two solutionsxP®(t,g,t*,x*) and xPe-
v = qwj(p(t),x), p(t) = p(t+T), hence, (t,g+Ag;t*,x**), we refine eq A4 as the following:
y(tHHTX) = y(tx), j=1,..,n (A2) C5i(t) = g/} (t.€) x
Xtg At 2(x*) — X (tg;t*,x*)
HereT is the period of the external force that is related to the lim (A8)
frequency {) by the relationshipl = 27/w. This paper is Ag—0 Ag

limited to systems in which the eigenvalues of the maigv/
dx (the Jacobian) have negative real parts at all the points of Our next goal is to relate the transient control coefficients,
the periodic trajectory. Under this condition, eq Al has a trij‘(t), as defined by eq 4 of the main text, to the periodic
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control coefficientsCX(t), as defined by eq A8. It follows from
egs 4 and A8 that
Ci(t) = (e/x™(tett,x*) x
X' (te+Ae;t,x*) — xP(tethx*)

A(—:«J -

(8% (t.g;t*,x*)) x
X' (te+Ae;t*, x*) — xP(t,e+Ae;t*, x(x*))
Ag T

im,

lim

Ag—0
X (te At x(x*) — xper(t,q;t*,X*)} _
Ag
(&/%"°(t.g;t*,x*)) Aqﬂ 0 %% + Cf (A9)
with

A(t) = X' (tg+Ag;t,x*) — X°(tg+Ag;t*, x(x*)  (A10)
Now for any sufficiently smallAg, we shall estimate the
difference,Ai(t). If the initial condition forx" in eq A10 were
x(x*), this solution would coincide withxP®", since the point
x(x*) belongs to the periodic trajectory that is determined by
[6] = g + Ag. Hence, the difference)i(t), can be expressed
in terms of the derivative with respect to the initial condition,

Ait) = Z(aﬁtr/a&’)(ﬁk— x(x)) +o(x* —x(x9)) (ALl

Here o denotes the sum of all terms of higher order with respect

to the norm,|x* — x(x*)|, of the m-dimensional vector* —
x(x*). The difference in the initial conditions¢* — x(x*),

relates to the distance between the two periodic trajectories,

corresponding to enzyme concentratienande + Ag at time

t*. For every concentration this difference can be expressed as

u(x*) —x=T(x*)Ag +0(Ag), |=1,...m (A12)
whereI'\(x*) is finite. o(Ag) represents the sum of all higher
than first-order terms with respect fs5. Applying eqs A16-

Al2 to eq A9, one obtains

"Ci(t) = C'(H + (qmpesz(aﬁ/amr,(x*) (A13)

Asymptotic stability of forced oscillations implies that any
difference in the initial conditions vanishes when the time of
observation tends to infinity (due to the synchronization by the
external force). This implies that

X (t,ext, t*)
lim————=0
t—0

ox*
Consequently:

lim ["C(t) — C*(®] =0 (A14)
t—0

This concludes our proof that for the case of asymptotically
stable forced oscillations the transition control coefficients tend

to the periodic control coefficients when time tends to infinity.

Appendix B

Kholodenko et al.

of the differential equations describing the system behavior leads
to the periodic and nonperiodic solutions. These specify the
periodic and the transient control coefficients, respectively.
Analysis of the so-called variation equation identifies intrinsic
system properties (i.e., considered a part of periodic external
force) that ensure the asymptotic stability of forced oscillations
and shed light on the convergence of the transient control
coefficients to the periodic control coefficients.

To derive the variation equation, we consider two periodic
solutions of the differential equations (see eq Al), i.e., one
corresponding to the initial value,, and one corresponding to
a perturbed valug + Ae;:

X"(t,g) = x°(t+T,6) (B1)

x*(t.g+Ag) = x"(t+T,g+Ag) (B2)

Heret is any moment of time. It follows from egs Al and B1
that the differencez) between these two periodic solutions,

z(t,Ag) = x"(t,g+Ae) — x*(t,g) (B3)

satisfies the equation
dz/dt = N-[v(tx"(t.g+Ae).g+Ag) — v(tx**(t,g).6)]
(B4)
with the following periodicity condition for any.
z(t,Ag) = z(t+T,A8) (B5)

For small value sofg the differencer(t,xP*(t,g+Ag),g+Ag)
— V(t,xPe(t,g),g) can be expanded into a Taylor series:

dz/dt = N-(V/0X) |y—yperr:e"Z T N*(3V/08) | y—ypere)" A8 T
o(/(Ag,2)|) (B6)
Notably,
(0v/08), = Oy (3v/98) = Oy W (X"t €))

Here the derivativesv/ax andav/de are taken at the periodic
solution (B1) at timet. The symbol o denotes the sum of all
higher order terms of the Taylor expansiow; is the turnover
rate uj/g of enzymej. Dividing both sides of eq B6 byg,
taking the limit to infinitesimalAg, and switching the order of
differentiation, one arrives at
dI‘;/dt = N-(avlax)-l"g + N-(av/oe) (B7)
HereT is thejth column of the matrixl“z, of non-normalized
periodic control coefficients. The latter matrix is connected to
the matrix of normalized control coefficients through
— (di ; -1
Iy = (diagx)-C}-(diage) (B8)

The periodic control matrix;, can be found as the solution
of eq B7 that satisfies the following boundary condition (cf. eq
B5):

F)%(t*) = F;(t* +T) (B9)

The (linear) equation (B7) is called the variation equation. It is
a generalization of the equation used by Heinrich and Reder

For the case of forced oscillations we shall derive the variation (eq 4 in ref 38). Its unique periodic solution determined by

equation for non-normalized control coefficients. Integration

the boundary condition (B9) is presented as (this can be verified
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B12. Due to the dependenceaf/ox ont, it follows from eqs

B8, B12, and B16 that in the case of forced oscillations transient
control coefficients do not obey the summation theorems that
they would satisfy in the case of relaxation processes near the
steady states (cf. ref 38).

We limit this discussion to systems that in the absence of a
periodic external force exhibit a unique asymptotically stable
steady state. Then, all the eigenvalues of the malits\/ox)
of the system linearized at the steady state, eq B7, have negative
real parts. Due to the continuity of the derivativég/ox, the
eigenvalues of the matrik-ov/ox continue to have negative
real parts in some vicinity of the steady state. It follows from
eq B12 that if the periodic trajectory is located inside the
vicinity, the norms of the eigenvalues of the matfT) (i.e.,
the characteristic numbers of eq B11) are smaller than 1. This
ensures the existence of the solution of eq B7, hence, of the
matrix, N, has maximum rankm, i.e., that all the metabolite transient control coefficients!C'(t), at any time. The con-
concentrations are linearly independent. vergence of 'Cf(t) to the periodic control coefficienC(t), is

If the metabolite concentrations are constrained by the moiety justified by eq A13 (see Appendix A), provided that the
conservations, only the control coefficients with respect to derivatives, of/dxt with respect to the initial conditions tend
linearly independent metabolites must be considered. In this to zero as time tends to infinity. These derivatives satisfy the
case the stoichiometry matriX, can be presented as the product homogeneous variation equation (B11), and they can be

by the direct substitution)

= F(t)[(1 — F(D) “F(M [ F(x) “N-(av(1)/de) dr +
JoF(@)N-(3v(1)/d€) dr (B10)

Here F(t) is the fundamental matrix of the homogeneous
equation
dF/dt = N-(av/ox)-F (B11)

| is them by midentity matrix. Explicitly,F is expressed as
follows:
F(t) = exp(;N-(8v/ax()) dr) (B12)

For simplicity it is assumed here that theby n stoichiometry

of the link matrix,L , and the reduced matrixR of the maximal

row rank of N.13 Reducing to the independent concentration

(xR), the variation equation (B7) takes the form
dr/dt = NR-(av/ox)-L - + NR-(av/oe)  (B13)

Its solution is given by eq B10 after substituting the manifx

for N and the corresponding substitution of the maif(ov/

0x)-L for N-(av/ax) in eqs B11 and B12.

Now we shall compare the periodic solution corresponding
to the valueg, to the transient solution that occurs when this
enzyme concentratiorg} is perturbed byAg at the moment
t*. Either solution satisfies eq Al (with different values of
enzyme concentrations) and assumes the same initial vetfue (
at the initial moment*. Their difference Y),

y(t.Ae) = x"(t.g+Ag;t*, x*) — xP°Ite;t,x*)

will satisfy eq B4. However, the periodic boundary condition
(B5) does not apply to the function and instead of eq B5 the
initial condition

y(t',Ag) =0 (B14)

must be considered. Similarly as above, one can show that the

matrix (‘Té) of non-normalized transient control coefficients

satisfies the same variation equation (eq B7), that of the matrix

(T%) of the periodic control coefficients. Most importantly,
however, the unique periodic solution (eq B10) of the variation
equation corresponding to the matiif is determined by the

boundary condition (B9), whereas the solution corresponding

to the matrix "T is determined by the zero initial condition
(B15) (see eq B14):
Tt =0 (B15)

The solution of eq B7 with the initial condition (B15) can be
presented in the following form:

"TX0) = F(Y) f{F * (€)N-(ov(&)/oe) i (B16)

Here F(t) is the same matrix as the(t) of eq B10, i.e., the

expressed as linear combinations of the columns of the matrix
F(t). Itfollows from eq B12 that any such combination vanishes
when time tends to infinity (since all the eigenvalues\ebv/

ax have negative real parts). In the case when the amplitudes
of forced oscillations are large, the premise that the eigenvalues
of the matrixN-av/ox have negative real parts at all the points
of the periodic trajectory (see section Al of the main text)
ensures the existence of both periodic and transient control
coefficients (expressed explicitly by egs B10 and B16) and the
convergence of the latter to the former when time tends to
infinity.

Appendix C

The kinetic equation for the metabolic system depicted in
Scheme 1 of the main text can be written as follows:
dx/dt = — (k_,e; + ke)x + k,e,S (C1)

When the substrate concentratio®) (s time invariant, the
system has an asymptotically stable steady sigte,

_ KkSe 5
XO(e) - k—lel + k292 (C )

When S changes periodically,
St) = S(1 + asin(gt)) (C3)

Equation C1 can be written as
dx/dt = — (k_,e; + ke)x + kie,Sasin(wqt) + kie§, (C4)
We will seek a periodic solutiorkP®, in the following form:

X*et) = xy(e,8,) + By(ey,&,) sin(wt) + B,(€,€;) cost)
(C5)

Substituting eq C5 into eq C4 and equating the terms of the

fundamental matrix of the homogeneous equation given by eq left-hand side, placing at functions sinf) and cos@ot), 1, to
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those of right-hand side, one finds the periodic solution (C5) periodic control coefficients:

as the following:

kispae
[(k_.& + kz%)z + woz]

X(t) = xy(e) + 7 Sin(t—¢)
(C6)
Here,—¢ is the initial (att = 0) phase of oscillations,
@

(k48 + ko) + g 1Y?

@ = arcsin (C7)

Substituting eq C6 into the rate equations (see eq 9 of the main
text), one derives expressions for the fluxes through the first

(J1) and secondX) reactions:
J,(t) = Jp + Asin(wt+y)
Jy(t) = Jy + A, sinfwt—¢) (C8)

_ €6k K
k_.& + K&,

(k) + oy
(k18 + k) + g

_ Sakike.e,
[(k_y&, + k)* + ™

12
A = Sake; 2] (C9)

(C10)

2

K_1€0,
{[ke(k & + k&) + w02]2 + (k—lelwo)z} vz

x = arcsin

Here Jp is the steady-state fluxA; andA; are the amplitudes
of the oscillations of the fluxes, angdis the initial phase of
oscillations of the flux through the first reaction. Using eqgs
C8—C10, the derivation of the periodic control coefficients is
straightforward:

S)ak1el[(kzez)2 + C”02] ,
(k& + k292)2 + woz St ¥ &)

13,0

€

Cay = IJOCJO +

Sakikk €,
(k-8 + ko) + g

Ca = [JOC;O + 5 sin(wot—§4)] 13,(t)

Sakksee,
Cx() = {JOCQ2+ otk ;)12 — (ko8 + w12
1 2 0
sin(wot+§1)]/J2(t)
Sakkee,

Cx(t) = {JOC’f’ + Sk .e)? +

* (ki€ + kzez)2 + g
)" x sin(wot+§2)] 13,(t)

Here,Cé‘l’ and Cig are steady-state flux control coefficients.

k_.e

0 kZ% 0
B Co= k_,€ + K&,

o ke T ke ©2

and¢g, i = 1, 2, 3, 4, are the initial phases of oscillations of

£, = arcsin wo[(kfle1)2 - (kzez)2 - C002] y
' {[koes(k_18; + ko) + w2 + (K se093 >
(k& + kzez)z + (002]71/2

¢, = arcsin wgl(ke)” — (k 1)’ — '] 5
? {[K_ey(k_se; + ko) + 0 + (k) 2
(k& + k292)2 + woz]_l/2

. 2k eim[key(k_ g +kee) + woz]
£y = arcsin > > >
[(k_1&; T k)™ + wy][(Ks€) + y]

_ 2wq(k 1 1 koe)
£, = arcsin > 5
(ko1& T k)™ + g

Differentiating eqs C9 and C10 with respect taelnin e;, and

wo, ONe obtains the control coefficients over the amplitudes of
oscillations of fluxesA; and A,, with respect to the enzyme
concentrationsg; ande,, and the frequencyy,, of a periodic
force,

_ key(k 18 + ke) + woz

1

E (k& + k292)2 + woz

Ch— Kok s ke (K 18, + koe) — ]
[(k_18 + k&) + w7l[(k,e)* + ]

_ wék—lel(k—le_l. + 2k:8,)
“o [(k_,& + kz%)2 + woz]z

_ kaey(K 18 + key) + woz
(k& + kzez)z + (Uoz

2
€

ch— k_e(k .8 T ke) + oy’
* (K18 + k) + 0y

2
Wo

(k& + kzez)z + woz

Ar
@o
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