
The Devil and Packet Trace Anonymization

Ruoming Pang†, Mark Allman‡, Vern Paxson‡,¶, Jason Lee¶

†Princeton University, ‡International Computer Science Institute,
¶Lawrence Berkeley National Laboratory (LBNL)

ABSTRACT
Releasing network measurement data—including packet traces—
to the research community is a virtuous activity that promotes solid
research. However, in practice, releasing anonymized packet traces
for public use entails many more vexing considerations than just
the usual notion of how to scramble IP addresses to preserve pri-
vacy. Publishing traces requires carefully balancing the security
needs of the organization providing the trace with the research use-
fulness of the anonymized trace. In this paper we recount our expe-
riences in (i) securing permission from a large site to release packet
header traces of the site’s internal traffic, (ii) implementing the
corresponding anonymization policy, and (iii) validating its cor-
rectness. We present a general tool, tcpmkpub, for anonymizing
traces, discuss the process used to determine the particular anony-
mization policy, and describe the use of meta-data accompanying
the traces to provide insight into features that have been obfuscated
by anonymization.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Protocol architecture; C.2.5 [Local
and Wide-Area Networks]: Internet; D.2.0 [General]

General Terms
Measurement,Design,Experimentation,Security

1. INTRODUCTION
Sharing of network measurement data such as packet traces has

been repeatedly identified as critical for solid networking research
[4, 17]. Sharing datasets allows: (i) verification of previous re-
sults, (ii) direct comparison of competing ideas on the same data,
and (iii) a broader view than a single investigator can likely obtain
on their own. Various organizations do in fact release measure-
ment data on a regular basis—e.g., NLANR’s PMA packet traces
[2] and CAIDA’s skitter [3] measurements. However, when we re-
cently endeavored to publicly release a set of packet header traces
of LBNL’s internal traffic, we unexpectedly encountered two key
problems: (i) we found no carefully crafted guidance on anonymi-
zation policy for traces meant for public release above and beyond
how to strip out payloads and transform IP addresses, and (ii) af-
ter developing an anonymization policy, we could not find tools
we could adapt to transform our traces according to our particular
policy or validate the results.

While there has been solid work devising techniques to anony-
mize IP addresses (e.g., [23]), we found these just the beginning of
the work involved in preparing traces for release. Indeed, “the devil
is in the details” regarding how to treat additional packet header
fields, and, more generally, identifying and resolving the numerous

considerations that arise when designing an anonymization policy.
As an example, [12] demonstrates a technique that leverages TCP
timestamps to fingerprint a physical host based on the host’s clock
drift. An attacker could use legitimate traffic to the site in ques-
tion to fingerprint machines and then unmask the obscured IP ad-
dresses in the released traces by comparing the clock drift in their
probes with the clock drift shown by the TCP timestamp options.
(Our method for dealing with TCP timestamps is outlined in § 3.4.)
While such devil-ish considerations can be readily dealt with by
brusquely scrubbing detail from a trace, we know from experience
that such scrubbing can often thwart researchers in their investiga-
tions due to the lack of key information in the traces. For exam-
ple, tcpdpriv [15] removes TCP options from anonymized traces,
thus closing the door to the physical fingerprinting threat men-
tioned above. However, this not only renders the trace useless to
a researcher studying a given option, but also reduces the ability
for other researchers to solve puzzles found in the traces (such as
by using TCP timestamps to accurately pair up packets with their
acknowledgments). Finally, we note that while we leverage pre-
vious work on IP address anonymization, we also contribute new
wrinkles in terms of transforming enterprise addresses and also ad-
dresses probed by scanners (detailed in § 3.3).

In anonymizing our traces we endeavored to define a policy that
balances the security and privacy needs of the organization pro-
viding the trace with the research value that is inevitably reduced
with each transformation of the trace. As noted in [23], no perfect
anonymization scheme exists and therefore as in much of the secu-
rity arena, anonymization of packet traces is about managing risk.
After arriving at an acceptable anonymization policy we looked for
an appropriate tool with which to implement our transformations.
None of the anonymization tools we found—including tcpdpriv
[15], ipsumdump [10] and tcpurify [6]—were general enough to
allow for the easy implementation of a multifaceted anonymization
policy across protocol layers. Rather than inserting messy hacks
into existing tools or creating yet another custom anonymizer to
implement our own particular policy, we opted to develop a tool
that provides a general framework for anonymizing traces that can
accommodate a wide range of policy decisions and protocols. We
describe our tool, tcpmkpub, in more detail in § 2 and have re-
leased it on our project web page (along with 11 GB of anonymized
packet traces of LBNL’s enterprise traffic) [1].

While our goal is to preserve as much as possible within the re-
leased traces, inevitably we had to obfuscate or completely strip
out valuable information. In addition, analysis of packet traces of-
ten requires more contextual information than that found within
the trace itself (e.g., the gateway IP address associated with a given
subnet). Therefore, in addition to a transformed packet trace we
provide meta-data about each trace to inform further analysis. The

ACM SIGCOMM Computer Communication Review 29 Volume 36, Number 1, January 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357608616?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Section Meta-Data
§ 3.1 Packets found in the original trace with bad checksums are flagged in the meta-data, with a version of the packet

with a bad checksum placed in the anonymized trace.
§ 3.1 Truncated packets found in the original trace are noted in the meta-data. The packet inserted into the anony-

mized trace has a corrected checksum based on the sanitized packet.
§ 3.2 The meta-data includes a rough frequency table of Ethernet vendor codes.
§ 3.3 The meta-data contains a list of the anonymized prefix and size of each internal subnet found in the trace, along

with the subnet’s gateway and broadcast addresses.
§ 3.3 The anonymized IP address of detected scanners is included in the meta-data. The anonymization maps ad-

dresses for the target in traffic involving scanners differently than addresses in non-scanning traffic.
§ 3.3 The meta-data lists addresses that are part of LBNL’s address space, but not from a valid LBNL subnet.
§ 3.4 Hosts for which tcpmkpub could not determine the endianness of TCP’s timestamp option are flagged in the

meta-data. The order of the timestamps for these hosts is based on the order in which the packets arrive at the
tracing location, rather than the time at which they were transmitted.

§ 6 The meta-data gives the number of packets completely removed from the traces due to policy considerations.
§ 6 The meta-data includes a tag indicating the anonymization key used to conduct the transformations. All traces

with the same tag are uniformly anonymized.
§ 6 The meta-data includes a checksum digest of the anonymized packet trace to ensure that the traces and meta-

data can be properly paired.

Table 1: Meta-data accompanying the anonymized traces.

meta-data is often crucial for understanding the traces and chasing
down puzzles they may present. Table 1 gives a summary of the
meta-data generated by our tool.

The problem of trace anonymization is broader than just prepar-
ing traces for public release. Some organizations require anonymi-
zation of any stored traces, even if kept internal. This can require
on-line anonymization, which can introduce complexities. We do
not address those complexities in this work, since for our task, off-
line anonymization suffices. Furthermore, to retain as much re-
search value as possible in the traces, our policy wound up requir-
ing a multi-pass structure (for example, to identify rare items and
map them to the same identifier to thwart fingerprinting based on
their known scarcity). While on-line anonymization can leverage
some of the techniques outlined in this paper, we believe that de-
veloping a solid system for on-line anonymization remains an area
for future work.

The rest of this paper progresses as follows. In § 2 we outline
the anonymization framework and tool we developed. In § 3 we
address our analysis of the anonymization issues that arose and the
policy developed in conjunction with LBNL’s security staff. § 4
briefly examines the impact of anonymization on two particular
packet header analyses. § 5 outlines the steps we took to validate
that our anonymization process was in fact accurately transform-
ing the trace without leaking information. § 6 discusses additional
considerations that are broader than the contents of the traces. § 7
presents final thoughts.

2. METHODOLOGY
The precise method for anonymizing a packet trace fundamen-

tally depends on policy decisions, which in turn depend on the pur-
pose of transforming the trace and the concerns of those whose
traffic appears in the trace. For instance, for use within an organiza-
tion a policy may be as simple as removing the application payload
from traces, while for traces released to the public, overwriting or
transforming portions of the headers is also likely required.

The available anonymization tools we found focus on only the
header fields to be changed, primarily the IP addresses. However,
we wanted to achieve a balance between obscuring traces enough
to provide security and privacy for the monitored network, while at

the same time retaining as much information as possible in an effort
to not unduly diminish the research value of the traces. We there-
fore needed an approach that allowed for rich policies that consider
each portion of a packet header. To do so, we built tcpmkpub,
an anonymization tool that provides a generic framework for trans-
forming packet traces based on explicit rules for each header field.
As illustrated below, tcpmkpub provides a platform for users to
easily specify, implement, revise, and verify local anonymization
policies for a large range of protocols.

Figure 1 shows an example specification for anonymizing an
IP header according to a particular policy. The figure illustrates
several aspects of our framework. First, note that the specifica-
tion shown covers every field of an IP header, and thus provides
tcpmkpub the entire mapping from fields to transformation ac-
tions.1 In addition, all the fields must be specified with a name
and a length (e.g., the “IP tos” field is 1 byte long) because
tcpmkpub has no built-in understanding of IP—the length fields
are key to tcpmkpub being able to find its way through a given
packet. tcpmkpub also supports variable length fields, such as in-
dividual IP or TCP options. The actual size of the variable length
fields is determined by the corresponding action functions, which
must understand specifics of the protocol in question. The current
policy language is, however, not powerful enough for specifying re-
cursive data structure, such as a linked list of protocol options; nav-
igation through such structure is built into the tcpmkpub engine.
Note that this limitation does not affect the property that the policy
controls each data field. Besides providing a flexible platform for
anonymization, the structure of tcpmkpub also helps guide data
providers to precisely consider each header field, since an action
must be assigned to each field.

Next, the user specifies an action for each field in the header.
Two built-in actions are provided to retain the field’s original value
in the anonymized trace (“KEEP”) and to clear the field’s value in
the anonymized trace (“ZERO”). The user can also specify C++
function names as actions for richer transformations, including
those that require keeping state across multiple packets. For in-

1Our specification covers only IPv4. An anonymization policy that
also wanted to deal with IPv6 [8] would require an additional spec-
ification of the IPv6 header format, as well as the anonymization
policy for IPv6.

ACM SIGCOMM Computer Communication Review 30 Volume 36, Number 1, January 2006

FIELD (IP_verhl, 1, KEEP)
FIELD (IP_tos, 1, KEEP)
FIELD (IP_len, 2, KEEP)
FIELD (IP_id, 2, KEEP)
FIELD (IP_frag, 2, KEEP)
FIELD (IP_ttl, 1, KEEP)
FIELD (IP_proto, 1, KEEP)
PUTOFF_FIELD (IP_cksum, 2, ZERO)
FIELD (IP_src, 4, anonymize_ip_addr)
FIELD (IP_dst, 4, anonymize_ip_addr)
FIELD (IP_options, VARLEN, anonymize_ip_options)
PICKUP_FIELD (IP_cksum, 0, recompute_ip_checksum)
FIELD (IP_data, VARLEN, anonymize_ip_data)

Figure 1: Specification for IP header anonymization.

CASE (TCPOPT_eol, 0, 1, KEEP)
CASE (TCPOPT_nop, 1, 1, KEEP)
CASE (TCPOPT_mss, 2, 4, KEEP)
CASE (TCPOPT_wsopt, 3, 3, KEEP)
CASE (TCPOPT_sackperm, 4, 2, KEEP)
CASE (TCPOPT_sack, 5, VARLEN, KEEP)
CASE (TCPOPT_tsopt, 8, 10, renumber_tcp_timestamp)
CASE (TCPOPT_cc, 11, VARLEN, KEEP)
CASE (TCPOPT_ccnew, 12, VARLEN, KEEP)

DEFAULT_CASE (TCPOPT_other, VARLEN, TCPOPT_alert_and_replace_with_NOP)

Figure 2: TCP option anonymization specification.

stance, the IP anonymization policy in Figure 1 shows that the
“IP src” and “IP dst” fields are transformed by calling the
anonymize ip addr() function. Given that the specification in-
cludes the entire packet, modifications are straightforward. For
instance, studies have shown how to extract information from the
IP ID field [5, 7]; therefore, while not a part of our particular policy,
someone sharing a trace might want to obscure that field’s value as
part of their anonymization policy. This requires changing the ac-
tion for the “IP id” field from “KEEP” to “ZERO” to simply clear
the field. Alternatively, the action could be set to the name of a
function to execute to transform the field (e.g., anonymize ipid()),
coupled with developing a simple C++ function to randomize or
change the IP ID field in whatever fashion the user deems appro-
priate.

In addition, tcpmkpub allows the anonymization process to “go
back” to particular header fields. For instance, the “IP cksum”
field is initially zeroed and then, after all transformations have been
applied to the packet, tcpmkpub comes back and computes a new
IP checksum and inserts that checksum into the anonymized trace
(see § 3.1 for more details about the checksumming process).

The framework also supports case statements when header fields
can vary. For instance, Figure 2 shows the set of rules for process-
ing TCP options, which may appear in arbitrary order, or not at
all. tcpmkpub treats options much like standard header fields. In
case statements the option name is followed by the “type” code for
the option. If the option being processed matches the type code in
the anonymization specification, the option is defined by a given
length and processed using a given action. For instance, TCP op-
tion 2 is an MSS advertisement. The option is 4 bytes long and our
policy simply retains the value in the original trace when placing
the packet into the anonymized trace. As above, the action can be
the name of a C++ function to execute to transform the option. For
instance, the renumber TCP timestamp() function is called to san-
itize the TCP timestamp option [9], as discussed further in § 3.4.
Finally, a default case covers the situation when a particular option
found in a trace is not enumerated in the anonymization policy. The
policy employed in the example replaces such options with “NOP”
options and inserts an alert into the tcpmkpub log file. These

alerts are important to monitor because, if frequent, they may in-
dicate a change to the anonymization policy is warranted. For in-
stance, they could indicate increasing prevalence of some newly
defined TCP option that could be better dealt with than by simply
replacing the option with NOPs.

As the tcpmkpub engine possess little knowledge about proto-
cols, a question is how one can check whether the protocol speci-
fication in anonymization policy is correct and complete. One way
to catch such errors is through self-checking. The action functions
can raise alerts when some field value looks suspicious, e.g., when
encountering an undefined TCP option. Further, for constant (or
constant-ranged) fields, one can employ a constant checker as the
action (even if the field is not transmformed), as in the ARP policy
(see Figure 3 at the end of paper)—in fact, this is how we caught
the weird ARP packets discussed in the next paragraph.

Finally, tcpmkpub provides hooks for additional processing.
These include static filtering based on BPF filters (e.g., for ex-
cluding a particular host or traffic involving a sensitive port) and
packet-specific policies. For example, one policy we use contains
entries that identify ARP packets with specific timestamps and pay-
load contents. These packets contain the bizarre string “Move to
10mb on D3-packet,” in a portion of the ARP packet that is
normally cleared by our default policy. However, these packets
have been manually vetted and are not contrary to our anonymiza-
tion policy; thus, we explicitly preserve the payload of these pack-
ets as in the original trace, since such real-life packet “crud” can
be important for capturing the diversity present in actual network
traffic.

3. ANONYMIZATION POLICY
In this section we sketch the anonymization policy we arrived at

and the thinking that led to it. In the current work, our focus is on
traces that include only packet headers,2 though in the future our
project intends to build on [16] and release traces with anonymized

2The only payloads we include are packet headers encapsulated
within ICMP messages and ARP payloads (with renumbered ad-
dresses).

ACM SIGCOMM Computer Communication Review 31 Volume 36, Number 1, January 2006

payloads. We do not advocate the policy outlined in this paper as
the correct policy, but as a possible policy, with the goal being to
discuss items to consider when determining policy. In addition, we
discuss alternatives in this section that we considered and may well
represent a better approach in some environments. Particular items
that need thought when developing an anonymization policy are IP
addresses, the IP ID field, TCP sequence numbers, length fields,
and transport protocol port numbers, as discussed below.

We first consider the site’s “threat model” for releasing such
traces. It is crucial to prevent users of the trace files from deter-
mining: (i) identities of specific hosts such that an audit trail could
be formed about particular users, (ii) identities of internal hosts
such that a map could be constructed of which hosts support which
services (which could be used in mounting an attack), and (iii)
security practices of the organization that an attacker would not
otherwise know and could leverage during an attack.

We next discuss our anonymization policy, starting with how to
handle checksums across protocol layers; then we follow the proto-
col stack to examine policies for each protocol layer. This section
provides examples of our anonymization policy files. See Figure 3
at the end of this paper for a listing of all the policy specifications
used to implement our policy. The policy files will also be included
with the tcpmkpub release at [1].

3.1 Checksums
One aspect of transforming packet traces that crosses layers and

protocols is calculating various checksum fields. We re-calculate
checksums in the anonymized traces for two reasons: (i) even when
application-layer data is removed from packets the checksum can
sometimes give away the contents of the data (e.g., for small pack-
ets) and (ii) since we remove application payloads and transform
various header fields in the packets the users of the traces will not
be able to determine if the original checksums were valid. As noted
in [14], hunting for checksum failures in packet traces can be im-
portant when analyzing rare events.

Our technique involves replacing the original checksum, Co,
with a checksum Cc calculated across only the transformed bytes
that are being placed in the anonymized packet trace. There are
two reasons we may not be able to verify Co: (i) the packet has
been corrupted while traversing the network or (ii) the original
packet trace did not capture enough of the packet to allow us to
independently compute the checksum (e.g., because some of the
payload is missing). In the first case, we insert “1” into the appro-
priate checksum field to mark the packet as having a known failed
checksum originally (unless Cc happens to yield 1 itself, in which
case we insert “2”). This guarantees that a researcher verifying the
checksums in the anonymized trace will observe a failure, as in the
original trace. On the other hand, for packets for which we cannot
verify Co due to packet truncation in the trace, we assume valid
checksums and include Cc in the anonymized trace. We also note
corrupted and truncated packets in the meta-data.

Finally, we need to consider the fact that UDP checksums are
optional. If the checksum is zero in the original trace, we preserve
this in the anonymized trace3.

We note that an alternative method would be one of the ap-
proaches implemented in tcpurify [6], which replaces checksums
with codes indicating “valid original”, “invalid original”, or “not
enough of the packet captured to determine”. That scheme has the
advantage of not requiring separate meta-data, but requires analysis
tools to understand the codes.

3Per the UDP specification [18], calculated values of zero are re-
placed with the equivalent 0xffff.

3.2 Link Layer
At first blush, the Ethernet header might not seem sensitive. On

their own, Ethernet addresses do not give away much information
since they are chosen essentially randomly by vendors. However,
because Ethernet addresses are distinct to individual NICs, retain-
ing them in the traces would allow attackers to uncover the actions
of a given user if they separately obtain the MAC address of the
user’s NIC. If they also determine the associated non-anonymized
IP address, they then can spot instances of the MAC address in the
traces and use this information to work on unraveling the IP address
anonymization scheme.

We consider three different methods of randomizing Ethernet ad-
dresses to counter these threats: (i) scrambling the entire 6 byte
address, (ii) scrambling only the lower 3 bytes of the address, pre-
serving the “vendor code” in the upper 3 bytes, or (iii) scrambling
the vendor code and the lower 3 bytes independently. Mapping the
entire 6 byte address would remove the ability of researchers to at-
tribute various oddities (for example, replicated packets) to NICs
from particular vendors. We could retain this facet of the trace data
by preserving the vendor ID and scrambling only the lower 3 bytes.
While this approach maintains potentially useful information about
the NIC vendor, it fails to preserve anonymity if some vendors have
only a small number of NICs in the site providing the trace—if the
attacker separately learns about these rarely used devices, they can
locate them in the trace based solely on their rare vendor ID.

These considerations led us to the third option, remapping the
high- and low-order 3 bytes separately. This allows the trace user
to find all hosts using the same NIC vendor, but not to identify that
NIC or the original full address. Our specific scheme remaps the
high-order 3 bytes and uses that value as the seed for remapping
the low-order 3 bytes. Doing so produces a consistent mapping
across multiple traces. Therefore, say the low-order 3 bytes X map
to X′ for vendor Y . For vendor Z the same X will map to some
X ′′. Finally, we include in the meta-data a rough frequency table
of unanonymized vendor IDs found in our traces (e.g., a list of ven-
dor IDs with 1–20 hosts, 20–50 hosts, 50–200 hosts, etc.), in an
attempt to preserve a profile of the diversity of NICs in use at the
site. The bucket ranges are carefully chosen as to not finger par-
ticular machines by virtue of being the only address in a particular
bucket.

Ethernet addresses not only appear in Ethernet headers, but also
in the contents of ARP packets, and our framework understands
the ARP packet format and consistently remaps these internal ad-
dresses, as well.

There are exceptions to the remapping policy. We preserve ad-
dresses that are all zeros (unknown MAC in ARP packets) or all
ones (broadcast traffic), and also the “multicast bit” in the high-
order 3 bytes.

Our analysis of the other Ethernet header fields concluded
that they do not pose any anonymization issues. At this point,
tcpmkpub inspects the type of header following the Ethernet
header. The policy we use understands IP and ARP packets, so
for these it proceeds to further anonymization. For all other packet
types, it truncates the packet placed in the anonymized trace after
the Ethernet header.

3.3 Network Layer
Obviously, a key aspect to our policy at the network layer is

anonymizing IP addresses. If an attacker can tie traffic to a known
IP address and thereby potentially to a user, they can attain a de-
tailed accounting of the user’s activities (violating privacy, and pos-
sibly embarrassing the site if the user’s activities are inappropriate).
In addition, an attacker could use information about services run-

ACM SIGCOMM Computer Communication Review 32 Volume 36, Number 1, January 2006

ning on a particular host to develop an attack plan. We therefore
seek to obscure the IP addresses. While IP address anonymization
is well trod ground (e.g., based on [23]), we found that the devil
again showed up and we needed to add a few wrinkles to imple-
ment a sound policy within our environment.

In particular, we remap addresses differently based on the type
of address. The following details our anonymization policy for var-
ious types of addresses and distills the meta-data we record to re-
tain as much research value as possible. For the purposes of our
discussion, “internal” addresses are those allocated to LBNL and
“external” addresses are non-LBNL addresses.

External addresses: remapped using the prefix-preserving ad-
dress anonymization scheme given in [23]. While this scheme can
be attacked, the site’s view is that the difficulty of attacking it for
external addresses, which have much less locality than internal ad-
dresses, suffices to reduce the threat to an acceptable level.

Internal addresses: processed in two steps: first, the prefix part
is mapped to a prefix unused by the prefix-preserving scheme for
external addresses and then the subnet and host portions of the
address are transformed. It is important to note that we do not
retain the prefix-preserving relationship between internal and ex-
ternal addresses. If we did, then because the organization from
which the trace comes is known, the prefix-preserving property
could be used to infer portions of external addresses adjacent to
internal addresses. For instance, one of LBNL’s address ranges is
128.3.0.0/16. However, since the trace is known to be from LBNL,
even if we transformed “128.3”, it seems safe to assume that it
would not be difficult to determine which traffic is from LBNL.
Therefore, by including LBNL’s addresses in the prefix-preserving
address anonymization used for external addresses, any address
whose first octet is 128 would be partially unmasked.

Therefore, after the prefix-preserving algorithm has classified all
external IP addresses in the trace we map the internal addresses to
an unused part of the global address space.4 The meta-data pro-
vides a list of internal network prefixes. This aspect of anonymi-
zation requires two passes at the original packet trace, first to con-
struct a collision-free map of IP addresses, and second to actually
anonymize the addresses. We note that given the multi-pass nature
of our technique, this aspect of IP address anonymization would
require a different approach for on-line anonymization. We also
note that mapping internal addresses separately can lead to incon-
sistencies across traces. For instance, consider the case when we
take a trace T0 today, anonymizing and releasing it with internal
addresses in prefix P0. Further, assume we anonymize a second
trace, T1, at some point later, using the same key to provide unifor-
mity across the traces (see § 6 for more on uniform anonymization).
While anonymizing T1, an external address may map onto P0, and
therefore we must use a different internal prefix, P1, for internal
addresses. Therefore, while most of the anonymization is uniform
across the two traces, the consistency is marred by the fact that the
internal prefixes differ across the two collections.

Second, the mapping of subnet and host portions of internal
addresses is not bitwise prefix-preserving. Instead we remap the
subnet and host portions of internal addresses independently and
preserve only whether two addresses belong to the same subnet.
Therefore, all hosts appearing in some subnet X in the original
trace will appear in the corresponding subnet X′ in the anonymized
trace. This random mapping does not preserve the relationship be-
tween subnets in the internal network. For instance, if two /24 sub-
nets share a /20 prefix in the original trace, they will not necessarily
do so in the anonymized trace. The meta-data contains a list of the

4In practice, we use one of the organization’s standard prefixes un-
less that prefix was used for some external address.

(renumbered) internal subnets. In addition, the meta-data contains
the remapped gateway and broadcast addresses for each internal
subnet. We remap the host portions differently for each subnet.

In remapping host portions within a subnet, we need to compute
a pseudo-random permutation among addresses. With the algo-
rithm described in [13], the permutations depend only on the cryp-
tographic key, thus we can keep the mapping independent of the
order in which the addresses appear and consistent across multiple
traces, without having to store the mapping, analogous to the prop-
erties of the algorithm for prefix-preserving anonymization [23].

Remapping the subnets also involves computing a pseudo-
random permutation, except that the subnets can have different pre-
fix lengths. Thus we map bigger subnets (with shorter prefixes) be-
fore smaller subnets. The mapping likewise depends only on the
cryptographic key.

Multicast addresses: preserved in the anonymized trace, as they
do not identify any particular host.

Private addresses: preserved in the anonymized trace because
they do not convey a sense of identity in LBNL’s environment, due
to how they are used and allocated. Note that in other environments,
private addresses could very well convey a sense of identity. For in-
stance, a particular portion of the network might employ a rarely
used portion of private address space (e.g., 10.55.100.0/24) and
therefore the private addresses could be easily linked with users.

Scanners. A particular problem with our anonymization tech-
niques concerns traffic from scanners that probe a wide swath of
the IP address space. For instance, many organizations run a scan-
ner to check various properties of the internal hosts as part of their
security operation. These probes tend to hit addresses in a well
established order such as a.b.c.1, a.b.c.2, a.b.c.3, etc. When we
anonymize addresses, the host portion of the address is random-
ized. But because these sorts of scanners are easy to pick out by
their rapid (and frequently unsuccessful) connection attempts, by
observing the order hosts are probed by such scanners, an attacker
might approximately derive the original host portion of the IP ad-
dresses, and also possibly the subnet prefix. Also note that the DNS
is a readily accessible database of the live hosts at an organization,
which an attacker may leverage to assist in unmasking relationships
between populated addresses.

In addition to IP-level (or higher) internal or external scanners,
we found another subtle scanner in the traces. The enterprise’s
routers sometimes ARP for an entire subnet in rapid-fire fashion,
which we attribute to initializing the router’s ARP table, or possibly
“host discovery” activity within the subnet. As discussed above,
such probes (and their responses) may be used to partially unmask
IP addresses, given the timing of the requests. We appreciated this
particular threat only late in the process of anonymizing our traces,
which serves to (again) highlight the careful diligence required to
anonymize packet traces.

Because of the potential threat from scanners, we decided to map
addresses relating to scanner activity using a separate namespace
than that of non-scanning activity, to break the structural relation-
ship induced by sequential scanners. To do so, however, we need
to find the scanners. We did so by looking for hosts that visited
more than 20 distinct IP addresses, for which there was a window
of 20 IP addresses in which at least 16 were (in the original trace)
strictly in ascending or descending order. This is merely a heuris-
tic; however, it has the property that an attacker is unlikely to find
and leverage scanners in the anonymized trace that this heuristic
misses.

As mentioned above, we renumber the IP addresses involved in
scanning traffic separately. We keep the scanner’s IP address uni-
form across the trace, and flag the scanner as such in the meta-data.

ACM SIGCOMM Computer Communication Review 33 Volume 36, Number 1, January 2006

However, we use a different mapping (resulting in a different sub-
net and host address) for the destination address of the scans. For
instance, consider two hosts X1 and X2 in subnet Y from the orig-
inal trace file. In traffic not involving the scanner, these addresses
will be mapped to X′

1 and X′
2 in subnet Y ′. For traffic involving the

scanner these addresses will be mapped to X′′
1 and X′′

2 in subnets
Z1 and Z2, respectively. This unfortunate inconsistency in the re-
sulting traces means that it becomes impossible to analyze a host’s
entire set of traffic for any internal address that was scanned. Fi-
nally, we note that Ethernet addresses of hosts being scanned also
need renumbering, or an attacker can easily establish the mapping
between IP addresses for scanning and non-scanning traffic.

The above discussion assumes that the adversary did not scan the
network himself during trace collection and has to leverage existing
scanning. As pointed out in [23], with active probing there are
many opportunities for the adversary to “fingerprint” addresses and
thus defeat any 1-to-1 address mapping. In that case one solution is
to anonymize host identities (including IP and MAC addresses and
IP-ID) with a 1-to-n mapping, for example, mapping an address
depending on the communication peer’s address.

Invalid addresses. Our packet traces contain several instances
of data transactions involving a host belonging to an invalid subnet
(i.e., the organization does not use the particular subnet). That is,
the IP address is in the organization’s address space, but that partic-
ular portion of the address space is meant to be dark. These might
come from misconfigurations or users “borrowing” addresses they
were not assigned. We anonymize such addresses as though the
subnet existed, but note them in the meta-data as not belonging to
a valid subnet.

In addition, we found packets in our packet traces that contain
IP options that in turn contain IP addresses (e.g., the record route
option). We remap the IP addresses contained within these options
before placing the packets into the anonymized trace. Likewise, we
must remap IP addresses contained within ARP replies.

We note that some of the complications in terms of anonymiz-
ing IP addresses come from the fact that we are sanitizing edge-
network packet traces. Packet traces taken in the middle of the
network would likely not have the same strong address prefix sig-
nature that enterprise traces have and therefore may be able to be
anonymized without regard to address “type”.

The last consideration at the network layer is ICMP traffic.
Given ICMP’s use for carrying all sorts of rich network status in-
formation, we must take care when including such packets in the
anonymized traces. ICMP messages often contain the first bytes
of the packet that triggered the ICMP message. Therefore, we re-
cursively anonymize the included IP packet as we would any other
packet in the original trace.

3.4 Transport Layer
Our anonymization policy deals with TCP [19] and UDP [18]

at the transport layer. We truncate packets using other transport
protocols after the IP header (we did not see significant amounts
of such traffic). As outlined in § 2, implementing anonymization
frameworks for new transport protocols (e.g., SCTP [21] or DCCP
[11]) should be straight-forward.

The first consideration for transport protocols is whether to
anonymize the port numbers. Our policy leaves the TCP and UDP
port numbers intact, with the exception that we remove traffic in-
volving one particular port used for an internal security monitoring
application. A drawback of preserving port numbers is that they
may be able to be used to identify a particular machine that runs
a particular set of services, if that set is in some way unique (e.g.,
due to the make-up of the set, traffic volume, etc.).

Another aspect of TCP traffic that potentially leaks information
is the sequence number (as well as IP/PCAP length). [22] shows
that a motivated attacker can find traffic in an anonymized trace
that involves a particular web site by comparing the length of TCP
connections in the trace with a database of known object lengths
on given web pages. This attack requires significant resources, and
therefore for our environment it is not perceived to be a large threat.

Given that we preserve both port numbers and sequence num-
bers, the most significant transformation we perform at the trans-
port layer is to rewrite TCP timestamp options [9]. Recent work has
found that clock drift manifest in timestamp options can be lever-
aged to fingerprint a physical machine, enabling its unique identifi-
cation in the future [12]. If a machine could be fingerprinted using
the anonymized traces, then an attacker who also probes the site’s
hosts directly could pair up the timestamp signatures they obtain
from probing with those in the trace, undermining the IP address
anonymization. On the other hand, timestamp options have signifi-
cant utility in analyzing TCP dynamics, as they allow unambiguous
matching of data packets with acknowledgments and can help de-
tect packet duplication and reordering.

Therefore, to balance these concerns our policy is to transform
the timestamps present in timestamp options into separate mono-
tonically increasing counters with no relationship to time for each
IP address appearing in the anonymized trace. We preserve times-
tamp echoes of zero, which indicate “no timestamp.” Much of the
research use of timestamps involves using them to determine the
uniqueness and transmission order of segments. A per-host counter
preserves this use. Of course, any use of the timestamp option
for actual timing information (e.g., investigating TCP’s retransmis-
sion timeout, or the jitter between packets) is lost. We considered
“fuzzing” the timestamps by random amounts, instead of using a
counter, to degrade the artifacts used by the fingerprinting scheme.
However, since it is not clear how this would affect research rely-
ing upon timestamps for timing information, we decided to simply
remove all timing information.

Using our approach, transforming a timestamp option requires
two passes over the original packet trace, for two reasons. First,
RFC 1323 does not specify the actual format of timestamps, nor
their endianess. Therefore, to infer the ordering relationship be-
tween timestamps (and thus to correctly assign counter values when
rewriting them), we need to observe multiple packets to determine
endianess. Second, even if we can determine the order among
timestamps, it is still problematic to renumber without knowing
what timestamps may appear later, so we wait until observing all
the timestamps before renumbering them sequentially. In those
cases where we cannot determine the endianess of the timestamps,
we simply reflect the order of the packets in the original trace. Do-
ing so can aid a researcher interested in determining the uniqueness
of packets, but the causal ordering becomes potentially misleading,
so we note the failure to identify the endianess for the given host in
the meta-data.

4. INFORMATION LOSS
As noted above, every transform applied to a trace can poten-

tially perturb analysis of the transformed trace. Given our explicit
goal to retain as much research value as possible, we analyzed the
original and anonymized traces with two tools that perform packet
header analysis and compared the output as one way to gauge how
effective we were in preserving information. We stress that these
are simply two examples and their performance may not be indica-
tive of other uses of the traces.

We first used p0f [24] to do OS fingerprinting on the hosts in

ACM SIGCOMM Computer Communication Review 34 Volume 36, Number 1, January 2006

the trace.5 We found two relevant differences between the analysis
of the original and transformed traces: (i) transforming the TCP
timestamp option into a counter rendered p0f ’s “host uptime” anal-
ysis useless, and (ii) one connection showed a different OS signa-
ture in the transformed trace due to a corrupted packet in the orig-
inal trace causing our anonymization process to change an invalid
TCP option into a NOP option. Thus, we conclude that OS finger-
printing is in general still possible with the transformed traces; this
is acceptable to our site.

We also used a custom tool, tcpsum, to crunch each TCP connec-
tion in the trace to find the number of packets and bytes sent in each
direction, as well as a crude history of the connection (“saw SYN”,
“saw SYN+ACK”, etc.). Except for IP addresses, the output from
crunching the original and transformed traces matched, indicating
no value was lost in the transformations for this particular type of
analysis.

We again note that our simple tests are not exhaustive. Clearly,
the transformations we applied to the traces can have an impact on
certain forms of analysis. For instance, any analysis that involves
digging into the contents of packets (e.g., for use in developing
intrusion detection methodologies) would be rendered useless by
our anonymization scheme. However, we believe that these simple
tests show that within the realm of header analysis we have pre-
served much useful information while still protecting the security
and privacy of the site and its users.

5. VALIDATION
We next turn to a key aspect of implementing an anonymization

policy: validation. For the set of traces we prepared, we used sev-
eral ad hoc methods to validate that the information we intended to
mask was indeed transformed or left out of the anonymized traces:

• First we inspected the log created by tcpmkpub during the
anonymization process. tcpmkpub flags all unexpected as-
pects of a packet trace it runs across, including, for exam-
ple, incomplete IP headers or IP addresses (which are pos-
sible within ICMP unreachable messages), indeterminable
byte order of TCP timestamps for a particular host, or ille-
gal values for fields with constant or limited-ranged values.
Examining illegal field values lead us to the discovery of the
bizarre ARP packets mentioned in § 2 and TCP options with
illegal length fields (e.g., “SACK permitted” options with
length 253 instead of 2 and window scale options with length
1 rather than 3).

While using the tool to verify itself is inherently insufficient,
this is a prudent first step to ensure that tcpmkpub didn’t get
confused in a way that would lead to information leakage.
We found nothing in our logs that indicated any problems.
We base the remainder of our validation, however, on use of
separate tools.

• We next used the standard Unix tool strings to look for se-
quences of at least six contiguous letters (case insensitive) in
the anonymized traces in an attempt to ensure that packet
payloads had been properly removed. When run across
the original traces we found many strings that are clearly
commands, filenames, etc. (e.g., “Documents”, “Settings”,
“ConfirmFileOp”). However, in looking through the out-
put produced from the anonymized trace we found little that

5We note that this is an area where some sites may desire that the
information not appear in the anonymized traces, in which case
protocol scrubbing techniques [20] may be beneficial as part of the
anonymization process.

was recognizable as obvious packet content. We manually
checked the few strings that remotely resemble words (for
instance, “tkirtkis”) and found them to be caused by simple
coincidence.

• We wrote a small tool to pick through packets and look for
32 bits that looked like IP addresses to ensure that we re-
moved all the LBNL addresses from the data. We first looked
for “addresses” with LBNL’s prefixes and appearing in both
the original and anonymized packets (in either byte order).
This procedure produced too many false positives due to
a collision between the first octet of one of LBNL’s pre-
fixes with a common TCP offset value (which is preserved
in anonymization, and thus identical in original and anony-
mized packets). Therefore, we refined our analysis to ignore
certain regions of the packets that we preserve (for example,
the TCP sequence numbers), which reduced the number of
occurrences to nearly zero; we manually verified the remain-
der as due to coincidence (for example, in one case the desti-
nation address of a packet happened to be mapped to exactly
the source address).

• We used strings to look for string versions of IP addresses
(i.e., dotted-quads) that matched an LBNL prefix. We found
no matches.

• We next focused on ensuring that tcpmkpub accurately
transformed MAC addresses. First, we used tcpdump to gen-
erate a list of all MAC addresses found in our original traces.
We wrote a small flex program to pick through the anony-
mized traces looking for the 6 byte MAC addresses found
in the original trace files. We manually compared the hits
from the anonymized traces with the original traces, which
determined all were coincidence.

• Finally, we used ipsumdump to dump TCP options from our
anonymized traces. From this we picked out the timestamps,
produced sorted lists, and verified that all hosts started with
a timestamp of zero and increased from that point. There-
fore, we conclude that our timestamp re-numbering appears
accurate.

The ad hoc validation we conducted convinced us that our
anonymized traces are sufficiently safe to release. However, an area
for beneficial future work is to write an independent tool that vets
anonymized traces against a given policy, which would both im-
prove the quality of the validation and make it easier to conduct.

6. ADDITIONAL CONSIDERATIONS
Along with the devil-ish details we describe above, there are sev-

eral additional issues to consider.
Traffic removal. Some traffic in the traces could simply be

too sensitive or unique to a particular institution to include in the
anonymized traces. For instance, as mentioned above we removed
all traffic on a particular TCP port because the traffic involves a
custom application used for security operations within the site. For
some analyses, the missing traffic will have little impact. However,
for other analyses the missing traffic could lead to an invalid con-
clusion (e.g., that a network was not congested when it really was).
We suggest that the characteristics of removed traffic be provided
in the meta-data in high-level terms, so researchers using the data
will at least be aware of the amount of traffic culled from the traces.
At a minimum, the meta-data should contain an absolute count of

ACM SIGCOMM Computer Communication Review 35 Volume 36, Number 1, January 2006

the number of packets removed from the traces. (The number of re-
moved packets in the LBNL traces is about 0.01% of total number
of packets.)

An alternative to traffic removal would be to truncated pack-
ets after the ethernet or IP headers rather than completely remov-
ing the packets. Arguably, removal offers little additional benefit
and some additional cost and diminishes the research value of the
traces. However, we found that in getting approval for our anony-
mization scheme we needed to pick our battles and appreciate that
removal is sometimes simply more appealing than scrubbing for
extremely sensative information.

Filenames. The contents of a packet trace are not the only source
of information leaks. While the particular naming used for the
files of the traces seems like a mundane detail, naming conventions
for can potentially leak information to an adversary, e.g., “server-
room-trace.dmp”.

Uniform anonymization. We suggest that traces anonymized
in a uniform manner (e.g., the same IP address mapping) should
contain a common tag in the various meta-data files to enable re-
searchers to correlate information across the traces. In general,
providing consistent anonymization across multiple traces is a two-
edged sword: it preserves greater research utility, but at the cost of
providing attackers with more data to use in attempting to subvert
the anonymization process.

Linking traces to meta-data. We suggest a solid linking be-
tween a trace and its meta-data by inserting secure checksum digest
of the trace in the meta-data, so that researchers can verify they are
matching specific meta-data to the right trace.

Performance. On a FreeBSD system with a 2.2 GHz Intel Xeon
processor and 2 GB of RAM tcpmkpub processes the LBNL
traces we released in 2.9 hours, using a maximum of 331 MB of
memory. The traces contain 165 million packets and the original
files add to 48 GB.

Detecting leakage. Being able to detect if a trace’s anonymi-
zation has been compromised after release could prove important.
We have devised such methods; however, they either skew the traf-
fic characteristics in the anonymized trace or could be trivially cir-
cumvented if the defense was generally known. The design of tech-
niques to robustly detect anonymization compromise remains an
interesting area for future work.

Situational considerations. Some of the aspects of packet trace
anonymization discussed in this paper may be more or less impor-
tant in certain situations. Different approaches may prove desirable
depending on the traffic being traced, the vantage point of the traf-
fic collector, or the portion of the network monitored. For instance,
when anonymizing a backbone packet trace the special handling
of scanning traffic discussed in § 3.3 is likely not required. This
(again) underscores the importance of carefully considering all as-
pects of anonymization within the context of the local environment.

The devil we have yet to meet. If the attack in [12] had been
discovered a year later, we would have preserved TCP timestamps
in our released traces, leaving them potentially vulnerable. Unfor-
tunately, it is not clear to us how to systematically defend against
unknown attacks. Therefore, it is important that anonymization
policies are periodically evaluated and evolve over time. We also
note that applying future attacks to past traces may not be a fruitful
endeavor. For instance, the TCP timestamp attack would be harder
to mount if there was some turnover in hosts or IP address renum-
bering.

7. SUMMARY AND FUTURE WORK
This paper endeavors to make four contributions: First, we enu-

merate and explore many of the devil-ish details involved in prepar-

ing packet traces for public release that go beyond the well-known
topic of IP address obfuscation. Second, we sketch the use of meta-
data to help researchers using anonymized traces to cope with the
information lost during the anonymization process. Third, we de-
veloped a tool, tcpmkpub, and a framework for implementing
arbitrary anonymization policy in a straightforward, comprehensi-
ble fashion. Our tools and traces are publicly available via [1].
Additionally, Figure 3 shows the complete anonymization specifi-
cation for the policy we employ. Finally, we have introduced new
wrinkles to address anonymization, such as mapping scanner traf-
fic differently from non-scanner traffic, mapping internal addresses
differently from external addresses, and mapping the two halves
of Ethernet addresses separately. We stress that the decisions out-
lined in this paper should not be considered the right approach, but
rather a heavily considered approach that currently meets the needs
for releasing traces from a particular network.

There are a number of avenues for fruitful future work in the area
of packet trace anonymization. As discussed above, tools to aid
with validating that trace files have been appropriately scrubbed
would be useful in increasing data provider’s confidence in the
anonymization process. In addition, studying the tradeoffs required
to conduct on-line anonymization is an area that would likely have
significant benefit. Also, robust schemes for detecting when a trace
has been compromised would be highly useful in providing opera-
tors with situational awareness. Finally, there is a huge temptation
to put together a system that can take high-level input from a user
and produce an anonymization policy for tcpmkpub, given the
complexity of the process of setting up and evaluating the proce-
dures. It is not clear to us that this is possible to do if one actually
cares about the quality of the results. However, a useful area of
future work may be in exploring such a system, including both its
value and its limitations.

Acknowledgments
This work was supported as part of the DHS PREDICT project un-
der grant HSHQPA4X03322 as well as NSF grant 0335214. Our
thanks to the many LBNL staff members who made this work pos-
sible; in particular, Mike Bennett, Jim Mellander, Sandy Merola,
Dwayne Ramsey and Brian Tierney. We thank Ethan Blanton for
numerous discussions on the topics covered in this paper. Our
thanks to Martin Casado and the anonymous IMC 2005 and CCR
reviewers for providing useful comments.

8. REFERENCES

[1] Enterprise tracing project. http://www.icir.org/
enterprise-tracing/.

[2] The Passive Measurement and Analysis Project.
http://pma.nlanr.net/.

[3] The Skitter Project.
http://www.caida.org/tools/measurement/skitter/.

[4] M. Allman, E. Blanton, and W. Eddy. A Scalable System for
Sharing Internet Measurements. In Passive and Active
Measurement Workshop, Mar. 2002.

[5] S. Bellovin. A Technique for Counting NATted Hosts. In
Proceedings of the Internet Measurement Workshop, Nov.
2002.

[6] E. Blanton. tcpurify, May 2004.
http://irg.cs.ohiou.edu/˜eblanton/tcpurify/.

[7] W. Chen, Y. Huang, B. Ribeiro, K. Suh, H. Zhang,
E. de Souza e Silva, J. Kurose, and D. Towsley. Exploiting
the IPID Field to Infer Network Path and End-System

ACM SIGCOMM Computer Communication Review 36 Volume 36, Number 1, January 2006

Characteristics. In Proceedings of the Passive and Active
Measurement Workshop, Mar. 2005.

[8] S. Deering and R. Hinden. Internet Protocol, Version 6
(IPv6) Specification, Jan. 1996. RFC 1883.

[9] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for
High Performance, May 1992. RFC 1323.

[10] E. Kohler. ipsumdump. http://www.cs.ucla.edu/˜kohler/
ipsumdump/.

[11] E. Kohler, M. Handley, and S. Floyd. Datagram Control
Protocol (DCCP), Mar. 2005. Internet-Draft
draft-ietf-dccp-spec-11.txt (work in progress).

[12] T. Kohno, A. Broido, and kc claffy. Remote Physical Device
Fingerprinting. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2005.

[13] M. Luby and C. Rackoff. Pseudo-random permutation
generators and cryptographic composition. In STOC ’86:
Proceedings of the eighteenth annual ACM symposium on
Theory of computing, pages 356–363, New York, NY, USA,
1986. ACM Press.

[14] A. Medina, M. Allman, and S. Floyd. Measuring the
Evolution of Transport Protocols in the Internet. ACM
Computer Communication Review, 35(2), Apr. 2005.

[15] G. Minshall. tcpdpriv, Aug. 1997.
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html.

[16] R. Pang and V. Paxson. A High-Level Programming
Environment for Packet Trace Anonymization and
Transformation. In ACM SIGCOMM, Aug. 2003.

[17] V. Paxson. Strategies for Sound Internet Measurement. In
ACM SIGCOMM Internet Measurement Conference, Oct.
2004.

[18] J. Postel. User Datagram Protocol, Aug. 1980. RFC 768.
[19] J. Postel. Transmission Control Protocol, Sept. 1981. RFC

793.
[20] M. Smart, G. R. Malan, and F. Jahanian. Defeating TCP/IP

Stack Fingerprinting. In 9th USENIX Security Symposium,
pages 229–240, 2000.

[21] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. J.
Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, and
V. Paxson. Stream Control Transmission Protocol, Oct. 2000.
RFC 2960.

[22] Q. Sun, D. R. Simon, Y. Wang, W. Russell, V. N.
Padmanabhan, and L. Qiu. Statistical Identification of
Encrypted Web Browsing Traffic. In IEEE Symposium on
Security and Privacy, May 2002.

[23] J. Xu, J. Fan, M. H. Ammar, and S. B. Moon.
Prefix-Preserving IP Address Anonymization:
Measurement-Based Security Evaluation and a New
Cryptography-Based Scheme. In Proceedings of the 10th
IEEE International Conference on Network Protocols, pages
280–289, Washington, DC, USA, 2002. IEEE Computer
Society.

[24] M. Zalewski. p0f: Passive OS Fingerprinting tool.
http://lcamtuf.coredump.cx/p0f.shtml.

ACM SIGCOMM Computer Communication Review 37 Volume 36, Number 1, January 2006

/
/

e
t
h
e
r
.
a
n
o
n

F
I
E
L
D

(
E
T
H
E
R
_
d
s
t
a
d
d
r
,

6
,

a
n
o
n
y
m
i
z
e
_
e
t
h
e
r
n
e
t
_
a
d
d
r
)

F
I
E
L
D

(
E
T
H
E
R
_
s
r
c
a
d
d
r
,

6
,

a
n
o
n
y
m
i
z
e
_
e
t
h
e
r
n
e
t
_
a
d
d
r
)

F
I
E
L
D

(
E
T
H
E
R
_
l
e
n
t
y
p
e
,

2
,

K
E
E
P
)

F
I
E
L
D

(
E
T
H
E
R
_
d
a
t
a
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
e
t
h
e
r
n
e
t
_
d
a
t
a
)

/
/

e
t
h
e
r
-
d
a
t
a
.
a
n
o
n

C
A
S
E

(
E
T
H
E
R
D
A
T
A
_
i
p
,

0
x
0
8
0
0
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
p
_
p
k
t
)

C
A
S
E

(
E
T
H
E
R
D
A
T
A
_
a
r
p
,

0
x
0
8
0
6
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
a
r
p
_
p
k
t
)

D
E
F
A
U
L
T
_
C
A
S
E

(
E
T
H
E
R
D
A
T
A
_
o
t
h
e
r
,

V
A
R
L
E
N
,

o
t
h
e
r
_
e
t
h
e
r
t
n
e
t
_
p
k
t
_
a
l
e
r
t
_
a
n
d
_
s
k
i
p
)

/
/

a
r
p
.
a
n
o
n

F
I
E
L
D

(
A
R
P
_
h
r
d
,

2
,

c
o
n
s
t
_
n
1
6

(
0
x
0
0
0
1
,

B
R
E
A
K
)
)

F
I
E
L
D

(
A
R
P
_
p
r
o
,

2
,

c
o
n
s
t
_
n
1
6

(
0
x
0
8
0
0
,

B
R
E
A
K
)
)

F
I
E
L
D

(
A
R
P
_
h
l
n
,

1
,

c
o
n
s
t
_
n
8

(
6
,

B
R
E
A
K
)
)

F
I
E
L
D

(
A
R
P
_
p
l
n
,

1
,

c
o
n
s
t
_
n
8

(
4
,

B
R
E
A
K
)
)

F
I
E
L
D

(
A
R
P
_
o
p
,

2
,

r
a
n
g
e
_
n
1
6

(
1
,

2
)
)

F
I
E
L
D

(
A
R
P
_
s
h
a
,

6
,

a
n
o
n
y
m
i
z
e
_
e
t
h
e
r
n
e
t
_
a
d
d
r
)

F
I
E
L
D

(
A
R
P
_
s
p
a
,

4
,

a
n
o
n
y
m
i
z
e
_
i
p
_
a
d
d
r
)

F
I
E
L
D

(
A
R
P
_
t
h
a
,

6
,

a
n
o
n
y
m
i
z
e
_
e
t
h
e
r
n
e
t
_
a
d
d
r
)

F
I
E
L
D

(
A
R
P
_
t
p
a
,

4
,

a
n
o
n
y
m
i
z
e
_
i
p
_
a
d
d
r
)

/
/

i
p
.
a
n
o
n

F
I
E
L
D

(
I
P
_
v
e
r
h
l
,

1
,

K
E
E
P
)

F
I
E
L
D

(
I
P
_
t
o
s
,

1
,

K
E
E
P
)

F
I
E
L
D

(
I
P
_
l
e
n
,

2
,

K
E
E
P
)

F
I
E
L
D

(
I
P
_
i
d
,

2
,

K
E
E
P
)

F
I
E
L
D

(
I
P
_
f
r
a
g
,

2
,

K
E
E
P
)

F
I
E
L
D

(
I
P
_
t
t
l
,

1
,

K
E
E
P
)

F
I
E
L
D

(
I
P
_
p
r
o
t
o
,

1
,

K
E
E
P
)

P
U
T
O
F
F
_
F
I
E
L
D

(
I
P
_
c
k
s
u
m
,

2
,

Z
E
R
O
)

F
I
E
L
D

(
I
P
_
s
r
c
a
d
d
r
,

4
,

a
n
o
n
y
m
i
z
e
_
i
p
_
a
d
d
r
)

F
I
E
L
D

(
I
P
_
d
s
t
a
d
d
r
,

4
,

a
n
o
n
y
m
i
z
e
_
i
p
_
a
d
d
r
)

F
I
E
L
D

(
I
P
_
o
p
t
i
o
n
s
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
p
_
o
p
t
i
o
n
s
)

P
I
C
K
U
P
_
F
I
E
L
D

(
I
P
_
c
k
s
u
m
,

0
,

r
e
c
o
m
p
u
t
e
_
i
p
_
c
h
e
c
k
s
u
m
)

F
I
E
L
D

(
I
P
_
d
a
t
a
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
p
_
d
a
t
a
)

/
/

i
p
-
f
r
a
g
.
a
n
o
n

F
I
E
L
D

(
I
P
F
R
A
G
_
d
a
t
a
,

R
E
S
T
L
E
N
,

S
K
I
P
)

/
/

i
p
-
o
p
t
i
o
n
.
a
n
o
n

C
A
S
E

(
I
P
O
P
T
_
e
o
l
,

I
P
O
P
T
_
E
O
L
,

1
,

K
E
E
P
)

C
A
S
E

(
I
P
O
P
T
_
n
o
p
,

I
P
O
P
T
_
N
O
P
,

1
,

K
E
E
P
)

C
A
S
E

(
I
P
O
P
T
_
r
r
,

I
P
O
P
T
_
R
R
,

V
A
R
L
E
N
,

I
P
O
P
T
_
a
n
o
n
y
m
i
z
e
_
r
e
c
o
r
d
_
r
o
u
t
e
)

C
A
S
E

(
I
P
O
P
T
_
r
a
,

I
P
O
P
T
_
R
A
,

4
,

c
o
n
s
t
_
n
3
2

(
0
x
9
4
0
4
0
0
0
0
U
L
,

C
O
R
R
E
C
T
)
)

D
E
F
A
U
L
T
_
C
A
S
E

(
I
P
O
P
T
_
o
t
h
e
r
,

V
A
R
L
E
N
,

I
P
O
P
T
_
a
l
e
r
t
_
a
n
d
_
r
e
p
l
a
c
e
_
w
i
t
h
_
N
O
P
)

/
/

i
p
-
d
a
t
a
.
a
n
o
n

C
A
S
E

(
T
C
P
,

I
P
P
R
O
T
O
_
T
C
P
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
t
c
p
_
p
k
t
)

C
A
S
E

(
U
D
P
,

I
P
P
R
O
T
O
_
U
D
P
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
u
d
p
_
p
k
t
)

C
A
S
E

(
I
C
M
P
,

I
P
P
R
O
T
O
_
I
C
M
P
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
c
m
p
_
p
k
t
)

D
E
F
A
U
L
T
_
C
A
S
E

(
I
P
_
o
t
h
e
r
,

R
E
S
T
L
E
N
,

S
K
I
P
)

/
/

i
c
m
p
.
a
n
o
n

F
I
E
L
D

(
I
C
M
P
_
t
y
p
e
,

1
,

K
E
E
P
)

F
I
E
L
D

(
I
C
M
P
_
c
o
d
e
,

1
,

K
E
E
P
)

P
U
T
O
F
F
_
F
I
E
L
D

(
I
C
M
P
_
c
h
k
s
u
m
,

2
,

Z
E
R
O
)

F
I
E
L
D

(
I
C
M
P
_
d
a
t
a
,

R
E
S
T
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
c
m
p
_
d
a
t
a
)

P
I
C
K
U
P
_
F
I
E
L
D

(
I
C
M
P
_
c
h
k
s
u
m
,

2
,

r
e
c
o
m
p
u
t
e
_
i
c
m
p
_
c
h
e
c
k
s
u
m
)

/
/

i
c
m
p
-
d
a
t
a
.
a
n
o
n

C
A
S
E

(
I
C
M
P
_
e
c
h
o
r
e
p
l
y
,

I
C
M
P
_
E
C
H
O
R
E
P
L
Y
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
c
m
p
_
e
c
h
o
)

C
A
S
E

(
I
C
M
P
_
u
n
r
e
a
c
h
,

I
C
M
P
_
U
N
R
E
A
C
H
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
c
m
p
_
c
o
n
t
e
x
t
)

C
A
S
E

(
I
C
M
P
_
s
o
u
r
c
e
q
u
e
n
c
h
,

I
C
M
P
_
S
O
U
R
C
E
Q
U
E
N
C
H
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
c
m
p
_
c
o
n
t
e
x
t
)

C
A
S
E

(
I
C
M
P
_
r
e
d
i
r
e
c
t
,

I
C
M
P
_
R
E
D
I
R
E
C
T
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
c
m
p
_
r
e
d
i
r
e
c
t
)

C
A
S
E

(
I
C
M
P
_
e
c
h
o
,

I
C
M
P
_
E
C
H
O
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
c
m
p
_
e
c
h
o
)

C
A
S
E

(
I
C
M
P
_
r
o
u
t
e
r
s
o
l
i
c
i
t
,

I
C
M
P
_
R
O
U
T
E
R
S
O
L
I
C
I
T
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
c
m
p
_
r
o
u
t
e
r
s
o
l
i
c
i
t
)

C
A
S
E

(
I
C
M
P
_
t
i
m
x
c
e
e
d
,

I
C
M
P
_
T
I
M
X
C
E
E
D
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
c
m
p
_
c
o
n
t
e
x
t
)

C
A
S
E

(
I
C
M
P
_
p
a
r
a
m
p
r
o
b
,

I
C
M
P
_
P
A
R
A
M
P
R
O
B
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
c
m
p
_
p
a
r
a
m
p
r
o
b
)

C
A
S
E

(
I
C
M
P
_
t
s
t
a
m
p
,

I
C
M
P
_
T
S
T
A
M
P
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
c
m
p
_
t
s
t
a
m
p
)

C
A
S
E

(
I
C
M
P
_
t
s
t
a
m
p
r
e
p
l
y
,

I
C
M
P
_
T
S
T
A
M
P
R
E
P
L
Y
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
c
m
p
_
t
s
t
a
m
p
)

C
A
S
E

(
I
C
M
P
_
i
r
e
q
,

I
C
M
P
_
I
R
E
Q
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
c
m
p
_
i
r
e
q
)

C
A
S
E

(
I
C
M
P
_
i
r
e
q
r
e
p
l
y
,

I
C
M
P
_
I
R
E
Q
R
E
P
L
Y
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
c
m
p
_
i
r
e
q
)

C
A
S
E

(
I
C
M
P
_
m
a
s
k
r
e
q
,

I
C
M
P
_
M
A
S
K
R
E
Q
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
c
m
p
_
m
a
s
k
r
e
q
)

C
A
S
E

(
I
C
M
P
_
m
a
s
k
r
e
p
l
y
,

I
C
M
P
_
M
A
S
K
R
E
P
L
Y
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
c
m
p
_
m
a
s
k
r
e
q
)

D
E
F
A
U
L
T
_
C
A
S
E

(
I
C
M
P
_
o
t
h
e
r
,

V
A
R
L
E
N
,

I
C
M
P
_
a
l
e
r
t
_
a
n
d
_
s
k
i
p
)

/
/

i
c
m
p
-
e
c
h
o
.
a
n
o
n

F
I
E
L
D

(
I
C
M
P
_
e
c
h
o
_
i
d
,

2
,

K
E
E
P
)

F
I
E
L
D

(
I
C
M
P
_
e
c
h
o
_
s
e
q
,

2
,

K
E
E
P
)

F
I
E
L
D

(
I
C
M
P
_
e
c
h
o
_
p
y
l
d
,

R
E
S
T
L
E
N
,

S
K
I
P
)

/
/

i
c
m
p
-
c
o
n
t
e
x
t
.
a
n
o
n

F
I
E
L
D

(
I
C
M
P
_
c
o
n
t
e
x
t
_
u
n
u
s
e
d
,

4
,

Z
E
R
O
)

F
I
E
L
D

(
I
C
M
P
_
c
o
n
t
e
x
t
,

R
E
S
T
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
p
_
p
k
t
)

/
/

i
c
m
p
-
r
e
d
i
r
e
c
t
.
a
n
o
n

F
I
E
L
D

(
I
C
M
P
_
r
e
d
i
r
e
c
t
_
g
a
t
e
w
a
y
,

4
,

a
n
o
n
y
m
i
z
e
_
i
p
_
a
d
d
r
)

F
I
E
L
D

(
I
C
M
P
_
r
e
d
i
r
e
c
t
_
c
o
n
t
e
x
t
,

R
E
S
T
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
p
_
p
k
t
)

/
/

i
c
m
p
-
r
o
u
t
e
r
s
o
l
i
c
i
t
.
a
n
o
n

F
I
E
L
D

(
I
C
M
P
_
r
s
_
r
e
s
e
r
v
e
d
,

4
,

c
o
n
s
t
_
n
3
2

(
0
,

C
O
R
R
E
C
T
)
)

/
/

i
c
m
p
-
p
a
r
a
m
p
r
o
b
.
a
n
o
n

F
I
E
L
D

(
I
C
M
P
_
p
p
_
p
o
i
n
t
e
r
,

1
,

K
E
E
P
)

F
I
E
L
D

(
I
C
M
P
_
p
p
_
u
n
u
s
e
d
,

3
,

Z
E
R
O
)

F
I
E
L
D

(
I
C
M
P
_
p
p
_
c
o
n
t
e
x
t
,

R
E
S
T
L
E
N
,

a
n
o
n
y
m
i
z
e
_
i
p
_
p
k
t
)

/
/

i
c
m
p
-
t
s
t
a
m
p
.
a
n
o
n

F
I
E
L
D

(
I
C
M
P
_
t
s
_
i
d
,

2
,

K
E
E
P
)

F
I
E
L
D

(
I
C
M
P
_
t
s
_
s
e
q
,

2
,

K
E
E
P
)

F
I
E
L
D

(
I
C
M
P
_
t
s
_
o
r
i
g
_
t
s
,

4
,

K
E
E
P
)

F
I
E
L
D

(
I
C
M
P
_
t
s
_
r
e
c
v
_
t
s
,

4
,

K
E
E
P
)

F
I
E
L
D

(
I
C
M
P
_
t
s
_
t
r
s
m
_
t
s
,

4
,

K
E
E
P
)

/
/

i
c
m
p
-
i
r
e
q
.
a
n
o
n

F
I
E
L
D

(
I
C
M
P
_
i
r
e
q
_
i
d
,

2
,

K
E
E
P
)

F
I
E
L
D

(
I
C
M
P
_
i
r
e
q
_
s
e
q
,

2
,

K
E
E
P
)

/
/

i
c
m
p
-
m
a
s
k
r
e
q
.
a
n
o
n

F
I
E
L
D

(
I
C
M
P
_
m
a
s
k
r
e
q
_
i
d
,

2
,

K
E
E
P
)

F
I
E
L
D

(
I
C
M
P
_
m
a
s
k
r
e
q
_
s
e
q
,

2
,

K
E
E
P
)

F
I
E
L
D

(
I
C
M
P
_
m
a
s
k
r
e
q
_
m
a
s
k
,

4
,

K
E
E
P
)

/
/

u
d
p
.
a
n
o
n

F
I
E
L
D

(
U
D
P
_
s
r
c
p
o
r
t
,

2
,

K
E
E
P
)

F
I
E
L
D

(
U
D
P
_
d
s
t
p
o
r
t
,

2
,

K
E
E
P
)

F
I
E
L
D

(
U
D
P
_
l
e
n
,

2
,

K
E
E
P
)

P
U
T
O
F
F
_
F
I
E
L
D

(
U
D
P
_
c
h
k
s
u
m
,

2
,

Z
E
R
O
)

F
I
E
L
D

(
U
D
P
_
d
a
t
a
,

R
E
S
T
L
E
N
,

S
K
I
P
)

P
I
C
K
U
P
_
F
I
E
L
D

(
U
D
P
_
c
h
k
s
u
m
,

2
,

r
e
c
o
m
p
u
t
e
_
u
d
p
_
c
h
e
c
k
s
u
m
)

/
/

t
c
p
.
a
n
o
n

F
I
E
L
D

(
T
C
P
_
s
r
c
p
o
r
t
,

2
,

K
E
E
P
)

F
I
E
L
D

(
T
C
P
_
d
s
t
p
o
r
t
,

2
,

K
E
E
P
)

F
I
E
L
D

(
T
C
P
_
s
e
q
,

4
,

K
E
E
P
)

F
I
E
L
D

(
T
C
P
_
a
c
k
,

4
,

K
E
E
P
)

F
I
E
L
D

(
T
C
P
_
o
f
f
,

1
,

K
E
E
P
)

F
I
E
L
D

(
T
C
P
_
f
l
a
g
s
,

1
,

K
E
E
P
)

F
I
E
L
D

(
T
C
P
_
w
i
n
d
o
w
,

2
,

K
E
E
P
)

P
U
T
O
F
F
_
F
I
E
L
D

(
T
C
P
_
c
h
k
s
u
m
,

2
,

Z
E
R
O
)

F
I
E
L
D

(
T
C
P
_
u
r
g
p
t
r
,

2
,

K
E
E
P
)

F
I
E
L
D

(
T
C
P
_
o
p
t
i
o
n
s
,

V
A
R
L
E
N
,

a
n
o
n
y
m
i
z
e
_
t
c
p
_
o
p
t
i
o
n
s
)

P
I
C
K
U
P
_
F
I
E
L
D

(
T
C
P
_
c
h
k
s
u
m
,

0
,

r
e
c
o
m
p
u
t
e
_
t
c
p
_
c
h
e
c
k
s
u
m
)

F
I
E
L
D

(
T
C
P
_
d
a
t
a
,

R
E
S
T
L
E
N
,

S
K
I
P
)

/
/

t
c
p
-
o
p
t
i
o
n
.
a
n
o
n

C
A
S
E

(
T
C
P
O
P
T
_
e
o
l
,

0
,

1
,

K
E
E
P
)

C
A
S
E

(
T
C
P
O
P
T
_
n
o
p
,

1
,

1
,

K
E
E
P
)

C
A
S
E

(
T
C
P
O
P
T
_
m
s
s
,

2
,

4
,

K
E
E
P
)

C
A
S
E

(
T
C
P
O
P
T
_
w
s
o
p
t
,

3
,

3
,

K
E
E
P
)

C
A
S
E

(
T
C
P
O
P
T
_
s
a
c
k
p
e
r
m
,

4
,

2
,

K
E
E
P
)

C
A
S
E

(
T
C
P
O
P
T
_
s
a
c
k
,

5
,

V
A
R
L
E
N
,

K
E
E
P
)

C
A
S
E

(
T
C
P
O
P
T
_
t
s
o
p
t
,

8
,

1
0
,

r
e
n
u
m
b
e
r
_
t
c
p
_
t
i
m
e
s
t
a
m
p
)

C
A
S
E

(
T
C
P
O
P
T
_
c
c
,

1
1
,

V
A
R
L
E
N
,

K
E
E
P
)

C
A
S
E

(
T
C
P
O
P
T
_
c
c
n
e
w
,

1
2
,

V
A
R
L
E
N
,

K
E
E
P
)

D
E
F
A
U
L
T
_
C
A
S
E

(
T
C
P
O
P
T
_
o
t
h
e
r
,

V
A
R
L
E
N
,

T
C
P
O
P
T
_
a
l
e
r
t
_
a
n
d
_
r
e
p
l
a
c
e
_
w
i
t
h
_
N
O
P
)

Figure 3: Full anonymization policy.

ACM SIGCOMM Computer Communication Review 38 Volume 36, Number 1, January 2006

