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Low Velocity Impact of an Elastic 
Plate Resting on Sand 
This article describes the measurement and analysis of plate and soil response under 
low velocity impact. A free-drop impact system was developed to generate the 
dynamic loading on the plate free surface. The radial strain of the target plate, the 
longitudinal wave speed and the acceleration of the sand were measured. The 
measured wave speed data were then used to evaluate the elastic constants of the 
sand. An analysis based on linear elastodynamics was developed for transient waves 
on a thin plate resting on an elastic half space. The contact stresses and the normal 
displacements of the plate were taken as unknown functions. The contact between 
the plate and the half space were assumed frictionless. The experimental results of 
the radial strain at the bottom of the target plate and the acceleration of the sand 
beneath the center of the target plate were compared with the analytical solution. 
The arrival time, the duration, and the magnitude have good correlation between the 
analysis and experiment. The overall results appear good and provide an under
standing of the transmission of impact load through the plate, the interaction be
tween the plate and the sand, and the propagation of the load into the sand. 

Introduction 
An impulsive loading can be produced by impact where the 

duration of the impulse is on the order of microseconds. The 
particular problem of a circular aluminum plate impacted at 
its center by a steel ball was considered in this study. The con
tact duration as well as the radius of the contact area were 
measured and compared with an estimation based upon a 
Hertzian contact assumption. An excellent review of the 
works related to experimental studies of wave propagation due 
to low velocity impact was given by Al-Mousawi (1986). A 
detailed study of low velocity impact of circular plates was 
conducted by Greszczuk (1982). 

In this paper, an analysis based on linear elastodynamics for 
the transient waves on an elastic plate which rests on an elastic 
half space (sand) was developed to understand the applied 
loading, the interfacial conditions between plate and sand, the 
validity of the assumed constitutive law for sand and the free 
field response. Two difficulties addressed in this study were 
the measurement of the response of the soil, and in adopting 
an appropriate constitutive law for the soil. The contact 
stresses and the normal displacements of the plate were taken 
as unknown functions. The contact between the plate and the 
half space was assumed frictionless. The measured responses 
of the radial strains of the target plate, the longitudinal wave 
speeds, and the accelerations of sand are compared with 
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analytical results to provide a better understanding of how the 
dynamic load is transmitted through a plate into the soil and 
how well the elastic half space assumption can be used to 
model the sand. A review of the analytical approaches used in 
this study are described as follows. 

By assuming the distribution of the contact pressure be
tween the foundation and the soil, Reissner and Sagoci (1944), 
Quinlan (1954), Sung (1954), Arnold et al. (1955), and Bycroft 
(1956) considered the dynamic response of a rigid disc placed 
on an elastic half space based on Lamb's (1904) solution for 
the elastic half space. Collins (1962), Robertson (1966), 
Karasudhi et al. (1968), Luco and Westmann (1972), and 
Veletsos and Verbic (1974) studied the vertical, tangential, and 
rocking oscillations of a rigid strip on an elastic or viscoelastic 
half space by solving the actual mixed boundary value 
problem, either through application of integral transforms or 
by reduction of the governing equations to an integral equa
tion (essentially a boundary element formulation). A detailed 
review of pertinent research on the dynamic response of rigid 
footings can be found in Richard et al. (1970) and Luco et al. 
(1971, 1987). 

The assumption of a rigid foundation may be inappropriate 
for studying the dynamic interaction between the soil and a 
structure which has large planar dimensions compared with 
the incident wave length. The response of an infinite and a 
semi-infinite flexural plate in smooth contact with an elastic 
half space subjected to harmonic plane waves was solved by 
Achenbach et al. (1966), and Freund and Achenbach (1968). 
In 1973, Oien expanded the motion of the plate in a series of 
vibrational modes and obtained the response of the plate on 
the elastic half space using the Bubnov-Galerkin method. In 
1978, Lin presented an integral equation approach for the case 
of a flexible circular plate having a rigid perimeter. Recently, a 
similar approach was adopted by Iguchi and Luco (1982) to 
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Table 1 Contact duration and radius of contact area 

Velocity of 
Impactor 
(m/sec) 

Target Plate 
(Thickness(cm) 
x Diameter(cm)) 

Contact Duration 
ro(msec)) 

Measured/Calculated 

Contact Radius 
a(cm) 

Measured/Calculated 
2.95 
2.95 
5.06 
5.06 

Steel(2.54x 15.24) 
Aluminum(1.27x 15.24) 
Steel(2.54x 15.24) 
Aluminum(2.54 x 20.32) 

0.169/0.135 
0.238/0.174 
0.132/0.121 
0.180/0.156 

0.160/0.180 
0.175/0.204 
0.263/0.222 
0.275/0.253 

1 Impactor: 4.76 cm diameter steel ball (E52100) 
2 Calculated by Hertzian Contact Law 
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Fig. 1 Test set-up for measuring contact duration 

solve the dynamic response of a massless flexible circular plate 
with a rigid core supported on a layered viscoelastic half space 
subjected to harmonic vertical and rocking excitation. Krenk 
and Schmidt (1981) used a polynomial expansion of the con
tact stress and the normal displacement of the plate to obtain 
the response of an oscillating elastic circular plate on an elastic 
half space. Whittaker and Christiano (1982), who studied the 
dynamic behavior of rectangular plates on an elastic half 
space, combined the discretized Lamb's solutions with the 
plate treated by finite element method. 

The dynamic response of an elastic plate resting on sand is a 
practical topic for investigation that covers a wide range of ap
plications. First, the plate can be viewed as a footing of a 
structure, which has significance for foundation-vibration 
studies. Secondly, the finite plate response due to an impact 
force is a fundamental problem in structural design. Morever, 
investigating the impact force itself is also important and in
teresting since an accurate knowledge of the live load on the 
impacted structure enables a better design and prediction of 
the damage to the structure. Finally, it is important to under
stand fully the impact loading transmission through the soil. 

Test Set-Up 

For the impact test, the duration and the contact area can be 
predicted from a theoretical approach based on the assump-
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Fig. 2 Test configuration for measuring strain and acceleration 

tions of Hertzian contact. The impactor is a steel ball and the 
target is either a steel or an aluminum plate placed over 
Ottawa 20-30 standard sand. The test data were recorded by a 
Nicolet 4094 Digital oscilloscope with XF-44 Dual Disk 
Recorder. 

The test set-up to measure the contact duration is shown in 
Fig. 1. By using a large resistor to increase the voltage jump, 
the contact duration was measured from the time of first con
tact with the target plate until contact was lost. The contact 
duration, T0, is also shown in Fig. 1. The experimentally 
measured contact areas are taken as the plastic deformed 
region of the plate surface. The measured values of contact 
duration and radius of contact area are given in Table 1. 

In order to understand the loading function, two strain 
gages were placed at the bottom of the target plate. One was 
placed 1.27 cm from the center of the plate and the other 1.91 
cm from the center (Fig. 2). A Wheatstone Bridge Circuit was 
used for each strain measurement. Since the total experimental 
duration was within a few milliseconds, temperature compen
sation was not applied. The length of the strain gage was 0.8 
mm. 

The test set-up to determine the wave speed of the sand is 
shown in Fig. 3. Three piezoelectric accelerometers (Glennite 
Model A30T) were buried in the sand. The tank was partially 
filled with sand which was compacted at approximately every 
5 cm. The compaction was done by 25 uniform strokes with a 
24.5N hammer and 30 cm free drop. After the compaction, 
the total density was calculated by the measured weight and 
volume. The accelerometers were carefully placed and leveled 
in order to get excitations only in the vertical direction. The 
surface of the sand was covered with the target plate which 
was leveled. The water content of the sand was 0.05 percent. 
The sand was fairly condensed with a void ratio of 0.492. The 
accelerations were recorded after each impact by using a 
sampling rate of 1 /xsec per point. Three to five tests were con
ducted for each test configuration to verify the reproducibility 
of the data. 

The way to locate the axis of impact loading is described 
next. The sand bed was at a depth of about 7 cm and well com
pacted. An accelerometer was placed at the center of the sand 
bed. A plumb bob was used to aim the accelerometer; the 
plumbline was marked as a ruler. To ensure that the ac
celerometer is horizontal, a bull's-eye level was placed on its 
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Fig. 3 Typical time history of acceleration in sand 
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surface. Then, the plumb bob was pulled up by the plumb line 
through the pulley which was assumed fixed. After the ac-
celerometer was covered by sand and the sand was compacted, 
an aluminum plate was used to cover the sand. The center of 
the plate was located by the plumb bob and this was taken as 
the dropping point. The plate was leveled and the dropping 
axis was the same as the plumb line axis. 

It should be noted that after each test, the position of the ac-
celerometer was measured again when the sand was ladled out. 
The accelerometer settled about 3.2 mm for each 7 cm of 
buried depth and caused about 5 percent error for determining 
the wave speed of the sand. 

Analysis 

To analyze the results obtained from the experimental set
up as shown in Fig. 2, three modeling tasks were performed: 
An estimate was made of the impact loading, the interfacial 
conditions between the target plate and sand was determined, 
and the properties of the sand were evaluated. Among these 
three, accurate modeling of the properties of the sand is 
perhaps the most difficult, even in the "dry" condition. 

(a) Modeling of the Sand. A large, short duration load 
applied to sand may cause it to crush, deform, slide, and 

change its void ratio. Such complex behavior is far beyond the 
capability that elasticity and viscoplastic modeling can ac
curately handle. Even if the properties of sand are assumed 
fixed within the framework of elasticity and plasticity, the 
sand's nonlinearity must be taken into account, since the se
cant modulus of sand depends highly on the stress level, 
loading rate, and loading history (see Kiger et al., 1984). As a 
consequence, when an impact which may cause a highly 
nonuniform stress distribution is applied, the secant shear and 
Young's moduli will also be highly nonuniform. Thus, an ef
fective and efficient calculation may prove difficult to obtain. 
Furthermore, it is noted that unloading must be taken into ac
count when the peak has passed. 

Sand can not support tensile loads. In order to avoid the 
consequences of this property and strengthen the analysis, the 
experimental program has been designed to subject the sand 
only to compressive loads. By putting a plate on the surface of 
the sand to provide sufficient compression, the separation be
tween the sand particles can be prevented. Thus it is assumed 
that no tensile force exists in the sand during the loading 
process. 

To obtain an analytical result as a first-order approxima
tion, sand was modeled as an elastic, isotropic, and 
homogeneous medium. The related elastic properties can be 
determined from the observed wave speed. This idea was sug
gested in a study by Lambe and Whitman (1969) where they 
evaluated the secant modulus of Ottawa sand by using the 
wave speed under different initial stress levels. The same con
cept is used here to estimate the elastic constants under the 
current loading rate in an average sense. Figure 3 is the re
corded response of the accelerometer at various depths. From 
this figure, the longitudinal wave speed, CL, can be evaluated 
by dividing the distance between two accelerometers by the 
difference of the arrival times. The shear wave speed can not 
be obtained since the shear wave front has not separated from 
the longitudinal wave in the time frame of measurements. 
Thus, a value for Poisson's ratio had to be assumed to 
evaluate the Young's modulus E and shear modulus /M. In Fig. 
4, the influence of Poisson's ratio, c, on the moduli are plot
ted. A summary of sand properties are given in Table 2. 

(b) Impact Analysis. As shown in Fig. 2, the impact 
force to be transmitted to sand is provided from the dropped 
ball. The considerations on this impact force are threefold. 
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Table 2 Material properties 

Aluminum 

Ottawa2 

20-30 
Sand 

V 

1/3 

1/4 
(assumed) 

(kg/m3) 

2821 
(2700)' 

1776 
(1762)3 

(m/sec) 

6054 
(6300)' 

241 
(256)3 

CT 
(m/sec) 

3027 
(3100)' 

139 
(158)4 

E 
(MPa) 

68928 
(69192) 

86 
(110) 

1 Achenbach, 1980 
2 Void Rat io e = 0.492 
3 Lambe and Whi tman, 
4 Richart et al., 1970 

1969 

First, to study the wave phenomenon in soil-structure interac
tion, the impact duration, T0, multiplied by the longitudinal 
wave speed of sand, should be of the same order of magnitude 
as the depth of the buried structure or instrument. Second, to 
simplify the calculation, the contact area should be small 
enough that the impact loading can be represented as a point 
load, i.e., 

P(r,t)=p{t)b{r)/2-Kr (1) 

where b(r) is the delta function. 
Finally, the point force, p(t) should be able to be assumed or 
verified reasonably well. 

From the Hertzian contact assumptions, the impact dura
tion is given as (Timoshenko and Goodier, 1951, p. 421) 

T0 = 2.94 (5Mb/4n)2/5/(2gH)ws (2) 

where Mb is the mass of the ball; i / i s the dropping height, g is 
the value of acceleration of gravity; 

(3) 
(\-v2

b)/Eb + (\-v2
p)/Ep 

Rb is the radius of the ball; and Eb, vb, and Ep and vp are the 
Young's modulus and Poisson's ratio of the ball and the target 
plate, respectively. The maximum contact radius is 

a = Rb
/2(5gHMb/2n)l/s (4) 

In Table 1, the measured contact radius and contact duration 
are compared to those evaluated and are seen to be reasonably 
close to the theoretical predictions. The measured contact 
duration is expected to be longer than the Hertzian contact 
duration due to the boundary effect (Greszczuk, 1982). Since 
the contact radius a is much smaller than the buried depth of 
the accelerometer, the acceleration in the sand may be 
evaluated by assuming it arises from a point force on the plate. 
However, a is not small compared to h, the thickness of the 
plate, and r, the distance between the strain gage and the 
center of the plate. Thus, some inaccuracy is introduced when 
the strain is evaluated by using the point force assumption. As 
can be seen from Table 1, the contact duration is of the right 
order of magnitude for investigating the wave phenomenum in 
this study. 

(c) Analysis of System. The target plate was relatively 
thick to prevent its separation from the foundation and to pre
vent permanent deformation in the plate except at the contact 
point. However, a layer model is unsuitable to analyze the 
target plate because the contact duration, T0, is too long com
pared to the time for a longitudinal wave to travel from the 
top to the bottom of the plate. Thus, a thin plate model was 
used to simulate the response of the target plate. The govern
ing equation is 

Dv4w + phd2w/dt2 =p(t)5(r)/2rr- Q{r,t) (4a) 

D = Ephyi2(l-v2
D) (4b) 

where D, w, and p are the rigidity, deflection, and density of 
the plate, respectively; V4 is a biharmonic operator, p(t) is the 

impact force, and q(r, t) is the interfacial normal traction. The 
transformed solution of equation (4) has the following form: 

w° = (p/2ir-q°)/D(t-^) + Bl+B2 (5) 

Here, a superscript bar denotes a Fourier transform and 
superscript zero denotes a Hankel transform, i.e., 

weia!dt, w° ioo 

o 
wJ0(!c,r)rdr (6),(7) 

and 

\4 = Pu2h/D (8) 

The terms Bl and B2, can be determined from the boundary 
conditions of the target plate, i.e. 
bending moment at r = R. 

vanishing shear force and 

d / d2w 

~dr\ dr2 

d2w 

dr2 - + v„ 

rdr 

dw 

) L, 
dr 

= 0 

(9) 

(10) 

Next, the transfer of load into the sand is considered. Two ex
tra interfacial conditions were assumed. First, no separation 
was assumed between the plate and sand, leading to con
tinuous normal traction and displacement across the interface. 
Next, the friction force between the plate and sand was as
sumed negligible when compared to the interfacial normal 
traction. This condition could be modified, for example, by 
assuming that the interfacial shear force is proportional to the 
interfacial normal force. 

The response in the elastic half space due to a normal trac
tion applied on the surfaces is Lamb's problem. The 
transformed normal displacement in sand due to q is 

w° = q°(<x/ixQ)[(2£2 - k2
T)e~az - 2 £ 2

e - < f e ] (11) 

where, 

<x = (?-kL
2)'A 

a=(n2-icT
2y/> 

Q = (2?-kT
2)2-4i,2oL0 

kL=o>/CL 

Kf = O)/CY 

(Ha) 

(116) 

(lie) 

(1W) 

(11/) 

CL and CT are the longitudinal and shear wave speeds in the 
sand. 

The interfacial traction q° can be obtained by eliminating 
w° in equation (5) and equation (11). The result is 

Q° = 
IxU 

nQ,-k\aD(£*-\A) 
[~ + (B1+B2)D^-\*)\ (12) 

It should be noted that Bx and B2 contain the integral form of 
q. Hence a numerical method must be used to solve for q°. 
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However, as a first order approximation, R was assumed so 
large (infinite plate) that Bx and B2 approach 0. If R is con
sidered as moderately large, q° may be obtained by the 
method of substitution. Whether R can be considered large 
enough depends also on the range of the loading frequency. 
After q° is obtained, w° is evaluated via equation (11) and q is 
obtained by evaluating the Hankel integral. The numerical 
value of acceleration of sand in the frequency domain is 
-oi2w. Also, the strain along the bottom of the plate can be 
evaluated by the following formula: 

d2w 
e r = - " dr2 

(13) 

Numerical and Experimental Results 

(a) Radial Strain on the Plate. The first part of the 
numerical results is the computation of the Green's function 
of strain along the bottom of the plate. Mathematically, the 
strain caused by the impact force is written as: 

er(r,u) = G(r,u),p(a) (14) 

where G is the Green's function. In Fig. 5, the spectrum of 
I G{r,w) I is plotted at various locations along the bottom of an 
aluminum plate with h = 1.27 cm and R = oo. The strain at r = 0 
is not plotted because the deflection due to a point load con
tains a /-2log(/) term, thus, the strain at r= 0 has a logarithmic 

r=2.54mm 
Aluminum plate 
h = 1.27cm 
Rr inf in i ty 

i 2 4 6 
Frequency (kHz) 

Fig. 5 Spectrum of radial strain due to a point force 

singularity. Strain gages were put at r= 1.27 cm and 1.91 cm 
such that the following conditions were met: as0.2 
cm<h= 1.27 cm<r<KR = 7.62 cm. The influence of the size 
of strain gages and the deviation of impact point in the experi
ment are not important because they are smaller than the max
imum contact radius. For the static case of an infinite plate 
rested on an elastic half space, there is an integral form 
available for the deflection curve from Timoshenko and 
Woinowsky-Krieger (1959). 

w(r) = - Pti r - W o ) 
2-KD 

where, 

11 = 

1 + f3 

2D(l - v2) 

E 

dt, (15) 

After differentiating the Bessel function twice with respect to 
r, the strain can be evaluated; this evaluation provides a check 
of the numerical results at o = 0. Also, it is noted that the ratio 
of the amplitude of the strain at r = 76.2 mm (calculated but 
not shown in Fig. 5) to the strain at r= 12.7 mm is only 0.11 at 
o = 0, which implies that the infinite plate assumption is valid 
for the static case. Next, the curves in Fig. 5 are ascending as 
the frequency slightly increases because there is a pole along 
the positive real axis at a frequency of 350 Hz. Finally, it is 
observed that the boundary effect becomes larger as the fre
quency becomes higher. At frequency equal to 4 kHz, the ratio 
of amplitude of the strain at r = 76.2 mm to the strain at 
r=12.7 mm is 0.75. 

Since G(r,u) is based on several assumptions such as point 
impact, an infinite plate, and a frictionless interfacial condi
tion along with uncertainties in soil properties, to invert p(t) 
from the strain gage measurement is not reliable. Consequent
ly. Pif) is estimated in the following way. First, assume 

p(t)=Af(t) (16a) 

where/(0 is a monopeak, nonzero smooth shape function in 
the interval 0<t<T0. Then, the amplitude, A, is determined 
from a momentum balance, i.e., 

A=Mb(2gH) vr*** (166) 

In Fig. 6, three/(/) curves are plotted. The curve No. 1 is the 
Hanning function. The curve No. 2 is recommended by 

0.08 0.12 0.16 
Time (msec) 

0.24 

Fig. 6 Loading shape function 
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Fig. 7 Comparison of simulated strains with experimental results 

Gresczuk (1982) to approximate the Hertzian contact force. 
The curve No. 3 is the parabolic function. It is noted that the 
first two curves are very close. 

Next, the impact of a steel ball dropped from H=44.5 cm, 
hitting an aluminum plate h = 1.27 cm andR = 7.62 cm, is con
sidered. The impact duration is 0.238 msec and the amplitude 
is evaluated via equation (166). From pit), the Fourier 
transform p(o>) is evaluated and multiplied with the Green's 
function. Thus, the numerical result for the strain in the fre
quency domain is obtained. After applying the inverse Fast 
Fourier Transform, the time domain response is obtained. In 
Fig. 7, the measured strain histories at r= 1.27 cm and r= 1.91 
cm are plotted and compared with the simulated strains 
assuming/(O is the Hanning function. The general agreement 
is satisfactory. The oscillations in the experimental results are 
due to the finite plate vibration. 

To obtain the spectrum of measured strain, FFT was ap
plied to the experimental results. At w = 0, there is good agree
ment between experimental results and numerical results (Fig. 
8). As was mentioned previously, the infinite plate assumption 
is valid in static cases. It should be noted that all three 
numerical curves corresponding with three fit) from Fig. 6, 
have the same value at o> = 0 because they have to satisfy 
momentum balance. However, there are large differences be
tween the numerical results and experimental results between 
about 2 to 5 kHz range. The reason is that the numerical 
results are evaluated using an infinite plate assumption while 
the experimental results are for a finite plate. If the finite plate 
vibration is considered, the natural frequency of the plate is of 
the form 

"=,?2U^-) 1/2 
(17) 

Impact velocity = 2.95 m/sec 
Target plate: Aluminum plate 

12.7mm x 152.4mm (dial 

. e x p e r i m e n t 

F r equenc y (kHz) 

Fig. 8 Spectrum of strain at r= 1.27 cm 

5000 

2 5 0 0 -

- 2 5 0 0 -

where rj2 is a constant which depends only on the boundary 

1.0 1.5 2.0 
Time (msec) 

Fig. 9 Measured acceleration history 

conditions at r = R. For a completely free circular plate, the 
first root i\L = 9.084 (Leissa, 1961) with corresponding fre
quency of 4.78 kHz is the same as the frequency of the oscilla
tion which was observed after the loading (Fig. 7). To deter
mine fit) more accurately, a finite plate analysis must be 
performed. 

(b) Acceleration in the Sand. The next set of results 
describe the acceleration in the sand. The impactor is a 4.76 
cm diameter steel ball and is dropped from H=44.5 cm. The 
target plate is an aluminum plate with # = 1.27 cm and 
R = 1.62 cm. Only the Hanning function is considered for the 
loading shape function. The testing geometry was similar as 
shown in Fig. 3. The accelerometers A and C were removed 
and reburied B at depth d= 6.86 cm. Figure 9 is the record of 
acceleration. The corresponding spectrum is plotted in Fig. 10. 

The Glennite Model A30T piezoelectric accelerometer is a 
general-purpose accelerometer for shock acceleration 
measurement from a fraction of 10 g to 10,000 g. It was 
calibrated with a response of 1.46 g/mv. The size of the ac
celerometer is 1.8 cm x 2.5 cm x 2.5 cm and its natural fre
quency is 50 kHz. The basic difficulty in choosing the ac
celerometer for this experiment is that the size of the ac
celerometer must be very small; otherwise, a large scale test 
must be performed. However, due to its availability and con-
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venience, the Glennite A30T was used in measuring the wave 
speed of the sand. It is noted that the arrival time was distinct 
(Fig. 3) and the response of accelerometer was within the right 
order of magnitude. In Fig. 11, the simulated acceleration and 
the measured acceleration are plotted. For the dotted 
line, the frequency above 20 kHz has been filtered out; for the 
dashed line, the frequency above 10 kHz has been filtered. It is 
noted that the peak positive acceleration is quite sensitive to 
the cutoff frequency and the experimental result is comparable 
to its numerical simulation. 

It was noted from the strain measurement (Fig. 8) that the 
frequency range of the impact loading was within 10 kHz. 
Therefore, the 50 kHz noise in the acceleration measurements 
(shown in Fig. 10) implied some problems with accelerometer. 
In Fig. 12, the simulated acceleration history and the 
measured acceleration history obtained by a different ac
celerometer are plotted. A smaller accelerometer was used. 
The Kistler model 808A Quartz accelerometer with a size of 
1.27 cm (hex.) x 2.29 cm is a general purpose piezoelectric ac
celerometer for vibration, shock and acceleration 
measurements with a full scale range from 1 g to 10,000 g. By 
using this accelerometer, the measured acceleration in fre
quency domain shows almost no amplitude after 10 kHz. This 
coincided with the strain measurements. 

There are three points to be noted in Fig. 12. First, the ar
rival time of the simulated acceleration is quite satisfactory, 
which provides an indirect check of the simulated acceleration 
spectrum. Second, the acceleration is very small after 1.6 msec 
for all 3 curves. This coincides with the duration measured by 
the strain gages. Finally, the numerical peak negative accelera-
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Fig. 12 Acceleration measured from different accelerometers 
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tion is quite close to the peak positive acceleration, while the 
measured peak negative acceleration is significantly less than 
the peak positive acceleration. Since negative acceleration 
means the velocity is decreasing as are the stresses, the 
negative acceleration period is an unloading period. Thus, the 
significant reduction in measured peak negative acceleration 
implies that the stress-strain relationship in the unloading 
phase may be quite different from the loading phase. 
Therefore, the current linear elastic assumption may be 
violated. This last point can be clarified after the finite plate 
analysis is performed. 

In Fig. 13, the velocity histories, which are obtained from 
the integration of simulated and measured accelerations 
without filtering out any frequency component, are plotted. 
As a check, all three velocity curves become 0 at around 3 
msec. In Fig. 14, the spectrums of simulated acceleration and 
measured accelerations are plotted. The agreement is good at 
frequencies up to 1.5 kHz. It may be possible to have better 
correlation between the experimental and numerical results by 
introducing attenuation into the analysis. The wave speed in 
sand is 240 m/s and as the frequency increases to 10 kHz, the 
wave length in sand can be as short as 2.4 cm. Since the ac
celerometer is apparently too large, a better calculation may 
be done by considering a scattering problem. 

The current analytical approach can provide a reliable strain 
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history and acceleration history within the same order of 
magnitude in comparison with the experimental results. The 
major errors arise from the infinite plate assumption and the 
dimensions of instruments used to measure acceleration in the 
sand. 

Summary 

In this paper, the basic approach was expressed. The main 
objective is to understand the physical phenomena. The ar
rival time, duration, and magnitude have good correlation 
between the analysis and experiment. The overall results are 
reasonably good and provide an understanding of the 
transmission of impact load through the plate, the interaction 
between the plate and the sand, and the propagation of the 
load into the sand. 

The following conclusions can be made at this point: 
1 Using the current approach, numerical results are com

parable to experimental results. The accuracy is within 
the same order of magnitude. 

2 To get a better estimate of the impact loading, it is 
necessary to consider finite plate effects. 

3 The accelerometer size effect is not negligible in current 
testing scales. 

4 The errors from the assumptions of interfacial condi
tions and point impact are much smaller than the errors 
from (2) and (3). The effect of an assumed Poisson's 
ratio on soil response needs further investigation. 

5 Attenuation may be introduced to compensate for the 
energy consumed on sliding (internal friction between 
soil particles). 

Acknowledgment 

The authors are grateful for support from the Air Force 
Office of Scientific Research. They are pleased to 
acknowledge the Program Manager, Directorate of Aerospace 
Sciences, Major Steven C. Boyce and former Program 
Manager Dr. Spencer T. Wu. 

References 

Achenbach, J. D., 1980, Wave Propagation in Elastic Solids, North-Holland 
Publishing Co., Amsterdam. 

Achenbach, J. D., Keshava, S. P., and Herrmann, G., 1966, "Waves in a 
Smoothly Joined Plate and Half Space," Journal of the Engineering Mechanics 
Division, Proceedings, ASCE, Vol. 92, No. EM2, pp. 113-129. 

Al-Mousawi, M. M., 1986, "On Experimental Studies of Longitudinal and 
Flexural Wave Propagations: An Annotated Bibliography," Applied Mechanics 
Reviews, ASME, Vol. 39, No. 6, pp. 853-865. 

Arnold, R. N., Bycroft, G. N., and Warburton, G. B., 1955, "Forced Vibra
tions of a Body on an Infinite Elastic Solid," ASME JOURNAL OF APPLIED 
MECHANICS, Vol. 22, pp. 391-400. 

Bycroft, G. N., 1956, "Forced Vibrations of a Rigid Circular Plate on a Semi-
Infinite Elastic Space and on an Elastic Stratum," Phil. Transactions Royal 
Society London, Vol. A248, pp. 327-368. 

Collins, W. D., 1962, "The Forced Torsional Oscillations of an Elastic Half-
Space and an Elastic Stratum," Proceedings of London Mathematical Society, 
Vol. 12, pp. 226-244. 

Freund, L. B., and Achenbach, J. D., 1968, "Waves in a Semi-Infinite Plate 
in Smooth Contact With a Harmonically Disturbed Half Space," International 
Journal of Solids and Structures, Vol. 4, pp. 605-621. 

Greszczuk, L. B., 1982, "Damage in Composite Materials Due to Low 
Velocity Impact," Impact Dynamics, J. A. Zukas et al., eds., John Wiley, New 
York. 

Iguchi, M., and Luco, J. E., 1982, "Vibration of Flexible Plate on 
Viscoelastic Medium," Journal of the Engineering Mechanics Division, Pro
ceedings, ASCE, Vol. 108, No. EM6, pp. 1103-1120. 

Karasudhi, P., Keer, L. M., and Lee, S. L., 1968, "Vibratory Motion of a 
Body on an Elastic Half-Plane," ASME JOURNAL OF APPLIED MECHANICS, Vol. 
35, pp. 697-705. 

Kiger, S. A., Getchell, J. V., Slawson, T. R., and Hyde, D. W., 1980-1984, 
"Vulnerability of Shallow-Buried Flat Roof Structures," US Army Engineer 
Waterways Experiment Station, Technical Report SL-80-7, six parts. 

Krenk, S., and Schmidt, H., 1981, "Vibration of an Elastic Circular Plate on 
an Elastic Half Space—A Direct Approach," ASME JOURNAL OF APPLIED 
MECHANICS, Vol. 48, pp. 161-168. 

Lamb, H., 1904, "On the Propagation of Tremors over the Surface of an 
Elastic Solid," Philosophy Transactions Royal Society London, Ser. A, Vol. 
203, pp. 1-42. 

Lambe, T. W., and Whitman, R. V., 1969, Soil Mechanics, John Wiley, New 
York. 

Leissa, A. W., 1969, "Vibration of Plates," NASA Report No. SP-160. 
Lin, Y. J., 1978, "Dynamic Response of Circular Plates Resting on 

Viscoelastic Half-Space," ASME JOURNAL OF APPLIED MECHANICS, Vol. 45, pp. 
379-384. 

Luco, J. E., and Mita, A., 1987, "Response of a Circular Foundation on a 
Uniform Half-Space to Elastic Waves," Earthquake Engineering and Structural 
Dynamics, Vol. 15, pp. 105-118. 

Luco, J. E., and Westmann, R. A., Oct. 1971, "Dynamic Response of a Cir
cular Footings," Journal of the Engineering Mechanics Division, Proceedings, 
ASCE, No. EM5, pp. 1381-1395. 

Luco, J. E., and Westmann, R. A., 1972, "Dynamic Response of a Rigid 
Footing Bonded to an Elastic Half-Space," ASME JOURNAL OF APPLIED 
MECHANICS, Vol. 39, pp. 527-534. 

Oien, M. A., 1973, "Steady Motion of a Plate on an Elastic Half-Space," 
ASME JOURNAL OF APPLIED MECHANICS, Vol. 40, Series E, No. 2, pp. 478-484. 

Quinlan, P. M., 1954, "The Elastic Theory of Soil Dynamics," Symposium 
on Dynamic Testing of Soils, ASTM, STP No. 156, pp. 3-34. 

Reissner, E., and Sagoci, H. F., 1944, "Forced Torsional Oscillations of an 
Elastic Half-Space," Journal of Applied Mechanics, Vol. 15, pp. 652-662. 

Richard, Jr., F. E., Hall, Jr., J. R., and Woods, R. D., 1970, Vibrations of 
Soils and Foundations, Prentice-Hall, Englewood Cliffs, N.J. 

Robertson, I. A., 1966, "Forced Vertical Vibration of a Rigid Circular Disc 
on a Semi-Infinite Elastic Solid," Proceedings of Cambridge Philosophy Socie
ty, Vol. 62, pp. 547-553. 

Sung, T. Y., 1954, "Vibrations in Semi-Infinite Solids Due to Periodic Sur
face Loadings," Symposium on Dynamic Testing of Soils, ASTM, STP No. 
156, pp. 35-64. 

Timoshenko, S., and Goodier, J. N., 1970, Theory of Elasticity, 3rd Ed., 
McGraw-Hill, New York. 

Timoshenko, S., and Woinowsky-Krieger, S., 1959, Theory of Plates and 
Shells, McGraw-Hill, New York. 

Veletsos, A. S., and Verbic, B., 1974, "Basic Response Functions for Elastic 
Foundations," Journal of the Engineering Mechanics Division, Proceedings, 
ASCE, Vol. 100, No. EM2, pp. 189-202. 

Whittaker, W. L., and Christiano, P. , 1982, "Dynamic Response of Flexible 
Plates on Elastic Half-Space,'' Journal of the Engineering Mechanics Division, 
ASCE, Vol. 108, pp. 133-154. 

894/VOI.55, DECEMBER 1988 Transactions of the ASME 
Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use




