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Abstract 

An anhydride-cured thermosetting epoxy polymer was modified by incorporating 10 wt.% of well-

dispersed 20 nm diameter silica nanoparticles. The stress-controlled tensile fatigue behaviour at a 

stress ratio of R = 0.1 was investigated for bulk specimens of the neat and the silica-modified 

epoxy. The addition of the silica nanoparticles increased the fatigue life by about three to four 

times. The neat and the nanoparticle-modified epoxy resins were used to fabricate glass fibre 

reinforced plastic (GFRP) composite laminates by resin infusion under flexible tooling (RIFT). 

Tensile fatigue tests were performed on these composites, during which the matrix cracking and 

stiffness degradation was monitored. The fatigue life of the GFRP composite was increased by 

about three to four times due to the silica nanoparticles. Suppressed matrix cracking and a 

reduced crack propagation rate in the nanoparticle-modified matrix were observed to contribute 

towards the enhanced fatigue life of the composite containing the silica nanoparticles.  
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1. Introduction 

Fibre reinforced plastic (FRP) composites are widely used in ship hull, airframe and wind turbine 

structural applications due to their high specific strength and stiffness. The components in such 

structures invariably experience various types of constant- and variable-amplitude fatigue loads in 

service. Safe operation of these structures for the designed lifetime requires that composite 

materials, in addition to their good static mechanical properties, need to have high fracture 

toughness and good fatigue-resistance.  

The majority of engineering composite materials consist of a thermosetting epoxy matrix reinforced 

by continuous glass or carbon fibres. The epoxy, when polymerised, is an amorphous and highly 

cross-linked material. This cross-linked microstructure results in many useful properties such as a 

high modulus and failure strength, low creep etc.. However, it also leads to an undesirable property 

whereby the polymer is relatively brittle and has a poor resistance to crack initiation and growth. 

This will affect the overall fatigue and fracture performance of FRP composites with this matrix.  

One of the ways to enhance the mechanical properties of FRPs is to improve the properties of the 

epoxy matrix by incorporating a second phase of particles into the resin. Polymeric 

nanocomposites, where at least one of the dimensions of the particulate material is less than 100 

nm, have shown significant improvements in mechanical properties, e.g. [1,2]. Various types of 

particulate, fibrous and layered nanoparticles have been employed for both bulk polymers and fibre 

composites [3-13].  

The beneficial effect of silica nanoparticles on the fracture toughness of epoxies and FRPs has 

been widely reported [3-10]. However, detailed studies on the fatigue behaviour of particle 

toughened nanocomposites are limited, e.g. [14]. Hence, the main aim of this investigation was to 

study the stress-controlled constant-amplitude tensile fatigue behaviour of a glass fibre reinforced 

plastic (GFRP) composite with a silica nanoparticle-modified epoxy matrix. Emphasis was placed 

on understanding the micro-mechanisms of the fatigue damage processes.  
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2. Experimental 

2.1 Materials and processing 

The materials were based upon a single-component hot-cured epoxy formulation. The epoxy resin 

was a standard diglycidyl ether of bisphenol A (DGEBA) with an epoxy equivalent weight (EEW) of 

185 g/mol, ‘LY556’ supplied by Huntsman, Duxford, UK. The silica (SiO2) nanoparticles were 

obtained as a colloidal silica sol with a concentration of 40 wt.% in DGEBA epoxy resin (EEW = 

295 g/mol) as ‘Nanopox F400’ from Nanoresins, Geesthacht, Germany. The curing agent was an 

accelerated methylhexahydrophthalic acid anhydride, ‘Albidur HE 600’ (EEW = 170 g/mol) also 

from Nanoresins. The E-glass fibre cloth was a non-crimp-fabric with two layers of fibres arranged 

in a ±45° pattern with an areal weight of 450 g/m2 from SP Systems, Newport, UK.  

The DGEBA epoxy resin was weighed and degassed at 50 °C and -1 atm. The required quantity of 

silica nanoparticle-modified epoxy resin to give 10 wt.% of silica in the final formulation was also 

weighed and degassed. These were mixed together, a stoichiometric amount of curing agent was 

added, and the mixture was stirred and degassed. The resin mixture was then used to prepare 

both bulk epoxy sheets and GFRP composites. Typically, to prepare 500 ml (589 g) of 10 wt.% 

silica nanoparticle-modified resin, about 150 g of Nanopox, 184 g of LY556 and 255 g of HE600 

was used.  

To manufacture the bulk epoxy sheets, the resin mixture was poured into release-coated steel 

moulds. The filled moulds were placed in a circulating air oven. The temperature was ramped to 

100 °C at 1 °C/min, and the epoxy was cured for 2 hours. The temperature was then ramped to 

150 °C at 1 °C/min and the plate was post-cured for 10 hours. An atomic force microscope (AFM) 

image of the silica nanoparticle-modified epoxy polymer, obtained as described in [4], is shown in 

Fig. 1. This shows that the silica particles are about 20 nm in diameter and are evenly distributed in 

the epoxy.  

The GFRP composite laminates were manufactured by resin infusion under flexible tooling (RIFT) 

[14]. E-glass fibre non-crimp fabric pieces, about 330 mm square, were cut and laid up in a quasi-

isotropic sequence [(+45/-45/90/0)s]2 with a fluid distribution mesh. The resin mixture was infused 
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into the glass-cloth lay-up at 50 °C and -1 atm. Once the infusion was complete, the laminate was 

cured using the same cure cycle as the bulk plates, maintaining the vacuum throughout the curing 

process. The resulting GFRP composite laminates (neat and with silica nanoparticle-modified 

epoxy matrix) were about 2.5 - 2.7 mm thick, and had a fibre volume fraction of about 57%.  

 

2.2 Tensile properties 

The tensile properties of the bulk epoxies and GFRP composites were determined according to the 

ASTM D638 [16] and ASTM D3039 [17] test standard specifications respectively. Schematic 

drawings of the test specimens are shown in Fig. 2. The tensile tests were performed using a 100 

kN computer-controlled screw-driven test machine with a constant crosshead speed of 1 mm/min. 

The average tensile properties, determined from five tests on each material, are shown in Table 1.  

As observed in earlier investigations [4,5], the addition of silica nanoparticles increased the tensile 

strength and modulus of both the bulk epoxy and the GFRP composite. The ultimate tensile 

strength (UTS) increased by about 19% and 5%, whereas the modulus increased by about 17% 

and 7% in the bulk epoxy and GFRP composite respectively. Although the increases due to the 

addition of the nanoparticles are significant for the bulk epoxy, they are not significant for the 

GFRP as the composite properties are fibre-dominated.  

 

2.3 Fatigue Testing  

The fatigue test specimens, as shown in Fig. 2, were prepared from the bulk epoxy sheet and 

GFRP composite laminate. The sharp edges of the bulk epoxy test specimens were slightly 

rounded off with emery paper before testing, to avoid any stress concentration effect. The fatigue 

tests were performed as per the ASTM D3479M test standard [18], using a 25 kN computer-

controlled servo-hydraulic test machine. The tests were conducted at a stress ratio (R) of σmin / σmax 

= 0.1 with a sinusoidal waveform at a frequency of ν = 1 to 3 Hz. The test frequency was kept 

below 3 Hz to prevent thermal effects which lead to reduced fatigue lives [19-21]. 
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The load versus displacement data for one complete fatigue cycle was captured at regular intervals 

during the fatigue test, and the specimen stiffness was calculated [22]. About 50 pairs of 

load/displacement data in the central portion of the rising half of the fatigue cycle were used to 

perform the regression analysis. For the purpose of comparison, the normalised stiffness of the 

specimen was defined as the ratio of the initial stiffness (obtained in the first cycle) to the 

measured stiffness at any given fatigue cycle. 

 

2.4 Measurement of crack density 

Due to the translucent nature of the GFRP composite, the development of fatigue damage (matrix 

cracks and delaminations) was visible in the gauge section of the specimen using transmitted light 

during testing. Detailed investigation of matrix cracking was performed during one of the fatigue 

tests (at σmax = 150 MPa) for both the neat and silica nanoparticle-modified GFRP composites.  

An area at the centre of the gauge section of the test specimen, about 25 mm square, was marked. 

The specimen was mounted in the test machine and the cyclic loading was applied. After the 

application of a specified number of load cycles, the test was stopped, the specimen was 

dismounted and the matrix cracks in the marked area were photographed using transmitted light. 

The specimen was then re-mounted and the test restarted. This procedure was continued until the 

specimen failed.  

A typical sequence of photographs obtained for the GFRP composite with the neat epoxy matrix is 

shown in Fig. 3. The virgin sample with no matrix cracks is on the far left. The polyester binding 

yarns in both 0° and ±45° directions can be readily seen as faint thick lines, but the E-glass fibres 

are not visible. With increasing number of cycles, cracks develop in the ±45° and 90° directions 

and become visible as dark lines. The higher the number of fatigue cycles, the greater the number 

of cracks that are formed. Similar observations of the matrix cracking sequence in a GFRP 

composite under fatigue has been reported previously [23].  

Although cracks in the 90° ply were observed in some images, due to greater depth of this ply from 

the surface, they could not be consistently observed in all the photographs. Gagel et al [23] 
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observed that the stiffness of the composite in the first two stages of the fatigue life correlates 

strongly with the ±45° crack density and more weakly with the density of 90° cracks. Hence, only 

±45° cracks were considered for the analysis in this investigation.  

For the purpose of the analysis the crack density (CD), defined as the number of cracks per unit 

length, was determined by counting the visible cracks in the ±45° directions on an arbitrarily 

chosen line drawn on the images. Six such measurements were made on each of the photographs 

and the average CD was obtained. It may be noted that there is an uncertainty on the accuracy of 

such measurements as the depth of focus may influence the CD measurements via transmitted 

light photography. Hence, the CD measurements are used only for comparative statements. 

 

3. Results and discussion 

3.1 Fatigue behaviour of bulk epoxy  

The constant-amplitude, tension-tension, cyclic-fatigue test results obtained for the neat and silica 

nanoparticle-modified bulk epoxy polymers are shown in Fig. 4. It may be clearly seen that, for a 

given maximum cyclic stress, the fatigue life of the nanoparticle-modified epoxy is greater than that 

of the neat epoxy. The fatigue life enhancement of about three to four times in the nanoparticle-

modified epoxy is observed over the entire range of stress levels investigated in the present work. 

Other investigations have shown that nanoparticle-modified epoxies exhibit higher fatigue life over 

their respective neat polymers [11,13].  

The experimental data of stress vs. number of cycles to failure (S-N curves) for the bulk epoxies 

shown in Fig. 4 was fitted to Basquin’s law [24]: 

σmax = σf
’ (Nf)b

           (1) 

where σf
’ is the fatigue strength coefficient (FSC), and b is the fatigue strength exponent (FSE). 

The values of the FSC and the FSE determined for the neat and the nanoparticle-modified epoxies 

are shown in Table 2. The addition of silica nanoparticles increases the FSC by about 34% and 
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decreases the FSE by about 16%. Zhou et al. [11] have observed a similar trend in the variation of 

fatigue properties in a carbon nanofibre-modified epoxy. 

The fatigue fracture surfaces of the epoxies were sputter-coated with a thin layer of gold and 

observed using a scanning electron microscope (SEM). The SEM images of both the neat and the 

nanoparticle-modified epoxies are shown in Fig. 5. The neat epoxy shows a relatively smooth 

fracture surface, see Fig. 5(a), and is devoid of any indications of large-scale plastic deformation. 

However, the nanoparticle-modified epoxy exhibits a relatively rough fracture surface with 

presence of voids due to debonding of the silica nanoparticles, see Fig. 5(b). The measured void 

size was slightly greater than the diameter of the silica nanoparticles, indicating that plastic void 

growth had occurred during fatigue crack propagation and after the nanoparticles had debonded.  

It has been observed that the fatigue crack growth rate of a silica nanoparticle-modified epoxy is 

over an order of magnitude lower than that of neat epoxy [14,25]. Previous work has shown that 

the fracture energy and fracture toughness are also increased by the addition of silica 

nanoparticles e.g. [4]. Several authors have considered the mechanisms by which the fracture 

toughness is increased. Rosso et al. [26] observed that the nanoparticles caused a high deflection 

of the crack growth, while Zhang et al. [27] observed that the nanoparticle induced dimples are 

likely to cause energy dissipation. However, Johnsen et al. [4] discounted the effect of crack 

deflection because the crack opening displacement in these materials is larger than the particle 

diameter. This does not satisfy the theory, which requires that the crack opening displacement is 

smaller than the particles. Ma et al. [5] proposed the initiation and development of a thin dilatation 

zone and nano-voids as the dominant toughening mechanisms. However, this mechanism seems 

unlikely due to the thickness of the samples and the constraint at the crack tip. Johnsen et al. [4] 

observed that nanoparticle debonding and the subsequent plastic void growth appeared to be the 

major toughening mechanism. From the present results it is clear that the fatigue life of epoxy was 

increased by the addition of 10 wt. % silica nanoparticles due to the particle debonding and plastic 

void growth mechanism.  
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3.2 Fatigue behaviour of GFRP composite 

The stress-controlled, constant-amplitude, tension-tension fatigue test results for the GFRP 

composites with neat and 10 wt.% silica nanoparticle-modified epoxy matrices are shown in Fig. 6. 

It may be seen that the addition of silica nanoparticles enhances the fatigue life of the composite 

by about three to four times over the entire range of stress levels investigated. The fatigue 

properties (FSC and FSE) determined for the composites by fitting the S-N curve data (Fig. 6) to 

eqn. (1) are shown in Table 2. Once again, as observed in bulk epoxy but to a lesser extent, the 

FSC of GFRP composite increased, by about 13%, due to nanoparticle-modified epoxy matrix. 

However, unlike for the bulk epoxy, the FSE of the GFRP with the nanoparticle-modified epoxy 

matrix remained almost equal to that with the neat epoxy matrix.  

The normalised stiffness variation with the number of cycles, evaluated for fatigue tests at σmax = 

150 MPa for the GFRP composites with the neat and nanoparticle-modified epoxy matrices is 

shown in Fig. 7. In general, both materials exhibit the typical stiffness reduction observed in FRP 

composites [22,28-32]. The three regions of the stiffness curve are clearly identifiable. It may be 

noted that the stiffness reduction in region I and region II is quite steep and significant for the neat 

GFRP composite when compared to that with the nanoparticle-modified matrix.  

The typical transmitted light photographs showing the ±45° cracks in both composites, obtained 

after the application of 10000 fatigue cycles, are shown in Fig. 8. The ±45° crack density (CD) is 

shown in Fig. 9 as a function of the number of cycles. For both composites, the CD increased with 

the number of cycles and appears to saturate [33]. The saturation level of the CD was higher for 

the neat matrix, at about 4.5 mm-1, than for the nanoparticle-modified matrix GFRP where it was 

about 2.8 mm-1. This saturation level of the progressive formation of matrix cracks, which is also 

termed the characteristic damage state (CDS) [28,30,33], is reached more quickly for the neat 

matrix GFRP, in about 6000 cycles. The CDS appears to be delayed for the nanoparticle-modified 

matrix GFRP, and occurs at about 15000 cycles. It is clear from Fig. 9 that, for any given fatigue 

cycle, the GFRP with the neat matrix contains considerably more cracks than the GFRP with the 

nanoparticle-modified matrix, over the entire fatigue life of the composite.  
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The initiation and growth of interlaminar delaminations, particularly from the free edges of the test 

specimens was observed with continued fatigue cycling, see Fig. 10. Such free-edge 

delaminations have been previously observed in composite fatigue [34]. The visible delamination 

initiation was observed at about 6000 and 15000 cycles for the neat and nanoparticle-modified 

composites respectively. It may be noted that the CDS was reached after almost the same number 

of cycles for both composites. The further growth of such delaminations under fatigue leads to the 

final failure of the specimen. 

Based on the results obtained, the sequence of fatigue damage development leading to final 

failure, and hence defining the fatigue life in a QI lay-up GFRP composite with and without a 

nanoparticle-modified matrix can be briefly described as follows [28,30,35,36]. Initially, in both 

GFRP composites, matrix cracks develop in the off-axis plies due to cyclic-fatigue loads, see Fig. 

8. The density of these matrix cracks increases, see Fig.9, and the cracks propagate with further 

cyclic loading, resulting in a continuous decrease in the global stiffness of the composite (region I 

of Fig. 7). However, for the silica nanoparticle-modified matrix, the matrix cracking is suppressed 

and the crack density is lower, see Fig. 9. Also, from the bulk epoxy fatigue studies, it is clear that 

the fatigue life is enhanced due to the reduced crack growth rates in the nanoparticle-modified 

epoxy, see Figs. 4 and 5. It has been shown [14,25] that the fatigue crack growth rate for silica 

nanoparticle-modified epoxy is over an order of magnitude lower than that for neat epoxy. Thus 

reduced cracking results in reduced stiffness degradation of the GFRP with the nanoparticle-

modified matrix compared to that with the neat matrix, see Fig. 7.  

The matrix cracking process continues until the CDS is reached. From here the formation of 

secondary cracks in the epoxy matrix, perpendicular to the primary cracks, leads to initiation of 

delaminations, see Figs. 7 and 10. Growth of these delaminations leads to the continued stiffness 

loss in region II of Fig. 7. Once again the stiffness reduction is much slower in the nanoparticle-

modified GFRP due to the reduced delamination/crack growth rates [14,25]. It has been shown that 

dispersive and matrix crack-coupled [30] fibre breakage is an additional fatigue damage 

mechanism which occurs during the entire fatigue life. We believe that such fibre breaks are 

delayed in the nanoparticle-modified GFRP due to the reduced crack growth rates. The 
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accumulation and growth of all these types of damage leads to final fatigue failure of the composite 

but the nanoparticle-modified matrix GFRP shows an improved fatigue life over that of the neat 

matrix.  

 

4. Conclusions 

The following conclusions may be drawn based on the results obtained in this investigation. 

1. The fatigue life of 10 wt.% silica nanoparticle-modified bulk epoxy is about three to four times 

higher than that of neat epoxy. Silica nanoparticle debonding and subsequent plastic void 

growth absorb energy and contribute towards the enhanced fatigue life for the nanoparticle-

modified epoxy.  

2. The fatigue life of the GFRP composite with 10 wt.% silica nanoparticle-modified epoxy 

matrix is about three to four times higher than that of the GFRP with the neat epoxy matrix. 

The suppressed matrix cracking and reduced crack growth rate due to the particle debonding 

and plastic void growth mechanisms appears to contribute for the observed enhancement of 

the fatigue life in the GFRP with the nanoparticle-modified matrix.  
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Figure Captions 

 

Fig. 1. Tapping-mode atomic force micrograph of 10 wt.% silica nanoparticle-modified bulk epoxy 

polymer. 

Fig. 2. Schematic diagram showing the dimensions of the tensile and fatigue test specimens. 

Fig. 3. Transmitted light photographs of GFRP composite with neat matrix showing the sequence 

of matrix crack development during fatigue loading. 

Fig. 4. Stress vs. lifetime (S-N curves) for neat and 10 wt.% silica nanoparticle-modified bulk epoxy 

polymers. 

Fig. 5. Scanning electron micrographs of the fatigue fracture surfaces of neat and 10 wt.% silica 

nanoparticle-modified bulk epoxy polymers. (Crack growth direction is from left to right; 

voids are circled).  

Fig. 6. Stress vs. lifetime (S-N curves) for GFRP composite with neat and 10 wt.% silica 

nanoparticle-modified epoxy matrix. 

Fig. 7. Normalised stiffness vs. number of cycles for GFRP composite with neat and 10 wt.% silica 

nanoparticle-modified epoxy matrix. (σmax = 150 MPa). 

Fig. 8. Transmitted light photographs showing matrix cracking for GFRP composites during fatigue 

loading. (σmax = 150 MPa, N = 10000 cycles). 

Fig. 9. Crack density of ±45° cracks vs. number of fatigue cycles for GFRP composite with neat 

and 10 wt.% silica nanoparticle-modified matrix. 

Fig. 10. Transmitted light photograph showing delaminations observed at the free edges of the 

specimen during fatigue testing of GFRP composite with neat matrix. (σmax = 150 MPa). 
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(a) Neat epoxy, σmax = 37 MPa,    (b) Modified epoxy, σmax = 37 MPa,    

Fig. 5. 

 

 

 

 

 

  

Fig. 6. 
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 Fig. 7.  

 

 

 

 

  

 

(a) GFRP-Neat matrix  (b) GFRP-Modified matrix  

Fig. 8.  
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Fig. 9  

 

   

 

 

Fig. 10.  
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Tables 

 

Table 1. Tensile properties of the bulk epoxies and the GFRP composites. Mean and standard 

deviation are quoted.  

Material Condition 

Tensile Properties 

UTS (MPa) Modulus, E (GPa) 

Bulk epoxy 

Neat epoxy 73.3 ± 1.4 2.62 ± 0.05 

10 wt.% nanoparticle-
modified epoxy 86.9 ± 1.3 3.07 ± 0.03 

GFRP 

Neat matrix 365 ± 13 17.5 ± 0.6 

10 wt.% nanoparticle-
modified matrix 382 ± 12 18.8 ± 0.7 

 

 

Table 2. Fatigue properties of the bulk epoxies and the GFRP composites.   

 

 

 

Material Condition 
Fatigue properties 

FSC (MPa) FSE 

Bulk epoxy 

Neat epoxy 83.3 -0.117 

10 wt.% nanoparticle-
modified epoxy 112 -0.136 

GFRP 

Neat matrix 462 -0.112 

10 wt.% nanoparticle-
modified matrix 557 -0.119 


