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Abstract

This paper presents an Iterative Linear Quadratic Reg-
ulator (ILQR) method for locally-optimal feedback
control of nonlinear dynamical systems. The method
is applied to a musculo-skeletal arm model with 10
state dimensions and 6 controls, and is used to com-
pute energy-optimal reaching movements. Numerical
comparisons with three existing methods demonstrate
that the new method converges substantially faster and
finds slightly better solutions.
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1 Introduction

Optimal control theory has received a great deal of at-
tention since the late 1950s, and has found applica-
tions in many fields of science and engineering. It has
also provided the most fruitful general framework for
constructing models of biological movement[3, 8, 11].
In the field of motor control, optimality principles not
only yield accurate descriptions of observed phenom-
ena, but are well justified a priori. This is because
the sensorimotor system is the product of optimization
processes (i.e. evolution, development, learning, adap-
tation) which continuously improve behavioral perfor-
mance.

Producing even the simplest movement involves an
enormous amount of information processing. When we
move our hand to a target, there are infinitely many
possible paths and velocity profiles that the multi-joint
arm could take, and furthermore each trajectory can
be generated by an infinite variety of muscle activa-
tion patterns (since we have many more muscles than
joints). Biomechanical redundancy makes the motor
system very flexible, but at the same time requires a
very well designed controller that can choose intelli-
gently among the many possible alternatives. Optimal
control theory provides a principled approach to this
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problem — it postulates that the movement patterns
being chosen are the ones optimal for the task at hand.

The majority of existing optimality models in motor
control have been formulated in open-loop. However,
the most remarkable property of biological movements
(in comparison with synthetic ones) is that they can
accomplish complex high-level goals in the presence of
large internal fluctuations, noise, delays, and unpre-
dictable changes in the environment. This is only pos-
sible through an elaborate feedback control scheme. In-
deed, focus has recently shifted towards stochastic op-
timal feedback control models. This approach has al-
ready clarified a number of long-standing issues related
to the control of redundant biomechanical systems[8].

In their present form, however, such models have a se-
rious limitation — they rely on the Linear-Quadratic-
Gaussian formalism, while in reality biomechanical sys-
tems are strongly non-linear. The goal of the present
paper is to develop a new method, and compare its
performance to existing methods[9] on a challenging
biomechanical control problem. The new method uses
iterative linearization of the nonlinear system around
a nominal trajectory, and computes a locally optimal
feedback control law via a modified LQR technique.
This control law is then applied to the linearized sys-
tem, and the result is used to improve the nominal
trajectory incrementally.

The paper is organized as follows. The new ILQR
method is derived in Section 2. In section 3 we present
a realistic biomechanical model of the human arm mov-
ing in the horizontal plane, as well as two simpler dy-
namical systems used for numerical comparisons. Re-
sults of applying the new method are presented in sec-
tion 4. Finally, section 5 compares our method to three
existing methods, and demonstrates a superior rate of
convergence.

The notation used here is fairly standard. The trans-
pose of a real matrix A is denoted by A”; for a symmet-
ric matrix, the standard notation > 0 (> 0) is used to
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denote positive definite matrix (positive semi-definite
matrix). D, f(-) denotes the Jacobian of f(-) with re-
spect to x.

2 TLQR approach to nonlinear systems

Consider a discrete time nonlinear dynamical system
with state variable z; € R™ and control uy € R™

Try1 = f(on, ug). (1)
The cost function is written in the quadratic form

N—-1
Z (m%Qaﬁk—l—ufRuk),

k=0

(2)
where zy describes the final state (each movement
lasts N steps), z* is the given target. The state cost-
weighting matrices @) and Q¢ are symmetric positive
semi-definite, the control cost-weighting matrix R is
positive definite. All these matrices are assumed to
have proper dimensions. Note that when the true cost
is not quadratic, we can still use a quadratic approxi-
mation to it around a nominal trajectory.

DN| =

1
JO = E(SL‘N—.’I}*)TQJF(Z‘N—.’IJ*)—F

Our algorithm is iterative. Each iteration starts with
a nominal control sequence uj, and a corresponding
nominal trajectory xj obtained by applying uj to the
dynamical system in open loop. The initialization is
ur = 0. The iteration produces an improved sequence
ug, by linearizing the system dynamics around wug, xx
and solving a modified LQR problem. The process is
repeated until convergence. Let the deviations from
the nominal ug, zy be duy,dxy. The linearization is

0xp4+1 = Ardxy + Broug, (3)

where Ay, = D, f(ak,ur), Bx = Dyuf(zk,ur). D, de-
notes the Jacobian of f(-) with respect to z, D, de-
notes the Jacobian of f(-) with respect to u, and the
Jacobians are evaluated along xj and ug.

Based on the linearized model (3), we can solve the
following LQR problem with the cost function

1
J = 5(3:]\; + 0N — x*)TQf(xN +oxny — ")

1 N-1
£ 2 (o + o) Qs+

Jr(uk + 5uk)TR(uk + 5uk)} (4)

We begin with the Hamiltonian function

1
H, = §($k+5$k)TQ($k+5xk)

1
—|—§(u;€ + (Suk)TR(Uk + 5uk)
+0A 11 (Akday, + Brduy), (5)

where 0,41 is Lagrange multiplier.

The optimal control improvement duy, is given by solv-
ing the state equation (3), the costate equation

oAk = AL 0N es1 + Q(0zy + ), (6)

and the stationary condition which can be obtained
by setting the derivative of Hamiltonian function with
respect to duy to zero

0 = R(uy + duz) + B ) et (7)
with the boundary condition

AN = Qf(xn + dxy — ™). (8)
Solving for (7) yields

Sup = —R7'BF6X\pi1 — up. (9)

Hence, substituting (9) into (3) and combining it with
(6), the resulting Hamiltonian system is

6$k+1 . Ay —BkR_lBl{ oxy,
Ok Q AT O k+1
— By
+ . 10

s (10)
It is clear that the Hamiltonian system is not homoge-
neous, but is driven by a forcing term dependent on the
current trajectory x, and ug. Because of the forcing
term, it is not possible to express the optimal control
law in linear state feedback form (as in the classic LQR
case). However, we can express duy as a combination

of a linear state feedback plus additional terms, which
depend on the forcing function.

Based on the boundary condition (8), we assume
0N, = Sioxr + v (11)

for some unknown sequences Sy and vg. Substituting
the above assumption into the state and costate equa-
tion, and applying the matrix inversion lemma yields
the optimal controller

our, = —Koxp — Kyvge1 — Kyug, (12)

K = (BgSk+1Bk + R)ilB}sz+1Aka (13)

K, = (B{Skt1Bi+R)"'B{, (14)

K. = (B{Swi1Bx+R)'R, (15)

Sk = AgSk+1(Ak - BkK) + Qv (16)

vV = (Ak — BkK)Tvk_H — KTRUk + kaa(I‘?)

with boundary conditions

Sn=Qp, vy =Qs(xny —1z"). (18)

In order to find the equations (12)-(18), use (11) in the
state equation (3) to yield

dxpp1 = (I + BLR'BF S 1) (Ardxy,
- BkR_lBZU]H,l — Brug). (19)



Substituting (11) and the above equation into the

costate equation (6) gives

Spézry + v = Qoxy + AfSkH(I + BkR_lB;{SkJrl)_l
(Ak(st'k - BkR_lBg’UkJrl — Bkuk) + szlﬁtl + Qxy.

By applying the matrix inversion lemma,' we obtain
Sy = AT Sps1 [I—Bi(BF Spy1Br+R) ' Bl Spy1]Ar+Q,
and
v =AFvgs1 — AF Sy [l — Be(BF Spi1 By + R) ™
BF Sy 1|ByR™ Bl vy — AL Sy 1[I
By(BF Sy 1By + R) ' BF Sy 1] Bruy + Quy.

By using (R + B{Skt1Br)™' = R!' - (R +
B,{SkHBk)_lB,{SkHBkR_l, the second term in vy
becomes

— A} Sk11Br(R + Bj, Sk11Br) "' Bjl vpy1,
and the third term in vy can be written as
—A;‘:Sk+1Bk(R + BgSk+1Bk)_1Ruk.

Therefore, with the definition of K in (13), the above
Sk, v can be written into the forms as given in (16)
and (17).

Furthermore, substituting (11) and (19) into (9) yields
dup, = —(R+ BF Siy1By) ' Bl Spy1 Apday,
—(R+ Bl'Si41By) 'Bf vy
— (R + BY' S 1Br) "' Ruy.

By the definition of K, K,, and K, in (13)-(15), we can
rewrite above duy as the form in (12).

With the boundary condition Sy given as the final
state weighting matrix in the cost function (4), we can
solve for an entire sequence of Sy, by the backward re-
cursion (16). It is interesting to note that the control
law duy consists of three terms: a term linear in dxy
whose gain is dependent on the solution to the Riccati
equation; a second term dependent on an auxiliary se-
quence vy which is derived from the auxiliary difference
equation (17); and a third term dependent on the nom-
inal control u; whose gain also relied on the Riccati
equation solution. Once the modified LQR problem is
solved, an improved nominal control sequence can be
found: uj = uy + duy.

3 Optimal control problems to be studied

We first describe the dynamics of a 2-link arm moving
in the horizontal plane. We then add realistic muscle
actuators to it. We also define an inverted pendulum
problem often used for numerical comparisons.

Y{A+BCD)"'=A"1 - A" I1B(DA"'B+C1)"1DA"L.

3.1 The dynamics of a 2-link arm

Consider an arm model [1, 10], with 2 joints (shoulder
and elbow), moving in the horizontal plane (Fig 1).
The inverse dynamics is

M(0)6 +C(0,6) + B = T, (20)

where § € R? is the joint angle vector (shoulder: 61, el-
bow: 02), M(#) € R**? is a positive definite symmetric
inertia matrix, C(6, 9) € R? is a vector centripetal and
Coriolis forces, B € R?*? is the joint friction matrix,
and 7 € R? is the joint torque. Here we consider direct
torque control (i.e. 7 is the control signal) which will
later be replaced with muscle control. In (20), the ex-
pressions of the different variables and parameters are
given by

_ a1 + 2ascosls  as + ascosbs
M = ( az + ascoslsy as ) » (21)
—6(261 + 6
C = ( 2( .12+ 2) )agsinHQ, (22)
01
b1 b1
B = , 23
( ba1  ba2 > (23)
a; = Il +IQ +mgl%, (24)
as = m2l152, (25)
az = IQ, (26)

where b11 = b22 = 0.05,b12 = b21 = 0.025, m; is
the mass (1.4kg, 1kg), I; is the length of link i (30cm,
33cm), s; is the distance from the joint center to the
center of the mass for link i (11cm, 16cm), and I; is the
moment of inertia (0.025kgm?, 0.045kgm?).

Based on equations (20)-(26), we can compute the for-
ward dynamics

6=M(@O)"(r—C(6,0) - Bh), (27)

and write the system in state space form
&= F(z)+ G(z)u, (28)

where the state and control are given by

= (01 02 91 92)Ta u=7= (1 72)T-

The cost function is

Jo = 5 (6(T) ~ 6 (O(T) 6+ /0 TRrd, (29)

0.0001 0
0 0.0001
desired final posture. In the definition of the cost func-
tion, the first term means that the joint angle is going
to the target #* which represents the reaching move-
ment; the second term illustrates the energy efficiency.

where R = ) > 0 and 0* is the
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Figure 1: (A) 2-link 6-muscle arm; (B) Joint torques;
(C) Length-velocity-tension curve; (D) Muscle
activation dynamics.

3.2 A model of muscle actuators
There are a large number of muscles that act on the arm
in the horizontal plane (see Fig 1A). But since we have

only 2 degrees of freedom, these muscles can be orga-
nized into 6 actuator groups: elbow flexors (1), elbow
extensors (2), shoulder flexors (3), shoulder extensors
(4), biarticulate flexors (5), and biarticulate extensors
(6). The joint torques produced by a muscle are a
function of its moment arms (Fig 1B), length-velocity-
tension curve (Fig 1C), and activation dynamics (Fig
1D).

Moment arms are roughly constant for extensor mus-
cles, but vary considerably with joint angle for flexor
muscles. For each flexor group, this variation is mod-
elled with a function of the form a + b cos(c ), where
the constants have been adjusted to match experimen-
tal data. This function provides a good fit to data — not
surprising, since moment arm variations are due to ge-
ometric factors related to the cosine of the joint angle.
It can also be integrated analytically, which is conve-
nient since all muscle lengths need to be computed at
each point in time. We will denote the 2 by 6 matrix
of muscle moment arms with M (6).

The tension produced by a muscle obviously depends
on the muscle activation a, but also varies substantially
with the length [ and velocity v of that muscle. Fig 1C,
based on the publicly available Virtual Muscle model,
illustrates that dependence for maximal activation. We
will denote this function with Ty (a, 1, v).

To (a,l,v) = A(a,l) (F, (1) Fy (I,v) + Fp (1))

a Ne(1)
R

1
Ne(l) = 2.11 + 4.16 (7 - 1)
11.93 -1

1.87
1.03 )

—5.72—v
5t (13812000 v V=0
0.62 — (—3.12+4.21 1 —2.67 1?) v
0.62 + v
Fp (1) = —0.02exp (13.8 — 18.7 1)

FL (1) = exp <—

FV (l,U) =

Mammalian muscles are known to have remarkable
scaling properties, meaning that they are all very sim-
ilar after proper normalization: length is expressed in
units of Ly (the length at which maximal isometric
force is generated), and velocity is expressed in units
of Ly/sec. The unitless tension in Fig 1C is scaled
by 31.8N per square centimeter of physiological cross-
sectional area (PCSA) to yield physical tension T'. The
PCSA parameters used in the model are the sums of the
corresponding parameters for all muscles in each group
(1: 18em?; 2: 14em?; 3: 22em?; 4: 12em?; 5: 5em?;

,v>0



6: 10cm?). Muscle length (and velocity) are converted
into normalized units of Ly using information about
the operating range of each muscle group (1: 0.6 — 1.1;
2: 0.8 —1.25;3: 0.7 —1.2;4: 0.7 —1.1; 5: 0.6 — 1.1; 6:
0.85 — 1.2).

Muscle activation a is not equal to instantaneous neural
input u, but is generated by passing u through a filter
that describes calcium dynamics. This is reasonably
well modelled with a first order nonlinear filter of the
form a = (u — a)/t(u,a), where t = tgeaer + u(tact —
tdeact) When u > a, and t = tgeqct Otherwise. The
input-dependent activation dynamics t,.; = 30msec is
faster than the constant deactivation dynamics tgeqct =
60msec. Fig 1D illustrates the response of this filter to
step inputs that last 300msec. Note that the half-rise
times are input-dependent, while the half-fall times are
constant (crosses in Fig 1D).

To summarize, adding muscles to the dynamical system
results in 6 new state variables, with dynamics

a=(u—a)/t(u,a). (30)

The joint torque vector generated by the muscles is
given by

7= M(0) T(a,1(6),v(6,0)). (31)

The cost function is defined as

T
Jb:%wﬂﬁfﬂﬂTwUU*WW+%A rulu dt, (32)

where r = 0.001 and 0* is the desired final posture.

3.3 Inverted Pendulum

Consider a simple pendulum where m denotes the mass
of the bob, [ denotes the length of the rod, 8 describes
the angle subtended by the vertical axis and the rod,
and p is the friction coefficient. For this example, we
assume that m =1 = 1,g = 9.8, u = 0.01.The state
space equation of the pendulum is

.’1'?1 = T2, (33)

. g . 15

Tg = Tsmxl — Wﬁl’g + Wu, (34)
where the state variables are x1 = 6, xo2 = 0. The

goal is to make the pendulum swing up. The control
objective is to find the control u(t), 0 < t < T and
minimize the performance index

T
Jo = %(xl(T)2 +29(T)%) + %/0 ru’dt, (35)

where r = le — 5.

4 Optimal trajectories

Here we illustrate the optimal trajectories found by it-
erating equations (12)-(18) on each of the three con-
trol problems. Fig 2A and Fig 2B show the optimal
trajectory of the arm joint angles 6, (shoulder angle)
and 0y (elbow angle). We find that the shoulder an-
gle and the elbow angle arrive to the desired posture
0, = 1,0, = 1.5 respectively. Fig 2C shows a set of
optimal trajectories in the phase space, for a pendu-
lum being driven from different starting points to the
goal point. For example, S2 describes a starting point
where the pendulum is hanging straight down; trajec-
tory 2 shows that the pendulum swing directly up to
the goal.
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Figure 2: Optimal trajectories. (A) Torque-controlled
arm; (B) Muscle-controlled arm; (C) Inverted
pendulum.

Especially for the muscle-controlled arm model, Fig3 il-
lustrates how the current trajectory converges with the
number of iterations. After 11 iterations, the shoulder
angle #; and the elbow angle #, arrive to the desired
posture.
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Figure 3: Trajectories of 2-link 6-muscle arm for different
iterations

5 Comparison with existing algorithms

Existing algorithms for nonlinear optimal control can
be classified in two groups, based respectively on Bell-
man’s Optimality Principle and Pontryagin’s Maxi-
mum Principle.

The former yields globally optimal solutions, but in-
volves a partial differential equation (the Hamilton-
Jacobi-Bellman equation) which is only solvable for
low-dimensional systems. While various forms of func-
tion approximation have been explored, presently there
is no known cure for the curse of dimensionality. Since
the biological control problems we are interested in
tend to have very high dimensionality (the 10 dim arm
model is a relatively simple one), we do not believe that
global methods will be applicable to such problems in
the near future.

Therefore we have chosen to pursue local trajectory-
based methods related to the Maximum Principle.
These methods iteratively improve their estimate of the
extremal trajectory. Elsewhere [9] has compared three
such methods: (1) ODE solves the system of state-
costate ordinary differential equations resulting from
the Maximum Principle, using the BVP4C boundary
value problem solver in Matlab; (2) CGD is a gradient
descent method, which uses the Maximum Principle to
compute the gradient of the total cost with respect to
the nominal control sequence, and then calls an opti-
mized conjugate gradient descent routine; (3) differen-
tial dynamic programming (DDP) performs dynamic
programming in the neighborhood of the the nominal
trajectory, using second order approximations. See [9]
for more detailed descriptions of these preexisting al-
gorithms.

All algorithms were implemented in Matlab, and used
the same dynamic simulation. Table 1 compares the
CPU time, number of iterations, and final cost for all
algorithms on all three problems. Arml is the torque-

controlled arm, Arm2 is the muscle-controlled arm.
Note that the time per iteration varies substantially
(and in the case of ODE the number of iterations is
not even defined) so the appropriate measure of effi-
ciency is the CPU time.

Table 1: Comparison of Four Methods

Method | Time | Iteration Cost
(sec)
ODE 319 | NJ/A | L.1de-04
Arml CGD 4.46 7 1.26e-04
DDP 1.30 10 1.73e-04
ILQR 0.61 6 0.96e-04
ODE >400 N/A N/A
Arm?2 CGD 70.09 10 5.16e-05
DDP 184.84 15 8.35e-05
ILQR 6.62 10 2.37e-05
ODE 1.04 N/A 1.0628
Pendulum | CGD 4.18 8 0.0701
DDP 2.28 30 2.6611
ILQR 0.48 5 0.0096

On all problems studied, the new ILQR method con-
verged faster than the three existing methods, and
found a better solution. The speed advantage is most
notable in the complex arm model, where ILQR outper-

formed the nearest competitor by more than a factor
of 10.

0 Cost over iterations

N3

CcGD DDP

10 100
CPU Time (sec)

Figure 4: Cost vs. Iterations for 2-link 6-muscle Model

Fig 4 illustrates how the cost of the nominal trajec-
tory decreases with the number of iterations. The new
ILQR method converged faster than the other meth-
ods, and found a better solution. Also we have found
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trajectories of the shoulder angle, black color
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that the amount of computation per iteration for ILQR
method is much less than the other methods. This is
because gradient descent requires a linesearch (without
which it works poorly) and DDP uses a second-order
approximation to the system dynamics — both of which
take a significant amount of time to compute.

Fig 5A) and Fig 5B) shows how the cloud of 100 ran-
domly initialized trajectories gradually converge for the
muscle-controlled arm model by using ILQR and CGD
method respectively.

6 Conclusions and future work

Optimal control theory plays a very important role in
the study of biological movement. Further progress in
the field depends on the availability of efficient methods
for solving nonlinear optimal control problems. This
paper developed a new Iterative Linear Quadratic Reg-
ulator (ILQR) algorithm for optimal feedback control

of nonlinear dynamical systems. We illustrated its ap-
plication to a realistic 2-link, 6-muscle arm model, as
well as simpler control problems. The simulation re-
sults suggest that the new method is more effective
compared to the three most efficient methods that we
are aware of.

While the control problems studied here are determin-
istic, the variability of biological movements indicates
the presence of large disturbances in the motor system.
It is very important to take these disturbances into ac-
count when studying biological control. In particular,
it is known that the motor noise is control-dependent,
with standard deviation proportional to the mean of
the control signal. Such noise has been modelled in the
LQG setting before [8]. Since the present ILQR algo-
rithm is an extension to the LQG setting, it should
be possible to treat nonlinear systems with control-
dependent noise using similar methods. Another issue
that will need to be addressed is the presence of local
minima. Trajectory-based algorithms related to Pon-
tryagin’s Maximum Principle in general find locally-
optimal solutions, and complex control problems may
exhibit many local minima. It may be necessary to
combine ILQR with global search methods (e.g. using
multiple restarts).
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