
1

Using Ontologies for
Enterprise Architecture Analysis

Gonçalo Antunes †, Marzieh Bakhshandeh†, Rudolf Mayer‡, José Borbinha∗†, Artur Caetano∗†

goncalo.antunes@ist.utl.pt, marzieh.bakhshandeh@ist.utl.pt, rmayer@sba-research.at,

jose.borbinha@ist.utl.pt, artur.caetano@ist.utl.pt
∗Instituto Superior Técnico, Technical University of Lisbon, Portugal

†INESC-ID - Information Systems Group, Lisbon, Portugal
‡Secure Business Austria, Vienna, Austria

Abstract—Enterprise architecture aligns business and informa-
tion technology through the management of different elements
and domains. An architecture description encompasses a wide
and heterogeneous spectrum of areas, such as business processes,
metrics, application components, people and technological in-
frastructure. Views express the elements and relationships of
one or more domains from the perspective of specific system
concerns relevant to one or more of its stakeholders. As a result,
each view needs to be expressed in the description language
that best suits its concerns. However, enterprise architecture
languages tend to advocate a rigid “one-model fits all” approach
where an all-encompassing description language describes several
architectural domains. This approach hinders extensibility and
adds complexity to the overall description language. On the
other hand, integrating multiple models raises several challenges
at the level of model coherence, consistency and traceability.
Moreover, EA models should be computable so that the effort
involved in their analysis is manageable. This work advocates the
employment of ontologies and associated techniques in EA for
contributing to the solving of the aforementioned issues. Thus,
a proposal is made comprising an extensible architecture that
consists of a core domain-independent ontology that can be
extended through the integration of domain-specific ontologies
focusing on specific concerns. The proposal is demonstrated
through a real-world evaluation scenario involving the analysis
of the models according to the requirements of the scenario
stakeholders.

Index Terms—enterprise architecture, ontology, analysis,
ArchiMate, OWL.

I. INTRODUCTION

Enterprise architecture (EA) is defined by Lankhorst as “a
coherent whole of principles, methods, and models that are
used in the design and realization of an enterprise’s organiza-
tional structure, business processes, information systems, and
infrastructure”, providing a basis for business-IT alignment
[1]. Such alignment is typically achieved through the creation
of models and other artifacts describing different aspects of the
organisation, including business and IT elements. Managing
the dependencies between and within the different models and
other artifacts produced during the application of architecture
development methods is crucial for supporting the communi-
cation between the different stakeholders, and the alignment
and consistency between the development artifacts and other
products [2], [3].

Despite the efforts for developing comprehensive ap-
proaches to architecture, it has been recognized that “one

model fits all” approaches are not enough for addressing the
specifics of each organization [4], [5]. Different organizations
have different business needs and play in different markets,
thus having different demands in terms of the information to
be contained and to be extracted from EA descriptions. As
such, it is still a challenge to create an architecture description
that is representative of the specifics of each organization, a
fact which is attested by situational approaches to enterprise
architecture [6].

The integration and extension of different models and
underlying meta-models is common in different practices,
such as tool interoperability and integration [7], [8]. However,
such approaches bring challenges at the level of coherence
and model consistency [9], [10]. In terms of traceability, it
becomes difficult to maintain links among elements from the
different models, which is a problem that gets exacerbated as
the models evolve. Consequently, model consistency is also
hindered, namely at the level of the multiple viewpoints when
supported by different tools. Moreover, the assessment and
validation of the different artifacts becomes more challenging
[11], as it usually implies using a set of specific tools and
languages.

As a result, there is a need for an extensible approach to
EA that ensures meta-model level coherence, which concerns
encoding rules on the meta-model, and supports model and
cross-model verification, which concerns the evaluation of
the conformance of the models to the rules specified in
the respective meta-models. Moreover, EA models should be
computable so that the effort involved in their analysis is
manageable.

This paper proposes an approach based on ontologies as a
means to specify knowledge and reason about it. Ontologies
and associated techniques are increasingly being recognized
as valuable tools in the EA domain, as witnessed in [12],
[13], [14], [15], [16]. In fact, there is a wide body of
knowledge from which EA practice can benefit, including
ontology matching [17], which can improve model creation,
extension and validation, through an explicit semantic account
of the concepts used in the different models when compared
to approaches without an ontological foundation [18].

The main contributions brought by this proposal can be
described as:

• improved extensibility and expressiveness of the enter-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357608558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

prise architecture, through the management of the inclu-
sion of new domain-specific meta-models in a standard
way, with the aim capturing specific aspects of organisa-
tions;

• improved enforcement of meta-model coherence, through
the addition of axioms to the ontologies enforcing seman-
tic rules implicitly defined in the model specifications;

• improved meta-model conformance verification of mod-
els, since models specified according to a determined
meta-model can be verified against the semantic rules
specified in the ontology through the use of reasoners,
allowing for the verification of logical inconsistencies
present in models;

• and improved analysis for decision-making purposes,
through the usage of computational inference and query-
ing mechanisms, allowing for better information retrieval
and processing.

This work is organized as follows. In section II we describe
some of the current issues existing in enterprise architecture
practice which this work intends to approach. Section III
presents a proposal based on ontology techniques for improv-
ing the extension, analysis and conformance or architecture
models. Section IV evaluates the proposal through its applica-
tion to a concrete scenario. Finally, Section V concludes the
paper and provides directions for future work.

II. PROBLEM STATEMENT

According to the ISO/IEC/IEEE 42010 [19], the usage of
multiple views is fundamental in an architecture description. A
system has multiple stakeholders, each with specific interests
on the system and with different information needs. An
architecture description should be an aggregation of multiple
views, materialized in a set of models, formulated according
to viewpoints that express the concerns of the stakeholders of
the system-of-interest. In this way, architecture functions as a
communication tool between different stakeholders, as each is
presented with is own view on the system of interest.

Although the recommended practice recognizes the need for
multiple views on the system, and even goes as far as defining
correspondence rules (i.e., dependencies) between architecture
description elements, the truth is that it is still a challenge
to maintain these dependencies when multiple independent
meta-models and models are involved. Languages such as
ArchiMate [20] try to be as comprehensive as possible up
to a certain level of abstraction, providing a meta-model that
approaches the different layers of an organization, but the fact
is that the specific aspects of each organization and its business
still require extension and specialization of such models, as
it is recognized in ArchiMate’s specification. Thus, it is a
challenge to be able create an architecture description that is
truly representative of the specifics of each organization and,
at the same time, being able to make the management of the
dependencies between its different elements.

Multiple meta-models often means multiple tools and multi-
ple validation mechanisms, making it especially hard to ensure
the consistency in and across models and conformance with
the respective meta-models, particularly when this verification

has to be performed by manual means. The automatic or
semi-automatic validation of the conformance of the models
to the meta-models might be available or not, depending on
whether the models are fully computable (abstract syntax and
semantics) or not, or on the existing tool support.

EA should also support governance and decision making
[1], [21]. As such, the ability to analyse the models for
supporting decision making is also desirable [22]. Manage-
ment should be able to obtain as much useful information as
possible from the knowledge contained in the models, which
might reach a great level of complexity when elaborated with
detail [23]. Such analysis can of course be made without any
automatism, however it can be difficult to perform in-depth
analysis in such complex scenarios.

As such, creating computable representations for enterprise
architecture models is a relevant problem. The combination
of the computable models along with the enforcement of
the dependencies brings benefits for EA, such as enhanced
retrieval and management of information, and the use of in-
formation processing and analysis mechanisms. One example
of such benefit is dependency analysis, which can be used for
analysing the impact of changes on the business on the IT
infrastructure and vice-versa.

Ontologies and associated techniques bring several benefits
which potentially can be employed in solving the aforemen-
tioned issues[24]:

• Communication: ontologies can be used for ensuring
interoperability between systems, humans, and systems
and humans. Moreover, they can be use for uniquely
identifying and disambiguating concepts through formal
semantics, facilitating knowledge transfer.

• Computational inference: ontologies allow for deriving
implicit facts and be used for analysis and detection of
logical inconsistencies.

• Reuse and organization of knowledge: ontologies allow
for systematic domain descriptions and for the reuse of
knowledge models in new applications.

As such, ontologies have been adopted in different domains
for solving different problems [24]. Integration, semantic
search and retrieval, annotation, software engineering, and
knowledge representation are some of the areas where the
application of ontologies for solving problems has been cited.
Moreover, the use of ontologies and associated techniques in
EA is increasing, with proposals of EA based on ontologies
for improving the models and their semantics [12], [13], [14],
[15], [16].

The aim of this paper is thus advocating for the use of
ontologies and associated techniques in EA for contributing in
solving the aforementioned issues. Thus, an architecture based
on the use of ontologies is proposed, so that advantage can be
taken from the associated mapping and analysis techniques,
with the purposes of improving the extensibility with domain-
specific aspects, enforcing meta-model coherence through the
addition of coherence rules, verifying the conformance of the
models to the meta-models, and improving the analysis for
reporting and decision-making.



3

III. ONTOLOGY-BASED ENTERPRISE ARCHITECTURE

In order to ground our proposal in good practice and allow
for a structured and extensible approach, a set of architecture
principles were defined. An architecture principle can be de-
scribed as “a declarative statement that normatively prescribes
a property of the design of an artifact, which is necessary to
ensure that an artifact meets its essential requirements” [25].
As such, the following design principles were considered:

• Concern orientation: The architecture shall represent the
concepts necessary and sufficient to address an explicit set
of modeling concerns. This means that the model shall be
derived from the questions that need to be addressed and
to provide answers to those questions. This also means
that the model shall not support any concepts that are not
explicitly derived from stakeholder concerns.

• Expressiveness: The architecture shall be able to represent
the domain concepts without ambiguity. This entails
defining the minimum set of types and relationships to
describe a domain

• Extensibility: The architecture must cope with extensions
because context modeling entails using multiple concur-
rent perspectives on the same problem. This derives from
being able to answer to multiple concerns. Therefore,
domain-specific and domain-independent models must
coexist and the overall architecture must cope with mul-
tiple model transformation and integration. A specific
concern is that the architecture is extensible to new
application domains.

• Viewpoint-orientation: The architecture must support
defining views over subsets of its concepts. This serves
to facilitate the communication and the management of
the models as viewpoints act as a separation of concerns
mechanism. Viewpoints will facilitate addressing multiple
concerns and can improve decision-making by isolating
certain aspects of the architecture according to the needs
of decision makers.

• Modularity: The architecture must follow the principles
of high-cohesion and low-coupling. Observing these prin-
ciples contributes to expressiveness and extensibility of
the architecture. It is especially important that adding new
domain-specific aspects to the model does not interfere
with the concepts already present in the model.

Based on these principles, our approach is based on the use
of a core meta-model, also termed domain-independent ontol-
ogy (DIO), which represents a domain-independent language
(i.e., that does not address any specific domain-dependent
concerns), containing the minimum set of concepts required
for addressing the majority of scenarios. Then, that simple core
meta-model can be extended in a plug-in fashion with other
domain-specific meta-models, in a varying number depending
on the situation at hand, which are termed domain-specific
ontologies (DSOs). Each DSO represents a domain-specific
language that addresses a particular set of concerns, and should
also have the minimum set of concepts required for describing
a determined domain. Low-coupling and high-cohesion are the
principles guiding the addition of new DSOs: the number of
dependencies between the DSOs and DIO should be minimal,

and each DSO should deal only with a set of domain-specific
concerns. In this way, the addition of DSOs should have a
minimum impact on the DIO and existing DSOs.

For achieving traceability between the DIO and the DSO, it
is necessary to integrate the ontologies. Thus, ontology integra-
tion deals with the combination of the different ontologies for
ensuring consistency and maximum coverage of the domain
being addressed. The simplest case is that of integrating the
DSO with the core concepts represented in the DIO. Cross-
DSO integration can also occur in cases where there is the
need for adding more expressive power to specific domains.
The ontology integration makes use of model transformation,
which involves defining a mapping strategy from a source
model to a target model [26], [27].

Considering the mapping between a DIO and a DSO, it
might be as simple as a 1:1 correspondence between the con-
cepts of the two ontologies. However, it is expected that map-
ping deficiencies might occur, as domain-specific languages
might contain very specific concepts that are not mappable at
all into the DIO. Using the Bunge-Wand-Weber representation
model as an inspiration [28], one concept on the DSO might
map to several concepts in the DIO (overload), a concept in
the DSO might not map at all to the DIO (deficit), or, in the
least common case, several concepts in the DSO might map to
one concept in the DIO (redundancy). In this paper we are not
dealing with this challenging aspect of ontology integration.
Nonetheless, it is assumed that the mapping between some
of the concepts of the DSO and some of the concepts of the
DIO will always be possible as the kinds of problems we
are dealing are situated in the information systems domain.
Redundancy, overload and deficit cases are thus expected to
occur frequently. Cases where doubts might occur concerning
the mapping between two concepts are carefully judged, with
the mapping not being considered in cases of incompatibility.

The architecture makes possible the usage of reasoning for
performing analysis of the models: the core DIO and the
extension DSOs. Four analysis configurations are possible:

• Intra-DIO reasoning, when inference is limited to the
concepts of the DIO;

• Intra-DSO reasoning, when inference is limited to the
concepts of the DSO;

• cross-DSO reasoning, whenever a mapping transforma-
tion between different DSOs is available, inference can
use concepts from different DSOs;

• and cross DIO-DSO reasoning, when inference uses
concepts from both the DIO and one or more DSOs,
requiring a mapping transformation between each DIO-
DSO pair.

One important aspect to refer is that this proposal would
still acknowledge the use of existing tools and representation
techniques for creating and managing the independent models.
The models should then be converted to the DIO or DSOs
(i.e., creation of individuals), depending on the case. As the
models are being converted, they should be verified for any
inconsistencies according to an already existing meta-model
expressed in an ontological representation. After that, the
models can be used for performing analysis and can even



4

be converted back into the original representation format if
desired.

IV. CASE STUDY EVALUATION

This section describes the application of the proposed
method to a concrete scenario, including the instantiation of
the DIO, instantiation of a DSO, and some examples of the
analysis that can be performed using the two.

The scenario used for the evaluation of this approach is
concerns a civil engineering organization performing structural
monitoring of large engineering structures for preventing ac-
cidents and ensuring their structural safety. This organization
has a legal mandate for performing the monitoring of the
structures. As such, each large structure has different types of
sensors for measuring different kinds of physical phenomena
that can be used for analysing and studying the behaviour of
the structure along time.

Therefore, the organization is required to maintain a sys-
tem for supporting the processes of acquiring and managing
structure monitoring data generated by sensors installed in
structures. The acquisition process involves automatically or
manually retrieving raw data generated by the sensors and up-
loading it to the monitoring information management system.
The system currently supports the following features:

• Instrumentation: supports the management of sensors,
including meta-data, and the dynamic integration of new
types of sensors.

• Transformation processes: manages the sensor specific
algorithms that are responsible for transforming raw
data into physical quantities, using instrument meta-data
properties, such as calibration constants.

• Observation management: manages geodetic data, visual
inspections data, and data acquired from monitoring
systems.

• Data visualisation and exploitation: provides access to
processes data through reports designed to support the
required types of data analysis, depicting data using
charts and diagrams.

• Synchronization: allows the deployment of the system in
one or more locations, and the corresponding synchroni-
sation of data.

Since the organization is obliged to acquire and maintain the
monitoring data in an accurate shape, capturing information
about the acquisition processes and supporting infrastructure
becomes crucial, in the sense that this information can be
used for confirming the provenance and authenticity of the
monitoring data, and can also be used in the analysis of
the behaviour of the dam along time. As such, EA becomes
a valuable tool to be used in this scenario for capturing
and managing this information. Moreover, the organization
is interested in executing analysis on this data, for instance,
for inferring the different dependencies between different
components supporting the processes. Such information can
become useful for change management processes.

This scenario was modelled using the standard ArchiMate
2.0 architecture description language. ArchiMate fits within
the defined architecture principles as it provides a high-level

of abstraction, is concern-oriented and viewpoint-oriented and
was designed with extensibility in mind. But it does not
address any domain-specific concerns so it can be used for
demonstrating the extensibility of the architecture. Moreover,
it includes a minimum set of concepts and relationships
and the framework includes a minimum set of layers and
aspects to enable modelling of the majority of cases. The
extensions already described in ArchiMate’s specification are
also considered part of the domain-independent model as they
address aspects that are traversal to all the organizations.An
ArchiMate model was created using the Archi modelling tool1.
The model was then converted into OWL accordingly to the
meta-model, i.e., individuals where created for each element
of the model.

Figure 1 is one of the high-level views produced displaying
the process and the services supporting it. The process starts
with the capturing and uploading of the sensor readings which
might be done automatically, via the uploader component and
upload service, or manually, via a Portable Data Terminal
(PDT), which is a hand-held device for registering readings.
After that, the readings are processed and validated via an
application component termed Observations, which provides a
series of services for manipulating readings. The raw readings
are then transformed into engineering quantities through a
service which applies a transformation algorithm according to
the reading format. The transformation is then validated, and
if deemed successful, it is archived. Two additional services
and respective components implementing them are used in
the process: a messaging service, which messages the system
administrators in case of errors happening along the process;
and a document management service, which documents the
errors taking place during the validations performed along the
process.

Figure 2 depicts a high-level view of the application com-
ponents and infrastructure supporting the acquisition process.
The monitoring information management system runs on an
application server and uses a DBMS for storing, managing
and providing access to the readings. Information gathered
from automatic sensors is uploaded to the system through an
external application installed at the production site. Informa-
tion gathered by manual means uploaded through the PDT
application, using a gateway application for interfacing with
the system. Other more detailed views were produced but are
not going to be shown here for reasons of brevity.

Figure 3 depicts the resulting OWL representation displayed
in Protegé2, with the description of the class Business process
on the right side and respective individuals in the lower left
corner.

A. The ArchiMate Domain-Independent Ontology

ArchiMate is used to describe the domain-independent
aspects of the architecture. To create the DIO, the ArchiMate
meta-model, along with the Motivation and Implementation
and Migration extensions were specified in OWL-DL. OWL-
DL is designed to represent rich and complex knowledge

1http://archi.cetis.ac.uk/
2http://protege.stanford.edu/



5

Fig. 1. The scenario process and service support

Fig. 2. The scenario application and infrastructure support

about things, groups of things, and relations between things.
This choice enables taking advantage of the different com-
putational inference and querying mechanisms already exist-
ing, and as a result, being able to perform analysis of the
model for assessing the consistency of models against rules,
verify the completeness of models, and for decision making
through the production of reports based on contents of the
model. Hence, an analysis of ArchiMate’s meta-model was
performed concept-by-concept, including the relations with
other concepts and the constraints existing in those relations.
The result was the mapping of concepts into OWL classes

and the mapping of relations into OWL ObjectProperties.
Restrictions were added to the properties, such as InverseOb-
jectProperties and SuperObjectProperties axioms were added
to the OWL ontology, so that derived relationships can be
inferred. Cardinality was also added to ensure the compliance
against the ArchiMate specification shows some of the aspects
of ArchiMate. Figure 4 depicts a subset of the ontology
restrictions.



6

Fig. 3. OWL representation of the scenario

Fig. 4. Meta-model coherence enforcement

B. Extension through Domain-Specific Ontologies

The organizational stakeholders required modelling and
analysing specific information about sensors since they play
an important role in the structural monitoring and safety of
civil engineering structures. However, the ArchiMate language
lacks the expressiveness to capture the specifics of this domain.
As a result, a specific description language needs to be defined.
Sensors measure values that can be processed and used in
structural behaviour analysis, where structural behaviour can
be predicted and safety measures can be taken, if needed.
Different types of sensors exist for measuring different types
of engineering quantities, which are derived according to de-
termined transformation algorithms and calibration constants.
Sensors are installed in determined locations on the structure
and in absolute terms, and have a determined acquisition rate.
Different domain-specific languages were analysed such as

SensorML3 and TransducerML4. However, the stakeholders
noted the complexity demonstrated of these languages and
proposes using a sensor language that catered for the specific
requirements of the scenario. Figure 5 depicts a class diagram
depicting the concepts of the DSO.

A mapping between this DSO and the DIO was created
using an equivalentClass declaration. Sensors can be consid-
ered computational nodes, as they mix hardware and software
for performing transformations. As such, the Sensor class in
the Sensor DSO is considered equivalent to the Node class in
the DIO. The GeoLocation class in the sensor DSO and the
StructuralLocation class in the sensor DSO were considered
equivalent to the Location class in the DIO, as Location is
defined in ArchiMate as a point or extent in space, thus being
more generic than the two concepts in the Sensor DSO. The
Algorithm class in the Sensor DSO is considered equivalent
to the ApplicationComponent class of the DIO. The Value
class of the Sensor DSO is considered equivalent to the
DataObject class of the DIO, the same happening with the
AcquisitionRatePerYear class.

However, in order for this mapping to be correct, data
properties needed to be added to DIO classes that are part
of a mapping. For instance, the Node class of the DIO, along
with a data property restriction on the equivalence declaration,
which declares that the equivalence exists when the hasType
data property is present with the value “sensor” assigned to
it. In this way, sensor nodes are disambiguated from other
types of nodes. The mappings are the only exception where
any changes are made to the DIO, in this case the addition of a
data property, otherwise the principles behind this architecture
would be defeated.

C. Model Analysis

The organization in focus aimed the execution of analysis
on the models for the purposes of determining the impact
of changes in the different elements on the remainder of the
architecture. As such, and taking advantage of the possibility
of introducing semantics on the models, two SuperObjectProp-
erty chains were created for modelling dependencies between
different elements. The dependsDown ObjectProperty is thus
a SuperObjectProperty of the aggregation, composition, as-
signment, usage, and realization ObjectProperties that resulted
from the conversion of the ArchiMate relations, while the
dependsUp ObjectProperty fills the same purpose for the
counterpart InverseObjectProperties. Moreover, these proper-
ties are transitive, which means that a graph of dependencies
can be created. The following examples can be used for
demonstrating how the analysis can be performed.

The following example can be used for exemplifying intra-
DIO reasoning: what are the technological entities supporting
the process acquisition of readings?. As can be seen in Figure
6, such question can be formalized into a description logic
query, which due to the creation of the ObjectProperty chains
can provide the depicted results. For exemplifying cross DIO-
DSO reasoning, an instance of the DSO was created containing

3http://www.ogcnetwork.net/SensorML
4http://www.ogcnetwork.net/infomodels/tml



7

Fig. 5. Overview of the structure of the sensors ontology

Fig. 6. Intra-DIO query results

information about sensors of the type Drain, with individuals
for the different classes. As the mapping between the DIO and
DSO exists, it is possible to do cross DIO-DSO reasoning, as
described in Section III. As such, an example could be that
of the need to know which ApplicationComponents were re-
sponsible for performing the acquisition and transformation of
the readings for SensorType Drain. This need was formalized
in a description logic query. The result of the query lists all
ApplicationComponent individuals, as Figure 7 shows.

These examples show the usefulness of having computable
EA descriptions that can be processed for decision making.
In this way, the organization might assess the impact that
changes on the application or technology layer can have on
the business, and vice-versa. Other types of semantics might
be included on the models so that other kind of decision-
making analysis can be performed. Additionally, if the models

Fig. 7. Cross DIO-DSO query results

can be enriched with automatically captured data from the
environment, the impact might even be quantified.

V. CONCLUSIONS

This paper proposes using ontologies and associated tech-
niques to improve EA practice, contributing for improved
extensibility and expressiveness of the enterprise architecture,
improved enforcement of meta-model coherence, improved
meta-model conformance verification of models, and improved
analysis for decision-making purposes. Such techniques can
be used in decision making through model analysis that takes
advantage of the embedded semantics. This hypothesis was
tested through an architecture that consists of a core ontology
(DIO) that can be extended using domain-specific languages
(DSO) to capture the specifics of each addressed scenario.



8

This architecture supports model reasoning that can be used
to analyse the domain-independent and the the domain-specific
languages.

The proposal was evaluated using ArchiMate as the DIO.
To do that, we converted the ArchiMate meta-model to OWL-
DL along with the required axioms that ensure the model
coherence. A scenario was used to capture knowledge about
specific aspects of the business that could not be addressed
adequately by the DIO. As a result, we developed a DSO
that captures those specific aspects and mapped into the DIO
thus extending the architecture description. Example of model
analysis for assessing the dependencies between different
elements of the architecture was demonstrated at the level of
the DIO, DSO and cross DIO-DSO.

Future work will focus on the application of this approach
to new scenarios in order to explore the analysis possibilities,
considering the usage of different reasoning and querying
techniques. Since the individuals for the analysed case where
created manually, another line of work will be the creation of
extractors for obtaining real data which can then be used for
validating the conformance of the models to reality and even
for the semi- or even automatic creation of individuals in the
different ontologies, similarly to what is already done in the
process mining area [29].

ACKNOWLEDGEMENTS

This work was supported by national funds through FCT -
Fundação para a Ciência e a Tecnologia, under project PEst-
OE/EEI/LA0021/2013 and the grant (SFRH/BD/69121/2010)
to Gonçalo Antunes, by COMET K1, FFG - Austrian Research
Promotion Agency, by the Vienna Science and Technology
Fund (WWTF) through project ICT12-046 (BenchmarkDP),
and by the European Commission under the 7th Framework
Programme for research and technological development and
demonstration activities (FP7/2007-2013) under grant agree-
ment no. 269940 (TIMBUS project).

REFERENCES

[1] M. Lankhorst, Enterprise Architecture at Work: Modeling, Communica-
tion, and Analysis. Springer, 2005.

[2] M. Galster, “Dependencies, traceability and consistency in software ar-
chitecture: towards a view-based perspective,” in ECSA ’11 Proceedings
of the 5th European Conference on Software Architecture: Companion
Volume, 2011.

[3] J. Romero, J. I. Jaen, and A. Vallencillo, “Realizing correspondences in
multi-viewpoint specifications,” in Proceedings of the 2009 IEEE Inter-
national Enterprise Distributed Object Computing Conference, 2009.

[4] J. Saat, U. Franke, R. Lagerstrom, and M. Ekstedt, “Enterprise archi-
tecture meta models for it/business alignment situations,” in 2010 14th
IEEE International Enterprise Distributed Object Computing Confer-
ence, 2010.

[5] S. Buckl, F. Matthes, and C. M. Schweda, “Conceptual models for
cross-cutting aspects in enterprise architecture modeling,” in 2010 14th
IEEE International Enterprise Distributed Object Computing Confer-
ence Workshops, 2010.

[6] S. Buckl, C. M. Schweda, and F. Matthes, “A design theory nexus for
situational enterprise architecture management,” in 2010 14th IEEE In-
ternational Enterprise Distributed Object Computing Conference Work-
shops, 2010.

[7] S. Burmester, H. Giese, J. Niere, M. Tichy, J. P. Wadsack, R. Wagner,
L. Wendehals, and A. Zundorf, “Tool integration at the meta-model level:
the fujaba approach,” Int J Softw Tools Technol Transfer, vol. 6, pp. 203–
218, 2004.

[8] E. Kapsammer, T. Reiter, and W. Schwinger, “Model-based tool integra-
tion - state of the art and future perspectives.” in Proceedings of the 3rd
International Conference on Cybernetics and Information Technologies,
Systems and Applications (CITSA 2006), 2006.

[9] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in Future of Software Engineering, 2007.
FOSE ’07, 2007.

[10] M. Bjekovic, E. Proper, and J.-S. Sottel, “Towards a coherent enterprise
modelling landscape,” in Sandkuhl, K. (ed.), Emerging Topics in the
Practice of Enterprise Modeling : short paper proceedings of 5th IFIP
WG8.1 Working Conference on the Practice of Enterprise Modeling,
Rostock, Germany, November 7-8, 2012, 2012.

[11] J. P. A. Almeida, M. E. Iacob, and P. van Eck, “Requirements traceabil-
ity in model-driven development: Applying model and transformation
conformance,” Inf Syst Front, vol. 9, pp. 327–342, 2007.

[12] J. Kang, D. ande Lee, S. Choi, and K. Kwangsoo, “An ontology-based
enterprise architecture,” Expert Systems with Applications, vol. 37, pp.
1456–1464, 2010.

[13] G. Wagner, “Ontologies and rules for enterprise modeling and simula-
tion,” in 2011 15th IEEE International Enterprise Distributed Object
Computing Conference Workshops, 2011.

[14] C. L. B. Azevedo, J. P. A. Almeida, M. van Sinderen, D. Quartel, and
G. Guizzardi, “An ontology-based semantics for the motivation extension
to archimate,” in 2011 15th IEEE International Enterprise Distributed
Object Computing Conference, 2011.

[15] J. P. A. Almeida and G. Guizzardi, “An ontological analysis of the notion
of community in the rm-odp enterprise language,” Computer Standards
& Interfaces, vol. 35, no. 3, pp. 257 – 268, 2013, ¡ce:title¿RM-ODP:
Foundations, Experience and Applications¡/ce:title¿. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0920548912000402

[16] H. H. Hoang, J. J. Jung, and C. P. Tran, “Ontology-
based approaches for cross-enterprise collaboration: a literature
review on semantic business process management,” Enterprise
Information Systems, pp. 1–17, 2013. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1080/17517575.2013.767382

[17] P. Schvaiko and J. Euzenat, “A survey of schema-based matching
approaches,” Journal on Data Semantics IV, Lecture Notes in Computer
Science, vol. 3730, pp. 146–171, 2005.

[18] P. S. Santos Jr., J. P. A. Almeida, and G. Guizzardi, “An ontology-
based semantic foundation for organizational structure modeling in the
aris method,” in 2010 14th IEEE International Enterprise Distributed
Object Computing Conference Workshops, 2010.

[19] ISO/IEC/IEEE 42010:2011 - Systems and Software Engineering - Ar-
chitecture Description, International Organization for Standardization,
International Electrotechnical Commission and Institute of Electrical and
Electronic Engineers Std.

[20] The Open Group, ArchiMate 2.0 Specification. Van Haren Publishing,
2012.

[21] P. Johnson and M. Ekstedt, Enterprise Architecture: Models
and Analyses for Information Systems Decision Making.
Lightning Source Incorporated, 2007. [Online]. Available:
http://books.google.pt/books?id=2LdxPQAACAAJ

[22] M. Buschle, J. Ullberg, U. Franke, R. Lagerstrom, and T. Sommestad,
“A tool for enterprise architecture analysis using the prm formalism,”
in CAiSE Forum 2010, Hammamet, Tunisia, June 7-9, 2010, Selected
Extended Papers, 2010.

[23] T. Binz, F. Leymann, A. Nowak, and D. Schumm, “Improving the
manageability of enterprise topologies through segmentation, graph
transformation, and analysis strategies,” in 2012 16th IEEE International
Enterprise Distributed Object Computing Conference (EDOC), 2012.

[24] T. Burger and E. Simperl, “Measuring the benefits of ontologies,” in On
the Move to Meaningful Internet Systems: OTM 2008 Workshops, 2008.

[25] D. Greefhorst and E. Proper, Architecture Principles: The Cornerstones
of Enterprise Architecture. Springer, 2011.

[26] G. Guizzardi, “Ontological foundations for structural conceptual mod-
els,” Ph.D. dissertation, University of Twente, Enschede, The Nether-
lands, 2005.

[27] M. Rosemann, P. Green, and M. Indulska, “A reference methodology
for conducting ontological analyses,” in Proceedings of the 23rd Inter-
national Conference on Conceptual Modelling (ER 2004), 2004.

[28] M. A. Bunge, Treatise on Basic Philosophy Volume 3: Ontology I - The
Furniture of the World. Kluwer Academic Publishers, 1977.

[29] W. M. P. van der Aalst, “Business alignment: using process mining as
a tool for delta analysis and conformance testing,” Requirements Eng,
vol. 10, pp. 198–211, 2005.


