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On the Nondimensionalization of Constriction 
Resistance for Semi-infinite Heat Flux Tubes 
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{ = 4AjAt) 
ip = dimensionless thermal constric

tion resistance parameter 
( = k4XcRc) 

\j/„ = constriction parameter for a 
contact on a half-space 

Subscripts 
a, c, e - denote respectively a solution 

type as approximate, cor
related, or exact 

Superscripts 
c, s = denote respectively a circle or a 

square geometry 

Introduction 
The insulated semi-infinite cylinder with heat supplied 

uniformly through a coaxial contact area as shown in Fig. 1 is 
an important unit cell in the theory of contact resistance 
(Cooper et al., 1969). The three contact area/cylinder cross-
sectional configurations shown in Fig. 2 are of interest not on-
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ly in contact resistance but also in electronic component cool
ing (Antonetti and Yovanovich, 1984) and storage of radioac
tive wastes (Schankula, 1985). Because of the similarities that 
will be demonstrated for these three important cases, estima
tion of the thermal resistance of other configurations is also 
possible. 

In the past, several investigators have examined the problem 
of the thermal constriction resistance of a circular contact area 
on an insulated semi-infinite, coaxial circular cylinder as 
shown by Figs. 1 and 2(a). Recently the case shown in Fig. 2(6) 
of a circular contact on a square cylinder has been investigated 
for a small relative contact size by Beck (1979) and for any 
contact size by Negus and Yovanovich (1984). By using a new 
approximate technique developed by Beck (1979) and Negus 
and Yovanovich (1985), as well as double-infinite series solu
tion to Laplace's equation in Cartesian coordinates (Mikic, 
1966), the case of a square contact area on a square cylinder as 
shown in Fig. 2(c) can also be solved. 

Previously the nondimensionalization technique employed 
for the results has varied with different configurations and 
researchers. However, the similarity of these three configura
tions in terms of their integrated parameter, the thermal con
striction resistance, will only be seen when nondimensionaliza
tion is made using a characteristic dimension that best 
describes these geometries. 

Nondimensionalization of Thermal Constriction Resistance 

The thermal constriction resistance Rc for a finite contact 
area on a semi-infinite insulated cylinder is commonly defined 
as 

e = 4AJAt (4) 

* , -
f c - f ( z = 0) 

(1) 

where Tc is the average temperature rise over the contact area, 
7X2 = 0) the average temperature rise of the cross section of 
the cylinder in the plane of the contact, and Q is the total heat 
flow rate across the contact area. 

If heat is supplied to the cylinder for a sufficiently long 
time, Rc will reach a steady-state value. Nondimensionaliza
tion of Rc can be made by introducing a dimensionless ther
mal constriction parameter \j/ defined as 

iP = k5Rc 

where k is the thermal conductivity of the cylinder and 5 is any 
characteristic dimension with the units of length. 

In the study of arbitrary single contacts on a half-space 
(Yovanovich et al., 1983, 1984), it was determined that for 
both steady-state and transient conditions, use of the square 
root of the contact area as the characteristic length gave 
similar results for many different geometries. Furthermore, 
Chow and Yovanovich (1982) have shown analytically that for 
single bodies or contacts in infinite or semi-infinite media, the 
constriction resistance Rc is inversely proportional to the 
square root of the contact area as a first approximation. 

Although the problem considered in this work is not one of 
a single contact on a half-space, it will be demonstrated that 
the square root of the contact area is the characteristic dimen
sion if the results for different cases are compared at a dimen
sionless contact size also based on the square root of the con
tact area. Thus the constriction parameter becomes 

(3) 

where Ac is the area of the contact through which a uniform 
heat flux is supplied. 

For a given geometric configuration the constriction 
parameter is then a function only of the relative contact size. 
To compare results of different cases, a dimensionless relative 
contact size e is defined as the square root of the ratio of con
tact area to cylinder cross-sectional area, or 

tf-W^*c 

where A, is the area of the cylinder cross section as shown in 
Fig. 2. 

Constriction Parameters 

Case 1: Circle on Circle. For a circular contact area with 
uniform heat flux on a circular, insulated, semi-infinite, coax
ial cylinder the constriction parameter is found analytically to 
be (Yovanovich, 1976a) 

4>r=-
J6_ g /?(7BQ 
« „=i 7^0(7,,) 

(5) 

where the superscript cc indicates circle on circle, the subscript 
e indicates an exact solution, J0(>) ar)d Ji(') are Bessel func
tions of the first kind of orders 0 and 1, and yn are the positive 
real roots of 7t (7„) = 0. 

Equation (5) is not valid for the limiting case of e = 0 where 
(Yovanovich, 1976b) 

^ ( e = 0) = 8/37r3 (6) 

From the work of Roess (1950), an approximate analytical 
expression for \pcc can be derived for a small relative contact 
size e to give 

i*f « 0.47890 - 0.62446e + 0.11239e3 (7) 

where the subscript a indicates an approximate analytical 
solution. 

Finally, a correlation to four decimal places for 0 < e < 0 . 9 
has been provided from the accurate optimized image results 
of Negus and Yovanovich (1984) giving 

^ = 0.47890 - 0.624986 + 0.11789e3 

- 0.000071e5 + 0.02582e7 (8) 

where the subscript c indicates a correlation of results. 

Case 2: Circle on Square. For a circular contact with 
uniform flux on a square insulated semi-infinite cylinder, an 
exact solution recently derived by Sadhal (1984) gives 

(2) Ve .rU?, 
J2(2«Vire) 

m-\ n — \ 

J2[2^e(m2 + n2)[ 

( « 2 + «2)3/2 (9) 

where e = ~JAC/At = -{ia/lb for the circle on a square. 
Although equation (9) is exact, the convergence of the 

double-infinite summation is extremely slow, especially for 
small e. At the limiting case of e = 0, a circular contact on a 
half-space, i/>£s(e = 0) = 8/37r3/2 as given in equation (6). 

For efficient calculation of the constriction parameter for 
the circle on a square configuration, a correlation for 
0<e<0 .8 exists from the accurate optimized image results of 
Negus and Yovanovich (1984). Note that e>Vr /2 = 0.886 is 
impossible for a circle on a square configuration. The correla
tion is 

W = 0.47890 - 0.62055e + 0.11593e3 + 0.006688e5 + 0.04015e7 

(10) 

Negus and Yovanovich (1985) have developed an approx
imate expression for an elliptical contact on a nominally rec
tangular flux tube. For the limiting case of a circle on a 
square, their expression reduces to 

i//f » 0.47890 - 0.62075e + 0.1144e3 (11) 

Although it is derived by the assumption of small contact 
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Table 1 Dimensionless constriction resistance parameters for 
each contact/cylinder configuration as a function of relative 
contact size 

VcC. . VcS *? 
t 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

(circle/circle) 

0.4789 
0.4165 
0.3548 
0.2946 
0.2365 
0.1813 
0.1301 
0.0840 
0.0447 
0.0147 

(circle/square) 

0.4789 
0.4170 
0.3557 
0.2959 
0.2382 
0.1836 
0.1333 
0.0887 
0.0524 

-

(square/square) 

0.4732 
0.4112 
0.3500 
0.2902 
0.2327 
0.1782 
0.1277 
0.0823 
0.0437 
0.0143 

size, equation (11) is found to be accurate to 0.5 percent for 
0<e<0.5. 

Case 3: Square on Square. For a square contact with 
uniform flux on a square insulated semi-infinite cylinder, an 
exact solution for the constriction parameter is (Mikic, 1966) 

2 r v-i sin2W7re 
*f = - r - u J— 

+4rit ™2f?™*?n (i2) 
TTV ^T, „"", m2nNm2 + n2 > 

As with the circle on square situation, the double-infinite 
summation in equation (12) converges quite slowly, especially 
for very small values of e. At the limiting value of e = 0, or a 
square contact on a half-space, the exact value of the constric
tion parameter is (Carslaw and Jaeger, 1959), 

* f ( e = 0) = - ^ [ l n [ l+V2]+- i - ( l -V2) ] (13) 

By using the methods of Beck (1979) and Negus and 
Yovanovich (1985), an approximate analytical expression for 
the constriction parameter for small e has been developed in 
this work as 

i//f « 0.47320 - 0.62075e + 0.1198e3 (14) 

This approximate expression is accurate to within 0.3 per
cent for 0<es0.5. 

Comparison of Constriction Parameters 

In Table 1 the values of the constriction resistance 
parameter, \jj^h4AcRc, for each contact area/cylinder con-
figuration are reported for relative contact sizes in the range 
0<e = Vv4c//4,<0.9. For the square/square results the exact 
solution given by equation (12) was used. The correlations 
from optimized image results (equations (8) and (10)) were 
used to generate the values for the circle/circle and cir
cle/square configurations. Comparison with exact solutions 
has shown these correlations to be accurate to the digits shown 
in Table 1. 

Overall the constriction resistance parameters reported in 
Table 1 are very similar for each configuration at a given 
relative contact size, despite the fact that the actual 
temperature distributions can be quite different. At the 
limiting case of 6 = 0, a contact on a half-space, the constric
tion parameter of a circular contact is 1.2 percent higher than 
that of a square. For a relative contact size of e = 0.5, the con
striction parameter for the circle/circle configuration differs 
from the circle/square by only 1.3 percent and the 
square/square by 1.7 percent. The circle/square and 
square/square results are 2.9 percent apart. Even at e = 0.8 
where the actual temperature distributions are extremely dif
ferent for the three different configurations, the maximum 

difference in their dimensionless constriction parameters is 
only 17 percent when the square root of contact area is chosen 
as the characteristic dimension. At the limiting case of 6 = 1, 
one-dimensional heat flow results, and thus the constriction 
resistance is zero. 

For contact areas on a square cylinder, the approximate 
analysis of Negus and Yovanovich (1985) allows for some in
teresting generalizations. The approximate expression for \j/ 
gives 

^ « ^ „ - 0.620756 + 1.4377 (2I°ZlI™.\i (]5) 

where yp = lc4~AcRc, e = \/Ac/At, Tp„ is the constriction 
parameter for the contact on a half-space, and I0 and IRR are 
second moments of area defined by Negus and Yovanovich 
(1985). 

Equation (15) shows that if relative contact size e is very 
small (e<<e3), the constriction parameter is given by the half-
space result modified linearly by the relative contact size. 
Physically this linear term in e represents the small perturba
tion to the temperature fields that is brought about by the 
placement of the adiabatic walls of the square cylinder in the 
vicinity of the contact area previously on a half-space. The 
next term in equation (15) is of order e3 and is a function of 
the contact shape. If e is very large (e>0.6) higher order terms 
in e are required that cannot be easily evaluated by the approx
imate method of Negus and Yovanovich (1985). Note however 
that the two-term approximation i/ = \l/„— 0.62075e is accurate 
for engineering purposes to an e of 0.3 where 
i/<(e = 0.3)/i/<a,=0.61 and the three-term version (equation 
(15)) is accurate to an e of 0.6 where }j/(e = 0.6)/\j/a, =0.27. 

Finally, simple observation of Table 1 leads to an engineer
ing approximation for all three cases given as 

iA«0.475-0.626 + 0.1363 (16) 

where the maximum error with respect to Table 1 is less than 2 
percent for 0< 6 < 0.5 and 4 percent for0<e<0.7. The success 
of this simple formula over a fairly wide range in e further 
reinforces the assertion made here that the optimum 
characteristic length dimension for problems of this type is the 
square root of the contact area. 

Conclusions 

From the observations made with three configurations of 
contact areas on insulated semi-infinite cylinders, nondimen-
sionalization of constriction resistance by the square root of 
the contact area produces strikingly similar results for all con
figurations at any given relative contact size. Although 
analytical justification is not presently available as with the 
contact on a half-space, it seems apparent from the results ob
tained that the opt imum characteristic length that describes 
conduction problems of this type is the square root of the con
tact area. 
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Similarity Solution for Non-Darcy Free Convection 
From a Nonisothermal Curved Surface in a Fluid-
Saturated Porous Medium 

A. Nakayama,1 H. Koyama,1 and F. Kuwahara1 

Nomenclature 
c = empirical constant associated with 

porous inertia 
/ = dimensionless stream function 
g = acceleration due to gravity 

Gr = modified Grashof number, see 
equation (12a) 

K = permeability 
m = exponent associated with body 

shape 
n = exponent associated with wall 

temperature 
Nux = local Nusselt number 

r = function representing body shape 
Rax = local Rayleigh number, see equa

tion (8b) 
T = temperature 

u, v = Darcian velocity components 
x, y = boundary layer coordinates 

z = vertical distance measured from the 
lower stagnation point 

a = equivalent thermal diffusivity 
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/3 = coefficient of thermal expansion 
•q = similarity variable, see equation 

(7c) 
8 = dimensionless temperature 
v = kinematic viscosity 
\j/ = stream function 

Subscripts 
e = boundary layer edge 
r = reference 
w = wall 

Introduction 
Considerable attention has been directed to heat and fluid 

flow within fluid-saturated porous media because of its impor
tance in geophysical and engineering applications such as 
geothermal energy conversion, thermal insulation of 
buildings, and packed-bed reactors. (Cheng, 1978). In most 
previous studies, either on free (e.g., Cheng and Minkowycz, 
1977; Merkin, 1979; Nakayama and Koyama, 1987) or com
bined (e.g., Cheng, 1977; Minkowycz et al., 1985; Nakayama 
and Koyama, 1987) convection, boundary layer treatments 
based on Darcy's law were employed. It is, however, well 
known that the non-Darcy flow situation prevails when the 
Reynolds number based on the pore diameter and 
characteristic velocity becomes large (Forchheimer, 1901; 
Bear, 1972). Fand et al. (1986) experimentally showed devia
tions from the Darcy law. Forchheimer (1901) proposed a 
velocity square term in addition to the Darcy term to account 
for the inertia effects on the pressure drop, as the fluid makes 
its way through the porous media. This pioneering work was 
followed by many proposals for mathematically describing 
non-Darcy flows (e.g., Ergun, 1952; Ward, 1969). 

An attempt to obtain a similarity solution for non-Darcian 
free convective flow over a vertical flat plate was first made by 
Plumb and Huenefeld (1981) using the model proposed by 
Ergun (1952). The same model was employed by Vasantha et 
al. (1986) for a vertical frustum of a cone and by Lai and 
Kulacki (1981) for a horizontal flat surface to investigate com
bined effects of the Darcy term and the inertia term. The 
limiting condition where the Darcy term is negligible, namely 
Forchheimer flow, was treated by Bejan and Poulikakos 
(1984) and Ingham (1986). So far, only a limited number of 
similarity solutions have been reported for simple flow 
configurations. 

In this study, we shall investigate non-Darcy free convective 
flows using the Ergun model. It will be shown that there exists 
a certain family of body shape geometries and corresponding 
wall temperature distributions, which permit similarity solu
tions. The effects of inertia and geometric shape on the veloci
ty and temperature fields are investigated and the correspond
ing heat transfer characteristics are discussed in detail. 

Governing Equations and Transformation 
Figure 1 depicts the physical model and its boundary layer 

coordinates (x, y). The coordinate z is the vertical distance 
measured from the lower stagnation point. The body under 
consideration is two dimensional and its geometry is described 
by r as a function of x (or z). The body surface may be 
nonisothermal, and its temperature Tw(x) exceeds the ambient 
temperature Te everywhere. Thus, there is an upward convec
tive fluid movement as a result of buoyancy force. 

The governing equations for non-Darcy free convective 
flow, namely, the continuity equation, the Forchheimer equa
tion with the Boussinesq approximation, and the energy equa
tion can be written by exploiting the usual boundary layer ap
proximations as 
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