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ABSTRACT 
Rock mass is blasted to break it into smaller pieces such as in most surface mining, quarrying 
operation, dimensional stone mining and some civil engineering application. Flyrock is one of the 
most hazardous side effects of blasting operation in surface mining. This phenomenon can be 
considered as the main cause of casualties and damages. The aim of this study is to compare the 
actual distance of flyrock with the prediction suggested by empirical methods and by using 
Artificial Neural Network. In addition, this study is also aimed to investigate the most significant 
input parameters that affecting the flyrock. During this study, flyrock projections for 16 granitic 
boulders were monitored at Ulu Tiram-quarry site. Blasting parameters such as amount of 
explosive used, burden, stemming, hole depth, hole angle and hole diameter were carefully 
measured and recorded. By using these data and applying MATLAB (Matrix Laboratory) program 
(neural network toolbox), the flyrock distances were predicted for similar condition. The result 
shows that the coefficient of correlation between the actual and the predicted flyrock distance 
based on empirical methods is insignificant that is around 0.2. However the result revealed that the 
coefficient of correlation for overall analysis of flyrock distance is 0.92 based on ANN method. 
Based on Max-Min method powder factor, stemming and charge length are the most significant 
parameters in controlling the flyrock distance. This study found that ANN method produced a 
more accurate prediction than the empirical methods in assessing the actual flyrock projection. 

KEYWORDS: Blasting, boulders, hazard, flyrock assessment, MATLAB, Artificial 
Neural Network. 
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INTRODUCTION 
In civil engineering, rock is removed to create structures such as tunnels, hydraulic channels or 

caverns, or deep excavation at the ground surface for road cuts, foundation or basements (Bhandadari, 
1997). Blasting—the controlled use of explosives to excavate rock—has been part of construction 
engineering for hundreds of years. Most primary blasting, whether on surface or underground, will 
leave some oversize boulders. Secondary blasting includes blasting carried out during bench toe 
leveling and bench sloping, oversize boulders breakage. Blasting has some environmental impact 
such as ground vibration, air blast, dust and fumes and flyrock. Flyrock, propelled rock fragments by 
explosive energy beyond the blast area, is one of the undesirable phenomena in the mining blasting 
operation (Stojadinovic et al. 2011), any mismatch between distribution of explosive energy, 
mechanical strength of rock mass and charge confinement can be cause of flyrock (Bajpayee et al. 
2004).  

The study will be included using blasting parameters data for flyrock distance that were measured 
at a granite quarry Ulu Tiram, Johor. In that site secondary blasting has occurred. During this study, 
flyrock projections for 16 boulders were monitored. Blasting parameters such as amount of explosive 
used, burden, stemming, hole depth, hole angle and hole diameter were carefully measured and 
recorded. The volume of boulders were approximately between 2.1 (m3) to 4.2 (m3). Maximum and 
minimum flyrock distance were 240 (m) and 160 (m).  

Based on this study real data is going to be compared with experimental methods and also effect 
of different parameters on flyrock will be investigated which is done through the process of neural 
network. Aghajani-Bazzazi et al. (2007), Monjezi et al. (2009) and Rezaei et al. (2010) are those who 
worked on prediction of flyrock distance by using neural network before. 

STUDY METHODOLOGY 
This study is divided into three stages, the first stage involved the data collection, in this stage 

flyrock distances were measured by measuring tape. Second stage was calculation by empirical 
methods and the third stage deals with MATLAB software (neural network toolbox). 

  Analysis by Empirical Methods 
In this study, empirical methods were obtained figure and formula. Lundborg et al. (1975) used a 

semi-empirical approach to estimate flyrock throw distance. Based on conservation of momentum and 
the scaling laws of spherical charges a relationship between charge diameter d and rock velocity V 
was obtained. Once V is known then the flyrock range (Lm) is calculated from the equation of ballistic 
trajectories. Lundborg et al. (1975) proposed Lm = 260 d 2/3.  Where Lm is in meters and d is hole 
diameter in inches. In another experimental study agreement between theory and experiment has been 
found to be reasonable. The diameters (ϕ) of these stones are ϕ = 0.1 d 2/3. Where ϕ is in meters and d 
is in inches.  

One of the most extensive study of the distance that flyrock is thrown was conducted by 
Lundborg (1981). His work was based on the observations that the flyrock distance and exit velocity 
were proportional to be specific charge or powder factor. The results of Lundborg’s work is shown in 
below (Figure 1). The maximum throw distance, L is shown to be a function of hole diameter d and 
flyrock diameter, ϕ, in meters.  
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RESULTS OF GEOSTRUCTURAL CHARACTERIZATION 

Using Empirical Formula 
By using fragment size from the site and also using empirical formula the flyrock distances will be 

calculated (Table 1).  

Table 1: Comparison Between Actual Flyrock and Estimated by Empirical Formula in (km) 

 

According to Table 1, the values of actual flyrock distance are much more than the values of 
flyrock distance by formula. For better understanding the values of actual flyrock distance and flyrock 
by formula and also correlation between them are shown in Figure 3 and Figure 4. From Figure 4, it is 
seen that the coefficient of correlation is very low. 
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Using Empirical Figure 
By using fragment size, hole diameter (8.9 cm ≈ 3.5 inches) and Figure 1 maximum throw can be 

found and shown in Table 2 which will be compared with actual flyrock distance. 

Table 2: Comparison Between Actual Flyrock and Estimated by Empirical Figure in (km) 

 

 

 

 

 

 

 

 

 

 

 

As shown above, it is clear that maximum throws by using figure are much more than the actual 
flyrock distance. For better understanding the values of actual flyrock distance and flyrock by using 
figure and also correlation between them are shown in Figure 5 and Figure 6. From Figure 6, it is seen 
that the coefficient of correlation is very low. 

 

 

 

 

 

 

 

Dataset 
Number 

Actual  Flyrock 
Distance (km) 

Flyrock Distance by 
Using Figure (km) 

1 0.195 0.32 

2 0.210 0.314 

3 0.18 0.29 

4 0.2 0.3 

5 0.21 0.27 

6 0.175 0.26 

7 0.24 0.25 

8 0.16 0.336 

9 0.22 0.306 

10 0.205 0.325 

11 0.185 0.29 

12 0.17 0.27 

13 0.225 0.254 

14 0.225 0.25 

15 0.175 0.34 

16 0.19 0.332 
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