
Complexity of and Algorithms for the
Manipulation of Borda, Nanson’s and Baldwin’s

Voting Rules

Jessica Davies1, George Katsirelos2, Nina Narodytska3

Toby Walsh4 and Lirong Xia5

1 University of Toronto, Toronto, Canada, jdavies@cs.toronto.edu
2 INRA, Toulouse, France, gkatsi@gmail.com

3 University of Toronto, Toronto, Canada, ninan@cs.toronto.edu
4 NICTA and UNSW, Sydney, Australia, toby.walsh@nicta.com.au

5 Rensselaer Polytechnic Institute, Troy, USA, xial@cs.rpi.edu

July 12, 2014

Abstract

We investigate manipulation of the Borda voting rule, as well as two elimina-
tion style voting rules, Nanson’s and Baldwin’s voting rules, which are based on
Borda voting. We argue that these rules have a number of desirable computational
properties. For unweighted Borda voting, we prove that it is NP-hard for a coali-
tion of two manipulators to compute a manipulation. This resolves a long-standing
open problem in the computational complexity of manipulating common voting
rules. We prove that manipulation of Baldwin’s and Nanson’s rules is computa-
tionally more difficult than manipulation of Borda, as it is NP-hard for a single
manipulator to compute a manipulation. In addition, for Baldwin’s and Nanson’s
rules with weighted votes, we prove that it is NP-hard for a coalition of manipula-
tors to compute a manipulation with a small number of candidates.

Because of these NP-hardness results, we compute manipulations using heuris-
tic algorithms that attempt to minimise the number of manipulators. We propose
several new heuristic methods. Experiments show that these methods significantly
outperform the previously best known heuristic method for the Borda rule. Our re-
sults suggest that, whilst computing a manipulation of the Borda rule is NP-hard,
computational complexity may provide only a weak barrier against manipulation
in practice. In contrast to the Borda rule, our experiments with Baldwin’s and Nan-
son’s rules demonstrate that both of them are often more difficult to manipulate in
practice. These results suggest that elimination style voting rules deserve further
study.
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1 Introduction
Voting is a simple mechanism to combine preferences in multi-agent systems. Results
like those of Gibbard and Satterthwaite demonstrate that it may often pay for agents
to manipulate an election by misreporting their preferences [26, 36]. One appealing
escape from manipulation is computational complexity [4]. Whilst a manipulation may
exist, perhaps it is computationally too difficult to find? With a single manipulator,
there is only a small set of voting rules that are known to be NP-hard to manipulate
with unweighted votes: the second order Copeland rule [15, 4], single transferable
vote (STV) [3] and ranked pairs [37, 42]. With two or more manipulators, computing
a manipulation is NP-hard for some other common voting rules [21, 42, 22, 43]. One
case that remains open is Borda voting. Xia, Conitzer, and Procaccia [43] observe that:

“The exact complexity of the problem [computing a manipulation with
unweighted votes] is now known with respect to almost all of the prominent
voting rules, with the glaring exception of Borda”.

Computing a manipulation of Borda is NP-hard when votes are weighted and we
have a coalition of manipulators [14]. On the other hand, computing a manipulation of
Borda is polynomial-time when votes are unweighted and there is just a single manipu-
lator [4]. For a coalition of manipulators and unweighted votes, it has been conjectured
that the problem is NP-hard [45]. Note that there exist other scoring rules besides
Borda where computing a manipulation with unweighted votes has been show to be
NP-hard [43]. One of the most important contributions of this paper is to close the
question of the computational complexity of computing a coalitional manipulation for
Borda with unweighted votes. We prove that computing a manipulation of Borda with
just two manipulators is NP-hard. This result was proven independently in [8]. We will
discuss the similarities and differences between the two proofs later in the paper.

We also study two voting rules that are closely related to the Borda rule: Nanson’s
and Baldwin’s rules. These are elimination style rules that use Borda scoring to elimi-
nate candidates over a number of rounds. The two rules have been used in real elections
in the University of Melbourne (between 1926 and 1982), the University of Adelaide
(since 1968), and the State of Michigan (in the 1920s). There are several reasons we
consider Nanson’s and Baldwin’s rules. Firstly, they have features that might appeal
to the two opposing camps that support Borda and Condorcet. In particular, unlike
the Borda rule itself, both Nanson’s and Baldwin’s rules are Condorcet consistent as
they elect the candidate who beats all others in pairwise elections. Secondly, statistical
analysis suggests that, whilst the Borda rule is often vulnerable to manipulation [12],
Nanson’s rule is particularly resistant [24]. We might expect Baldwin to be similarly
resistant. Thirdly, for any Condorcet consistent rule (and thus for Nanson’s and Bald-
win’s rules), Brandt et al. [9] have shown that many types of control and manipulation
problems have polynomial-time algorithms when votes are single-peaked. It is an inter-
esting question then if such manipulation problems remain polynomial when we drop
the domain restriction.

Nanson’s and Baldwin’s rules are also interesting to study as they are elimination
style rules, and elimination style rules are often computationally harder to manipulate
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than the base rule from which they are derived [3, 17]. Elkind and Lipmaa have con-
jectured that computing a manipulation for the closure of many voting rules (where we
successively use the rule to eliminate candidates) is NP-hard [18]. One of our contribu-
tions is to prove that computing a manipulation of Baldwin’s rule, which is the closure
of Borda voting, is NP-hard with a single manipulator. We also prove that manipu-
lation of Nanson’s rule is NP-hard, again with a single manipulator and unweighted
votes. Finally, we consider the problem of computing a manipulation with weighted
votes and a coalition of manipulators. We show that Baldwin’s and Nanson’s rules are
NP-hard to manipulate in this setting with just three and four candidates respectively.

Our theoretical results suggest that all three rules are computationally difficult to
manipulate in the worst case. We also investigate whether these rules are resistant
to manipulation in practice [39, 40, 41]. We propose several polynomial-time heuristic
algorithms for the three voting rules that try to minimise the number of manipulators re-
quired to ensure a particular result. Our experiments suggest that the Borda rule is often
easy to manipulate in practice. The heuristics that we study are able to find an optimal
manipulation in 99% of the cases. Interestingly, these heuristics were significantly less
effective for Baldwin’s and Nanson’s rules. These empirical results, together with our
theoretical results, provide further evidence for the recent claim that elimination style
voting rules tend to be more computationally resistant to manipulation [17].

The focus in this paper is on manipulation problems. It would, however, be inter-
esting in the future to consider also control and bribery problems [5, 19]. Control is
somewhat different from manipulation since in control problems we change the struc-
ture of the election (number of candidates, number of voters, etc). Bribery, on the other
hand, is very close to manipulation since we only change the votes. Manipulation is
also related to the possible winner problem [28] and to dealing with uncertainty when
eliciting and aggregating preferences [38, 34, 35]. See [23] for a longer discussion on
the connections between these problems.

The rest of the paper is organised as follows. In Section 2 we provide background.
Section 3 focuses on unweighted manipulation and Section 4 on the weighted case.
Section 5 presents four heuristic algorithms that aim to find the minimum number of
manipulators and Section 6 evaluates these algorithms experimentally. In Section 7 we
present two interesting connections between unweighted coalitional manipulation of
the Borda rule and two problems from discrete mathematics. We conclude in Section 8.

2 Background
Let C = {c1, . . . , cm} be the set of m candidates (or alternatives). A linear order on C
is a transitive, antisymmetric, and total relation on C. The set of all linear orders on C
is denoted by L(C). An n-voter profile P on C consists of n linear orders on C. That
is, P = (V1, . . . , Vn), where for every j ≤ n, Vj ∈ L(C). The set of all n-profiles
is denoted by Fn. A (deterministic) voting rule r is a function that maps any profile
on C to a unique winning candidate, that is, r : F1 ∪ F2 ∪ . . . → C. When voters
are weighted, we have a function w that associates each voter j with a fixed positive
integer w(j). A voting rule treats weights as if we had w(j) identical copies of the
voter j.
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Borda rule The Borda rule, proposed by Jean-Charles de Borda in 1770, is a posi-
tional scoring rule that gives a score of m − i to candidate a for each vote that puts
candidate a in ith place. The candidate with the highest total Borda score wins. We
write s(a, P ) for the total Borda score given to candidate a from the profile of votes P ,
and s(a) where P is obvious from the context. A score vector 〈s1, . . . , sm〉 indicates
that the ith candidate receives the Borda score si. The Borda rule is used in parliamen-
tary elections in Slovenia and, in modified form, in elections within the Pacific Island
states of Kiribati and Nauru. The Borda rule or similar scoring rules are also used by
many organisations and competitions including the Robocup autonomous robot soccer
competition, the X.Org Foundation, the Eurovision song contest, and in the election of
the Most Valuable Player in major league baseball. The Borda rule has many good fea-
tures. For instance, it is monotone, as increasing the score for a candidate only helps
them win. It never elects the Condorcet loser (a candidate that loses to all others in
pairwise elections). However, it may fail to elect a Condorcet winner (a candidate that
beats all others in pairwise elections) even if one exists.

Nanson’s and Baldwin’s rules These rules are derived from the Borda rule. Nan-
son’s rule eliminates all candidates with less than the average Borda score [31]. This
step is then repeated with the reduced set of candidates until there is a single candidate
left. A closely related voting rule proposed by Baldwin successively eliminates one
of the candidates with the lowest Borda score1 until one candidate remains [2]. The
two rules are closely related. Indeed, they are sometimes confused in the literature.
One of the most appealing properties of Nanson’s and Baldwin’s rules is that they are
Condorcet consistent, i.e. they elect the Condorcet winner whenever one exists. This
follows from the fact that the Borda score of the Condorcet winner is never below
the average Borda score. Both rules satisfy several other desirable criteria, including
the majority criterion, i.e., a candidate that is preferred by a majority of voters always
wins, and the Condorcet loser criterion. There are also properties which distinguish
them. For instance, Nanson’s rule satisfies reversal symmetry (i.e. if there is a unique
winner under all tie breaking rules and all voters reverse their votes then the winner
changes) but Baldwin’s rule does not. Finally, there are also desirable properties that
neither rule satisfies like monotonicity.

The manipulation problem We can now formally define the different manipulation
problems we consider. The unweighted coalitional manipulation problem is defined as
follows.

Definition 1 (r-COALITIONAL-MANIPULATION). Given a tuple (PNM , p,M),
where PNM is the non-manipulators’ profile, p is the candidate preferred by the ma-
nipulators, and M is the set of manipulators, does there exist a profile PM for the
manipulators such that r(PNM ∪ PM ) = p? In other words, does there exist a profile
PM for the manipulators such that candidate p wins an election under the voting rule
r and the profile PNM ∪ PM?

1If multiple candidates have the lowest score, then we use a tie-breaking mechanism to eliminate one of
them.

4



We drop the word “coalitional” when there is a single manipulator. The weighted
coalitional manipulation is defined similarly, where the weights of the voters (both
non-manipulators and manipulators) are also given as inputs.

Definition 2 (r-WEIGHTED-COALITIONAL-MANIPULATION). Given a tuple
(PNM , p, w,M), where PNM is the non-manipulators’ profile, p is the candi-
date preferred by the manipulators, w is the weighting function and M is the
set of manipulators, does there exist a profile PM for the manipulators such that
r(w,PNM ∪ PM ) = p? In words, does there exist a profile PM for the manipulators
such that candidate p wins an election under the voting rule r and the profile
PNM ∪ PM?

The corresponding optimisation versions of these problems seek to minimise |M |,
the number of manipulators.

As is common in much of the literature, we break ties in favour of the coalition
of the manipulators. This tie-breaking rule was originally used in [4]; see [20] for a
discussion of why this has become a “tradition”. We also assume that the manipulators
have complete knowledge about the scores from the votes of the non-manipulators.
Again, this has become the “tradition” within the literature from some of the earliest
work. The argument often put forward for the assumption of complete information is
that partial or probabilistic information about the votes of the non-manipulators would
add to the computational complexity of computing a manipulation.

Given a set of votes and n manipulators, it is in the best interest of all manipulators
to place the preferred candidate, p, first for the Borda rule. Hence, p will have Borda
score s(p)+n(m−1). We define the gap of candidate i as g(i) = s(p)+n(m−1)−s(i).
For p to win under Borda voting, we need the manipulating votes to give to candidate
i (where i 6= p) a total Borda score which is less than or equal to g(i). Note that if g(i)
is negative for even one i, then p cannot win under Borda voting.

In the proofs of this paper, we will often need to refer to pairs of votes of a particular
form. We define the pair of votes W(u,v) = {u�v�Others, rev(Others)�u�v}
where Others is a total order in which the candidates in C \ {u, v} are in a pre-defined
lexicographic order, and rev(Others) is its reverse.

3 Unweighted coalitional manipulation
We start by considering the computational complexity of manipulating Borda, Nan-
son’s and Baldwin’s rules with unweighted votes. We prove that the coalitional ma-
nipulation problem is NP-complete under the Borda rule with two manipulators. This
settles an open problem in computational social choice. We also show that Baldwin’s
and Nanson’s rules are NP-complete to manipulate even with a single manipulator.

3.1 Borda rule
In this section we present one of our main results. We prove that computing a manipu-
lation of the Borda rule is NP-hard for two manipulators. Our NP-hardness proof uses
a reduction from a specialised permutation problem that is strongly NP-complete [44].
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Definition 3 (PERMUTATION SUM). Given q integers X1 ≤ · · · ≤ Xq where∑q
i=1Xi = q(q + 1), do there exist two permutations σ and π of 1 to q such that

σ(i) + π(i) = Xi?

We first give a technical lemma that shows we can construct votes for the non-
manipulators with a given target sum.

Lemma 1. Given integers X1 to Xm, we can construct, in time polynomial in∑m
i=1Xi, votes over m+ 1 candidates such that the total Borda score of candidate ci

is Xi + C for 1 ≤ i ≤ m, and for candidate cm+1 is y ≤ C, for some integer C ≥ 0.

Proof: This proof uses the construction of McGarvey [30], which has been used else-
where in the computational social choice literature [43, 7]. We show how to increase
the score of a candidate by 1 more than the other candidates except for the last can-
didate whose score increases by 1 less. For instance, suppose we wish to increase the
score of candidate c1 by 1 more than candidates c2 to cm, and by 2 more than candidate
cm+1. Consider the pair of votes W(c1,cm+1) defined in Section 2, and given below:

c1 � cm+1 � c2 � . . . � cm−1 � cm
cm � cm−1 � . . . � c2 � c1 � cm+1.

The score of candidate c1 increases by m + 1, of candidates c2 to cm by m, and of
candidate cm+1 by m − 1. By repeated construction of such votes, we can achieve
the desired result. For example, we may construct Xi copies of W(ci,cm+1) for all
1 ≤ i ≤ m.

As the number of votes is linear in
∑m

i=1Xi, the time is polynomial in the sum of
the given integers. 2

Theorem 1. Unweighted coalitional manipulation for the Borda rule is NP-complete
with two manipulators.

Proof: The problem is clearly in NP, since a set of manipulator votes that make the
preferred candidate win is a polynomial witness that a manipulation exists.

To show NP-hardness, we reduce from the PERMUTATION SUM problem. Given
an instance of PERMUTATION SUM with q integers, X1 to Xq , we assume, without
loss of generality, that 2 ≤ Xi ≤ 2q for all i ∈ {1, . . . , q}. Given such an instance of
PERMUTATION SUM, we create a manipulation problem with m = q + 3 candidates
p, a1 . . . , aq+2 where the preferred candidate of the two manipulators is p. By Lemma
1, we can construct an election in which the non-manipulators cast votes to give the
score vector for 〈p, a1, . . . aq+2〉 of:

〈C, 2(q + 2)−X1 + C, . . . , 2(q + 2)−Xq + C, 2(q + 2) + C, y〉

for some C ≥ 0 and y ≤ C. We show next that two manipulators can make candidate
p win such an election if and only if the PERMUTATION SUM problem has a solution.

(⇒) Suppose we have two permutations σ and π of 1 to n with σ(i) + π(i) = Xi.
We construct two manipulating votes, in which the candidates get the following scores,
respectively:

〈q + 2, σ(1), . . . , σ(q), 0, q + 1〉
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〈q + 2, π(1), . . . , π(q), 0, q + 1〉.
Since σ(i) + π(i) = Xi, these give a total score vector:

〈2(q + 2) + C, 2(q + 2) + C, . . . , 2(q + 2) + C, 2(q + 1) + y〉.

As y ≤ C and we tie-break in favour of the manipulators, candidate p wins.
(⇐) Suppose we have a successful manipulation. To ensure candidate p beats can-

didate aq+1, both manipulators must put candidate p in first place. Similarly, both
manipulators must put candidate aq+1 in last place, otherwise candidate aq+1 will beat
our preferred candidate. Hence the final score of candidate p is 2(q + 2) + C. The
gap between the final score of candidate p and the current score of candidate ai (where
1 ≤ i ≤ q) is Xi. The sum of these gaps is q(q + 1). Therefore, if any candidate a1 to
aq gets a score of q+ 1 then candidate p will be beaten. Hence, the two scores of q+ 1
have to go to the least dangerous candidate which is candidate aq+2.

The votes of the manipulators are thus of the form:

〈q + 2, σ(1), . . . , σ(q), 0, q + 1〉

〈q + 2, π(1), . . . , π(q), 0, q + 1〉
where σ and π are two permutations of 1 to q. To ensure candidate p beats candidate
aj for j ∈ [1, q], we must have:

2(q + 2)−Xj + C + σ(j) + π(j) ≤ 2(q + 2) + C.

Rearranging this gives:
σ(j) + π(j) ≤ Xj .

Since
∑q

i=1Xi = q(q + 1) and
∑q

i=1 σ(i) =
∑q

i=1 π(i) = q(q+1)
2 , there can be no

slack in any of these inequalities. Hence,

σ(j) + π(j) = Xj .

That is, we have a solution of the PERMUTATION SUM problem. 2

The result of Theorem 1 was proved independently by Betzler et al. [8] using a
different reduction from the same problem. Their proof relies on the same basic idea
as ours – constructing a set of non-manipulating votes such that the candidates have
specific gaps. In contrast to our proof which needs Θ(m) non-manipulators and a
single dummy candidate using the construction of Lemma 1, Betzler et al. use a more
complicated construction which introduces Θ(m) dummy candidates but needs only
three non-manipulating votes. It follows therefore that the problem of computing a
manipulation is not fixed parameter tractable in the number of voters.

3.2 Baldwin’s rule
Our next result is proved by reduction from the EXACT 3-COVER (X3C) problem.

Definition 4 (X3C). Given two sets V = {v1, . . . , vq}, q = 3r, and S = {S1, . . . , St},
where t ≥ 2 and for all j ≤ t, |Sj | = 3 and Sj ⊆ V , does there exist a subset S ′ of S
such that each element in V is in exactly one of the 3-sets in S ′?
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Theorem 2. Unweighted manipulation for Baldwin’s rule is NP-complete with one
manipulator.

Proof: We give a reduction from X3C. Given an X3C instance V = {v1, . . . , vq},S =
{S1, . . . , St}, we let the set of candidates be C = {p, d, b}∪V∪A, where p is the manip-
ulator’s preferred candidate, A = {a1, . . . , at}, and d and b are additional candidates.
Members of A correspond to the 3-sets in S. Let m = |C| = q + t+ 3.

The profile P contains two parts: P1, which is used to control the changes in the
score differences between candidates, after a set of candidates is removed, and P2,
which is used to balance the score differences between the candidates.

We make the following observations about the pair of votes W(c1,c2), which were
defined in Section 2. First, these two votes give the following scores to each candidate

s(c1): m
s(c2): m− 2
s(e): m− 1 for e ∈ Others

Second, for any set of candidates C′ ⊆ C and any pair of candidates e1, e2 ∈ C \ C′,

s(e1,W(c1,c2)|C\C′)− s(e2,W(c1,c2)|C\C′)

= s(e1,W(c1,c2))− s(e2,W(c1,c2)) +

 1 if e1 = c2 and c1 ∈ C′
−1 if e1 = c1 and c2 ∈ C′
0 otherwise.

(1)

Here W(c1,c2)|C\C′ is the pair of votes obtained from W(c1,c2) by removing all can-
didates in C′. In words, the formula states that after C′ is removed, the score dif-
ference between e1 and e2 is increased by 1 if and only if e1 = c2 and c1 is re-
moved; it is decreased by 1 if and only if e1 = c1 and c2 is removed; for any other
cases, the score difference does not change. Additionally, for any e ∈ C \ {c1, c2},
s(c1,W(c1,c2))− s(e,W(c1,c2)) = 1 and s(c2,W(c1,c2))− s(e,W(c1,c2)) = −1.

We next show how to use votes of the formW(c1,c2) to construct the first part of the
profile P1. We recall that m = |C| = q+ t+ 3. P1 is composed of the following votes:

• for each j ≤ t and each vi ∈ Sj , there are 2m copies of W(vi,aj);

• for each i ≤ q, there are m copies of W(b,vi);

• there are m(t+ 6) copies of W(b,p).

Let avg(P1) be the average score of candidates in P1. That is, avg(P1) = s(d, P1) =
(m− 1)(6mt+mq+m(t+ 6)). Define occ(i) to be the number of occurrences of the
element vi in sets in S. The votes in P1 give the scores

s(vi, P1): avg(P1) + 2m · occ(i)−m
s(aj , P1): avg(P1)− 6m
s(p, P1): avg(P1)−m(t+ 6)
s(b, P1): avg(P1) +mq +m(t+ 6)
s(d, P1): avg(P1)

8



It is not hard to verify that s(b, P1)−s(p, P1) ≥ mq, and for any c′ ∈ V∪A, s(c′, P1)−
s(p, P1) ≥ 2m. P2 is composed of the following votes:

• for each i ≤ q, there are s(vi, P1) − s(p, P1) −m = 2m · occ(i) + mt + 4m
copies of W(d,vi);

• for each j ≤ t, there are s(aj , P1)− s(p, P1)− 1 = mt− 1 copies of W(d,aj);

• there are s(b, P1)− s(p, P1)−mq = 2m(t+ 6) copies of W(d,b).

Let avg(P2) be the average score of candidates in P2. That is, avg(P2) = s(p, P2) =
(m − 1) (2m ·

∑q
i=1 occ(i) +mtq + 4mq + t(mt− 1) + 2m(t+ 6)). The votes in

P2 give the scores:

s(vi, P2): avg(P2)− (2m · occ(i) +mt+ 4m)
s(aj , P2): avg(P2)− (mt− 1)
s(p, P2): avg(P2)
s(b, P2): avg(P2)− 2m(t+ 6)
s(d, P2): avg(P2) + 2m ·

∑q
i=1 occ(i) +mtq + 4mq + t(mt− 1) + 2m(t+ 6)

Let P = P1 ∪ P2, avg(P ) = avg(P1) + avg(P2). The combined Borda scores are:

s(vi, P ): avg(P )−m(t+ 5)
s(aj , P ): avg(P )−m(t+ 6) + 1
s(p, P ): avg(P )−m(t+ 6)
s(b, P ): avg(P ) +mq −m(t+ 6)
s(d, P ): avg(P ) + qm(t+ 5) + t(m(t+ 6)− 1) + 2m(t+ 6)−mq

We make the following observations about the Borda scores of the candidates in P .

• For any i ≤ q, s(vi, P )− s(p, P ) = m.

• For any j ≤ t, s(aj , P )− s(p, P ) = 1.

• s(b, P )− s(p, P ) = mq.

Suppose the X3C instance has a solution S1, . . . , Sq/3 (this is without loss of gen-
erality since we can rename the subscripts of the 3-sets in the solution to {1, . . . , q/3}).
Then, we let the manipulator vote as follows:

p � d � aq/3+1 � · · · � at � b � V � aq/3 � · · · � a1.

In the following, we use Ck to denote the set of candidates that have not yet been
eliminated after round k.

The candidates with the lowest Borda score before the manipulator’s vote are p
followed by all aj’s, which all have 1 more, as explained above. With the manipulator’s
vote, p overtakes all aj . Moreover, a1 has the lowest Borda score, which means that
a1 is eliminated in the first round. We next show that for all j = 1, . . . , q/3, in round
4j − 3, candidate aj is eliminated, and in round 4j − 2, 4j − 1, 4j, Sj are eliminated.
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Suppose this holds for all rounds before round 4j − 2. In round 4j − 3 candidate
aj is eliminated. By Equation (1), for all c′ ∈ C4j−3 \ (Sj ∪ {d, p}), we have

s(c′, P|C4j−3
)− s(p, P|C4j−3

) = s(c′, P|C4j−4
)− s(p, P|C4j−4

)

s(d, P|C4j−3
)− s(p, P|C4j−3

) = s(d, P|C4j−4
)− s(p, P|C4j−4

)− (mt− 1)

and for any v ∈ Sj , we have

s(v, P|C4j−3
)− s(p, P|C4j−3

) = s(v, P|C4j−4
)− s(p, P|C4j−4

)− 2m

Therefore, in round 4j − 2, the difference between p and the candidates in Sj is
decreased by 2m, which covers their initial difference of m and also the difference in
the manipulator’s vote (as this can be at most m − 2). Meanwhile, d is still leading
by a large margin. Therefore, in rounds 4j − 2, 4j − 1, 4j, the candidates in Sj are
eliminated (the order of elimination does not matter). Eliminating each v ∈ Sj has
three effects on score difference between p and other candidates:

1. the score difference between all ak with v ∈ Sk and p is increased by 2m;

2. the score difference between b and p is decreased by m;

3. the score difference between d and p is decreased by the number of copies of
W(d,v) in P .

These do not affect the fact that candidates in Sj are eliminated in rounds 4j − 2, 4j −
1, 4j, and we also note that for all j < k ≤ q/3, the score difference between p and ak
does not change. Therefore, in round 4j + 1 candidate j + 1 is eliminated.

Continuing, after the first 4q/3 rounds, all candidates vi are eliminated, each de-
creasing the score difference between b and p by m for a total of mq. Hence b and p
are tied for the lowest total Borda score in P (it is not hard to verify that other ak and
d still have higher scores). Considering the manipulator’s vote, b is eliminated next.
This decreases the difference between d and p by 3m(t + 6) (which is the cumulative
effect of the third set of votes in P1 and the third set of votes in P2), and between
aq/3+1, . . . , aq and p by m(t + 6) (by the third set of votes in P1). It follows that in
the next t − q/3 rounds, all remaining candidates in A are eliminated. Finally, when
only p and d remain, they are tied in P . But since the manipulator prefers p to d, p is
the winner.

Suppose the manipulator can cast a vote to make p the winner. We first note that,
from the votes in P1, as long as not all of the candidates in V , A and b are eliminated,
the difference between the score of d and p is greater thanm, so it cannot be covered by
the vote of the manipulator. Hence, d must be eliminated after these other candidates,
that is, in the last round. In the round when b is eliminated, the score of b can be no more
than the score of p. We note that s(b, P )− s(p, P ) = mq and the score difference can
only be reduced by the manipulator ranking b below p, and by eliminating v1, . . . , vq
before b. However, ranking b below p reduces the score difference by no more than
m−1 and eliminating any single candidate in V reduces the difference bym. Therefore,
before b drops out, all q candidates in V must have already dropped out. We note that
for any vi ∈ V , s(vi, P ) − s(p, P ) = m, so the manipulator’s vote cannot cover this
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difference. Also the only other way to reduce this difference is by eliminating some
aj with vi ∈ Sj . Therefore, for each vi ∈ V , there exists at least one aj with vi ∈ Sj

that is removed before vi. For any such aj , no candidate vi ∈ Sj can drop out before
aj . Otherwise the difference between aj and p is increased by 2m, reaching 2m + 1.
Therefore, before b drops out, this difference cannot be covered by the manipulator’s
vote, which means that p drops out before aj . This is a contradiction since we assume
that p drops out after b. On the other hand, no other candidate ak with Sj ∩Sk 6= ∅ can
drop out before b, because when the candidates in the intersection of Sj and Sk drop
out, the difference between ak and p is increased by 2m and becomes positive. Finally,
we note that after aj drops out, in the next three rounds the candidates in Sj drop out.
It follows that the set of candidates in A that drop out before the candidates in V that
they cover corresponds to an exact cover of V . After all the candidates in V drop out, b
drops out, followed by the rest of the candidates in A and then d, as above.

Therefore, the unweighted manipulation problem under Baldwin’s rule is NP-
complete with only a single manipulator. 2

3.3 Nanson’s rule
We reduce the EXACT 3-COVER (X3C) problem to a manipulation problem under
Nanson’s rule.

Theorem 3. Unweighted manipulation for Nanson’s rule is NP-complete with one
manipulator.

Proof: The idea of the proof is similar to that of the proof of Theorem 2. We prove NP-
completeness by reduction from X3C with t ≥ 3q (this is without loss of generality
because if t < q then we can add dummy S1’s to S). Given an X3C instance V =
{v1, . . . , vq}, S = {S1, . . . , St}, we let the set of alternatives be C = {p, d, b1, b2} ∪
V ∪ A, where p is the manipulator’s preferred candidate, V = {v1, . . . , vq}, A =
{a1, . . . , at}, and d, b1, and b2 are auxiliary alternatives. Without loss of generality,
both q and t are even, and t ≥ 3q. We will use the votes W(c1,c2) defined in Section 2
to construct the profile. For any C′ ( C, we make the following observations about
W(c1,c2).

s(c′,W(c1,c2)|C\C′)− |C \ C
′|+ 1 =

 1 if c′ = c1 and c2 6∈ C′
−1 if c′ = c2 and c1 6∈ C′
0 otherwise.

(2)

We note that |C \ C′| − 1 is the average score of the alternatives in W(c1,c2)|C\C′ .
Let m = q + t + 4. Again, the profile has two parts: P1, which is used to control

the score differences between the alternatives and the average score, and P2, which is
used to set the initial scores. P1 consists of the following votes:

• for every j ≤ t there are 7m/2− q/3 copies of W(aj ,b1);

• for every vi ∈ Sj (there are three of them), there are m copies of W(vi,aj);

• for every i ≤ q, there are m copies of W(vi,p);
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• there are mq copies of W(p,b1);

• there are mq + t(7m/2− q/3) copies of W(b1,b2).

The second part of the profile, P2, consists of the following votes, where occ(vi) is
the number of times that vi is covered by the 3-sets in S:

• for any i ≤ q, there are m · occ(vi) copies of W(d,vi),

Let P = P1∪P2 and let avg(P ) = (m−1)|P |/2. We make the following observations
about P :

• s(p, P )− avg(P ) = 0.

• s(d, P )− avg(P ) = m(
∑q

i=1 occ(vi)) = 3mt.

• s(b1, P )− avg(P ) = 0.

• s(b2, P )− avg(P ) = −(mq + t(7m/2− q/3)).

• For any j ≤ t, s(aj , P )− avg(P ) = m/2− q/3.

• For any i ≤ q, s(vi, P )− avg(P ) = m.

Suppose the X3C instance has a solution {S1, . . . , Sq/3} (this is without loss of gener-
ality since we can rename the subscripts of the 3-sets in the solution to {1, . . . , q/3}).
Then, we let the manipulator vote as follows:

p � b1 � b2 � d � aq/3+1 � · · · � at � V � aq/3 � · · · � a1.

The manipulator’s vote does not change the score of any candidate with respect to the
average by more than (m−1)/2, therefore b2 will be eliminated in the first round. The
difference between the score of candidate aj for 1 ≤ j ≤ q/3 and the average will be
m/2 − q/3 − ((m − 1)/2 − j + 1). Since j ≤ q/3, this is seen to be less than or
equal to −1/2, hence these candidates are also eliminated in the first round. No other
candidates are eliminated in the first round: for all candidates in V , the manipulator’s
vote is not enough to make their score less than the average, while all other candidates
receive more than the average from the manipulator.

Let C1 = C \ {a1, . . . , aq/3}. In the second round, by Equation (2), for any vi ∈ V ,
s(vi, P |C1) − avg(P |C1) = 0. The reason is that each vi gets m(occ(i) − 1) points
from the second part of P1 because {S1, . . . , Sq/3} covers V , m points from the third
part of P1, and −m · occ(i) points from P2. Counting in the manipulator’s vote and
recalling that we assumed t ≥ 2q, we have that the scores of all candidates in V are
below the average score. Moreover, because b2 was eliminated in the first round, the
score of b1 is now below the average. Therefore, b1 and all the candidates in V are the
only candidates eliminated in the second round.

Let C2 = C \ ({b1, b2, a1, . . . , aq/3} ∪ V). In the beginning of the third round,
because b1, b2, and all candidates in V were eliminated, we have that for each W(c1,c2)

in P , at least one of c1 and c2 was eliminated. Therefore, the score of all remaining
candidates is the same as the average score in P |C2 . Moreover, for the same reason, in
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any later round the score of all remaining candidates is the same as the average score in
P (restricted to the remaining candidates). Therefore the manipulator’s vote becomes
decisive. It follows that in each of the following rounds, the candidates ranked below
the mid-position in the manipulator’s votes are eliminated. The final winner is the
manipulator’s top-ranked candidate, which is p.

Next, we show that if the manipulator can cast a vote to make p win, then there
exists a solution to the X3C instance. In the first round b2 definitely drops out. This
makes the score of b1 below the average score in the second round (from the mq +
t(7m/2− q/3) copies of W(b1,b2) in P1), which means that b1 will definitely drop out
in the second round. If any of the vi candidates remain in the third round, then the
score of p will be strictly lower than the average score (from m copies of W(vi,p) in
P1). Therefore, all alternatives in V must drop out in the first and second rounds. In
fact, vi’s can only drop out in the second round, and only when there exists j such that
vi ∈ Sj and the alternative aj drops out in the first round. Moreover, no more than q/3
alternatives in A can possibly drop out in the first round (since the only way for them
to drop out is to be ranked among the bottom q/3 positions). Therefore, in order for p
to survive the third round, the bottom q/3 alternatives in the manipulator’s vote must
be among A and they must correspond to an exact cover of V , which means that the
X3C instance has a solution.

Therefore, the unweighted manipulation problem under Nanson’s rule is NP-
complete when there is only one manipulator. 2

Our results about the complexity of manipulating Baldwin’s and Nanson’s rules
significantly increase the size of the set of voting rules used in practice that are known
to be NP-hard to manipulate with a single manipulator. They also contrast to Borda
where computing a manipulation with a single manipulator can be done in polyno-
mial time [4]. Adding elimination rounds to Borda to get Nanson’s or Baldwin’s rules
increases the computational complexity of computing a manipulation with one manip-
ulator from polynomial-time to NP-hard.

4 Weighted coalitional manipulation
In this section we show that weighted coalitional manipulation under Baldwin’s or
Nanson’s rules is NP-complete. It has already been shown that the weighted coalitional
manipulation problem for Borda is NP-hard for three or more candidates [14].

4.1 Baldwin’s rule
Similar to the case of Borda, we prove that the weighted coalitional manipulation prob-
lem for Baldwin’s rule is NP-hard for three or more candidates. Our result is proved
by reduction from the PARTITION problem.

Definition 5 (PARTITION). Given a set of integers A = {k1, . . . , kq} such that∑q
i=1 ki = 2K, does there exist a partition of these numbers into two sets the ele-

ments in each of which sum to K?
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A partition that witnesses the satisfiability of a PARTITION instance is called a
perfect partition.

Theorem 4. For Baldwin’s rule and weighted votes, the coalitional manipulation prob-
lem is NP-hard with three or more candidates.

Proof: We reduce from the PARTITION problem. We construct a coalitional manipu-
lation problem with three candidates (a, b, and p) in which the manipulators want to
make p win.

We suppose the non-manipulators have voted as in the following table.

weights votes
11K a � b � p
5K a � p � b
14K b � p � a

2K − 1 b � a � p
5K p � a � b
5K p � b � a

At this point the scores of the candidates are

s(a) : 39K − 1
s(b) : 48K − 2
s(p) : 39K.

For each integer ki ∈ A, we have a member of the manipulating coalition with
weight 3ki.

Suppose there is a perfect partition. Let the manipulators corresponding to the
integers in one half of the partition vote a�p�b, and the others vote p�a�b. The
scores are now as follows: s(a) = 48K − 1, s(b) = 48K − 2, s(p) = 48K. Hence
b will be eliminated. In the next round, p wins as s(a) = 21K − 1 but s(p) = 27K.
Thus the manipulators can make p win if a perfect partition exists.

Conversely, suppose there is a manipulation in which p wins. Suppose a is elimi-
nated in the first round. Then the scores in the second round from the non-manipulators
are: s(b) = 27K − 1, and s(p) = 15K. The manipulators cannot now prevent b from
winning. Hence bmust be eliminated in the first round. If any manipulator puts b above
last place, b will not be eliminated and will win. Thus all the votes of the manipulators
are a�p�b or p�a�b. Consider the following partition of A constructed from any
successful manipulation. In the first half of the partition, we put all integers associated
with weighted votes of the manipulators of the form a�p�b. In the second half, we
put all integers associated with weighted votes of the form p�a�b. Suppose the first
half of the partition sums up to K − x and the second half sums up to K + x. Then we
have scores: s(a) = 48K − 1− 3x, s(b) = 48K − 2 and s(p) = 48K + 3x. If x ≥ 1
then a is eliminated. On the other hand, if x ≤ −1 then p is eliminated. Hence x = 0
and we have a perfect partition. For more than three candidates, we add “harmless”
candidates that are in the last places of every vote of the non-manipulators. 2

Note that Coleman and Teague in Theorem 13 of [13] provide an NP-hardness
result for the weighted coalitional manipulation problem for voting rules like Baldwin’s
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that eliminate candidates one by one. Our result for Baldwin’s rule is different in
two aspects. First, Coleman and Teague use a different tie-breaking rule. They break
ties against the manipulator whilst, as is more common in the literature, we suppose
ties are broken in their favour. The second difference is that Coleman and Teague do
not specify a precise bound on the number of candidates, while we present a proof
that weighted coalitional manipulation under Baldwin’s rule is NP-hard for just three
candidates.

4.2 Nanson’s rule
We show that the weighted coalitional manipulation problem under Nanson’s rule is
NP-complete with four or more candidates. However, if there are at most three candi-
dates, the computational complexity of computing a manipulation under Nanson’s rule
is polynomial-time.

Theorem 5. For Nanson’s rule and weighted votes, the coalitional manipulation prob-
lem is NP-complete with four or more candidates.

Proof: We reduce from PARTITION. For any PARTITION instance, we construct a
coalitional manipulation problem with four candidates (a, b, c, and p) where p is the
candidate that the manipulators wish to win. We suppose the non-manipulators have
voted as in the following table.

weights votes
2(2K + 1) b�p�c�a
2(2K + 1) a�c�b�p
2(2K + 1) c�p�b�a
2(2K + 1) a�b�c�p
2(K + 2) p�a�b�c
2(K + 2) c�b�p�a

1 p�a�b�c
1 a�b�c�p
1 a�b�p�c
2 c�p�a�b
2 a�c�p�b
2 b�p�a�c

The total scores from non-manipulators are as follows: s(a) = 28K + 38, s(b) =
34K + 37, s(c) = 34K + 37 and s(p) = 24K + 38. The average score is 30K + 37.5.
For each integer ki, we have a member of the manipulating coalition with weight 2ki.
Now, suppose there is a solution to the PARTITION instance. Let the manipulators
corresponding to the integers in one half of the partition vote p�a�b�c, and let the
others vote p�a�c�b.

The total scores are now as follows: s(a) = 36K + 38, s(b) = 36K + 37, s(c) =
36K + 37 and s(p) = 36K + 38. The average score is 36K + 37.5.

The alternatives b and c are eliminated, and p wins in the second round. Thus the
manipulators can make p win if a perfect partition exists.
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Conversely, suppose there is a successful manipulation. Clearly, we need to ensure
that p is not eliminated in the first round. To ensure this, all manipulators must rank p
first. Otherwise, the score of p would be less than the average score 36K + 37.5, so p
would be eliminated. Next, we show that if b and c are not eliminated in the first round,
p cannot win overall. We consider all possible sets of candidates besides b and c that
could be eliminated in the first round. There are six cases.

1. only a is eliminated in the first round. The scores from non-manipulators in
the second round are as follows: s(b) = 24K + 27, s(c) = 24K + 27, and
s(p) = 12K + 21. The average score is 20K + 25. Even with the maximum
possible score of 8K from the manipulators, p is eliminated. This contradicts the
assumption that p wins.

2. only b is eliminated in the first round. Note that if a is not ranked second in
the votes of all manipulators, its score will be less than the average 36K + 37.5
and it will be eliminated. This contradicts our assumption that p and a are not
eliminated in the first round. Hence, all manipulators have to cast votes that rank
p first and a second. The votes of the manipulators in the second round will
then be p � a � c, giving scores s(a) = 22K + 23, s(c) = 24K + 25, and
s(p) = 26K + 27. The average score is 24K + 25. Hence, a is eliminated. In
the next round, p is eliminated, as s(p) = 10K + 10, s(c) = 14K + 15, and the
average score is 12K + 12.5. This contradicts the assumption that p wins.

3. only c is eliminated in the first round. This case is symmetric to the second case.

4. a and b are eliminated in the first round. In the second round, the scores from
non-manipulators are s(c) = 14K+15 and s(p) = 6K+10. The 4K points from
the manipulators cannot now prevent p from being eliminated. This contradicts
the assumption that p wins.

5. a and c are eliminated in the first round. This is symmetric to the fourth case.

6. a, b, and c are all eliminated in the first round. This case is impossible because if
b and c are eliminated then a must get 8K points from the manipulators. Hence,
a reaches the second round.

Thus, the only way for p to win is if b and c are eliminated in the first round. For
this to occur, the manipulators have to put p in first place, and a in second place. If
b gets more than a score of 2K from the manipulators in the first round, then its total
score will be greater then the average of 36K + 37.5 and it will not be eliminated in
the first round. Similarly, if c gets more than a score of 2K from the manipulators,
then it will not eliminated in the first round. However, as both the first and second
place in the manipulators votes are fixed, there is exactly 4K points to divide between
them. Hence, they must divide the 4K points equally. Hence, there exists a solution to
the PARTITION instance. For more than four candidates, we add “harmless” candidates
that are in last place in every vote of the non-manipulators. 2

Clearly, there is a polynomial-time algorithm to compute a manipulation of Bald-
win’s rule with two candidates (since this case degenerates to majority voting). For
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Nanson’s rule, on the other hand, there is a polynomial-time algorithm for up to three
candidates.

Theorem 6. For Nanson’s rule and weighted votes, the coalitional manipulation prob-
lem can be solved in polynomial time for up to three candidates.

Proof: Consider an election with three candidates (a, b, and p) in which the manipula-
tors want p to win. We prove that in a successful manipulation, either all manipulators
vote p � a � b or they all vote p � b � a. If p does not win using one of these two
votes, then p cannot win. Therefore we simply try out the two votes and compute if p
wins in either case.

Suppose the manipulators can make p win. We first note that there is no harm in
raising p to the first position while keeping the other parts of their preferences the same.
By doing so, we ensure that the score of p goes up and the scores of a and b go down.
The only possible change in the elimination process is that now both a and b drop out
in the first round, so that p still wins.

Now, suppose that all manipulators rank p in their top positions. Let PM denote
a profile for the manipulators that makes p win. Because Nanson’s rule never selects
the Condorcet loser, it cannot be the case that both a majority of voters prefer a to p,
and b to p. Without loss of generality, suppose that a majority of voters prefer p to a.
We argue that if all manipulators vote p � a � b, then p still wins. For the sake of
contradiction, suppose all manipulators vote p � a � b but p does not win. As the
manipulators still rank p in their top positions, the score of p in the first round is the
same as in PM . Therefore, p must enter (and lose) the second round. Hence, only a
is eliminated in the first round, and in the second round a majority of voters prefer b to
p. However, having the manipulators vote p � a � b only lowers b’s score in the first
round, compared to the case where they vote PM . Hence, when the manipulators vote
PM , b also enters the second round and then a majority of voters prefer b to p, which
is a contradiction.

Therefore, if the manipulators can make p win, then they can make p win by all
voting p � a � b, or all voting p � b � a. 2

The reason that the above algorithm does not work for manipulating Baldwin’s rule
is that the algorithm requires that we can place p as the first choice in every manip-
ulating vote. However, in a successful manipulation in the proof of Theorem 4, the
manipulators are split between p � a � b and a � p � b, and switching the votes of
the latter group into p � a � b spoils the manipulation.

The results in this section suggest that Baldwin’s rule is arguably harder to ma-
nipulate because Nanson’s rule is polynomial to manipulate with three candidates, and
requires at least four candidates to be NP-hard, but Baldwin’s is NP-hard already with
three candidates. It follows that computing a manipulation is NP-hard for both rules
when votes are unweighted, the number of candidates is small, and there is uncertainty
about how agents have voted in the form of a probability distribution [14]. Note that the
coalitional manipulation problem for Borda with weighted votes is NP-hard for three
or more candidates [14]. Thus, somewhat surprisingly, adding an elimination round
to Borda, which gives us Nanson’s rule, decreases the computational complexity of
computing a manipulation with three manipulators from NP-hard to polynomial-time.
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5 Heuristic methods
NP-hardness only characterises the worst-case complexity of computing a manipula-
tion. Given enough manipulators, we can easily make any candidate win. We consider
next minimising the number of manipulators required. For example, REVERSE is a
simple heuristic method proposed to compute Borda manipulations [45]. The method
constructs each manipulator’s vote in turn: preferred candidate p is put in first place,
and the remaining candidates are put in reverse order of their current Borda scores. The
method continues constructing manipulating votes until p wins. A long and intricate
argument shows that REVERSE constructs a manipulation which uses at most one more
manipulator than is optimal.

Example 1. Suppose we have four candidates, c1, c2, c3, p, and the two non-
manipulators have cast votes: c3 � c1 � c2 � p and c2 � c3 � c1 � p. Then we
have the score vector 〈3, 4, 5, 0〉. We use REVERSE to construct a manipulation that
makes candidate p win. REVERSE first constructs the vote: p � c1 � c2 � c3. The
score vector is now 〈5, 5, 5, 3〉. REVERSE next constructs the vote: p � c1 � c2 � c3.
(It will not matter how ties between 1, 2, and 3 are broken.) The score vector is now
〈7, 6, 5, 6〉. Finally, REVERSE constructs the vote: p � c3 � c2 � c1. The score vector
is 〈7, 7, 7, 9〉. Hence, REVERSE requires three manipulating votes to make candidate p
win. As we will see later, this is one more vote than in the optimal solution.

Following [45], we propose four new heuristic methods. The first two algorithms
work with all three voting rules. However, the last two algorithms are designed specifi-
cally for the elimination style of Baldwin’s and Nanson’s rules. All algorithms attempt
to construct a manipulation with a specific number of manipulators. Hence, in order to
find the best possible number of manipulators using one of these algorithms, we run it
for one manipulator, then two and so on until a manipulation is found. We refer to a
manipulation with k manipulators as a k-manipulation.

5.1 Manipulation matrices
In this section we prove some auxiliary results that are needed to develop our heuristic
algorithms.

We can view REVERSE as greedily constructing a manipulation matrix. A manipu-
lation matrix is an n by m matrix A, where n is the number of manipulators, m is the
number of candidates, and A(i, j) = k if and only if the ith manipulator adds a score
of k to candidate cj . The jth column of the matrix, A(j), is the set of scores received
by candidate cj , and each of the n rows is a permutation of 0 to m− 1. We require that
the sum of the jth column is less than or equal to g(cj), the maximum score candidate
cj can receive without defeating p. REVERSE constructs this matrix row by row.

Our new methods break out of the straightjacket of constructing a manipulation
matrix in row-wise order. To achieve this, we take advantage of an interesting result
that relaxes the constraint that each row is a permutation of 0 to m − 1. This lets us
construct a relaxed manipulation matrix. This is an n by m matrix that contains n
copies of 0 to m − 1 in which the sum of the jth column is again less than or equal
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to g(cj). In a relaxed manipulation matrix, a row can repeat an integer provided other
rows compensate by not having that integer at all.

Theorem 7. Suppose there is an n by m relaxed manipulation matrix A. Then there is
an n by m manipulation matrix B with the same column sums.

Proof: The proof is by induction on n. In the base case, n = 1 and we just set
B(1, j) = A(1, j) for all j ∈ {1, . . . ,m}. In the inductive step, we assume the theorem
holds for all relaxed manipulation matrices with n−1 rows. Let h(i) be the sum of the
ith column of A. We use a perfect matching in a suitable bipartite graph to construct
the first row of B and then appeal to the induction hypothesis on an n−1 by m relaxed
manipulation matrix constructed by removing the values in the first row from A.

We build a bipartite graph as follows. The first half of the bipartite graph consists
of m vertices {Vi}|m−1i=0 , while the second half of the graph consists of m vertices
{Wj}|mj=1. Each vertex Vi represents a score, i, that must appear in the first row of B.
Each vertex Wj represents the jth column of A.

We add the edge (Vi,Wj) to this bipartite graph for each i ∈ [0,m−1], j ∈ [1,m],
and k ∈ [1, n] where A(k, j) = i. An edge (Vi,Wj) therefore means that score i can
be taken from the jth column of A.

Note that there can be multiple edges between any pair of vertices. By construction,
the degree of each vertex is n.

Suppose we take any U ⊆ {Vi | i ∈ [0,m− 1]}. Recall first that the Hall condition
[27] states that a perfect matching exists if and only if |V | ≤ |N(V )| for all sets of
vertices V (where N(V ) is the neighbourhood of V ). Since the degree of each vertex
is n, there are n|U | edges leaving U . For the same reason, each vertex in N(U) can
accommodate at most n incoming edges. Therefore n|U | ≤ n|N(U)|. Hence, the Hall
condition holds and a perfect matching exists. Consider an edge (Vi,Wj) in such a
perfect matching. We construct the first row of B by setting B(1, j) = i. As this is a
matching, each i ∈ [0,m− 1] occurs once, and each column is used exactly one time.
We now construct an n − 1 by m matrix from A by removing one element equal to
B(1, j) from each column j. By construction, each value i ∈ [0,m− 1] occurs n− 1
times, and the column sums are now h(j)−B(1, j). Hence it is a relaxed manipulation
matrix. We can therefore appeal to the induction hypothesis. This gives us an n by m
manipulation matrix B with the same column sums as A. 2

We can extract from this proof a polynomial-time method to convert a relaxed ma-
nipulation matrix into a manipulation matrix. Hence, it is enough to propose new
heuristic methods that construct relaxed manipulation matrices. This is advantageous
for greedy methods like those proposed here, as we have more flexibility in placing
integers into good positions in a relaxed manipulation matrix.

5.2 Largest Fit
Our first heuristic method, LARGEST FIT is inspired by bin packing and multiprocessor
scheduling. Constructing an n by m relaxed manipulation matrix is similar to packing
nm objects into m bins with a constraint on the capacity of the different bins and an
extra constraint on the number of items (n) that can be placed in each bin. The problem
is also similar to scheduling nm unit length jobs with different memory requirements
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on n different processors with a constraint on the total memory footprint of the n
different jobs running at every clock tick and schedule length fixed to m. Krause et al.
[29] have proposed a simple heuristic for this problem that schedules the unassigned
job with the largest memory requirement to the time step with the maximum remaining
available memory that has less than n jobs assigned.

LARGEST FIT works in a similar way to construct a relaxed manipulation matrix.
It assigns the largest unallocated score to the largest gap. More precisely, it first assigns
n instances of m− 1 to column p of the matrix (since it is best for the manipulators to
put p in first place in their votes). It then allocates the remaining (n− 1)m numbers in
reverse order to the columns corresponding to the candidate with the currently smallest
score who has not yet received n votes from the manipulators. Unlike REVERSE, we
do not necessarily fill the matrix in row-wise order.

Example 2. Consider again Example 1. We start with the score vector 〈3, 4, 5, 0〉. One
manipulator alone cannot increase the score of candidate p enough to beat c2 or c3.
Therefore, we need at least two manipulators. LARGEST FIT first puts two 3s in column
4 of the relaxed manipulation matrix. This gives the score vector 〈3, 4, 5, 6〉. The next
largest score is 2. LARGEST FIT puts this into column 1 as this has the larger gap.
This gives the score vector 〈5, 4, 5, 6〉. The next largest score is again 2. LARGEST FIT
puts this into column 2 giving the score vector 〈5, 6, 5, 6〉. The two next largest scores
are 1. LARGEST FIT puts them in columns 1 and 3, giving the score vector 〈6, 6, 6, 6〉.
Finally, the two remaining scores of 0 are put in columns 2 and 3, so all columns
contain two scores. This gives a relaxed manipulation matrix corresponding to the
manipulating votes: p � c2 � c1 � c3 and p � c1 � c3 � c2. With these votes, p wins
based on the tie-breaking rule. Unlike REVERSE, LARGEST FIT constructs an optimal
manipulation with just two manipulators.

As we show in Section 5.5, LARGEST FIT and REVERSE, are, in fact, incompara-
ble. There is an infinite family of problems on which LARGEST FIT finds an optimal
manipulation but REVERSE does not, and vice versa.

5.3 Average Fit
Our second heuristic method, AVERAGE FIT takes into account both the size of the
gap and the number of scores still to be added to each column. If two columns have
the same gap, we want to choose the column that contains fewer scores. To achieve
this, we look at the average score required to fill each gap: that is, the size of the gap
divided by the number of scores still to be added to the column. Each manipulator
gives their largest score, m− 1, to the preferred candidate p and then has to distribute
their remaining scores among other candidates. Initially, a manipulator has m − 1
scores to distribute. We call all manipulator scores that have not been distributed so
far “unassigned scores”. At each step, AVERAGE FIT selects a column and a score
to distribute to that column. First, the column is chosen, by selecting the column for
which the size of the remaining gap divided by the number of scores still to be added
to the column is largest. We tie-break by choosing the column containing the fewest
scores. Then, an unassigned score is chosen to distribute to that column. We choose the
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largest unassigned score that will fit into that column’s gap. If there is no unassigned
score that will fit into the gap, then the largest unassigned score is chosen.

Example 3. Consider again Examples 1 and 2. We start with the score vector
〈3, 4, 5, 0〉. This method computes, identically to LARGEST FIT, that two manipula-
tors are needed. Like LARGEST FIT, AVERAGE FIT first puts two 3s in column 4 of the
relaxed manipulation matrix. This gives the score vector 〈3, 4, 5, 6〉. The next largest
score is 2. AVERAGE FIT puts this into column 1 as this has the largest average 3/2.
This gives the score vector 〈5, 4, 5, 6〉. The next largest score is again 2. AVERAGE FIT
puts this into column 2, which has average 2/2 = 1, giving the score vector 〈5, 6, 5, 6〉.
The two next largest scores are 1. AVERAGE FIT puts the first 1 in column 1, which has
average 1/1 and the next 1 in column 3 which has average 1/2. This gives the score
vector 〈6, 6, 6, 6〉. Finally, the two remaining scores of 0 are put in columns 2 and 3,
so all columns contain two scores. This is identical to the manipulation computed by
LARGEST FIT, with votes p � c2 � c1 � c3 and p � c1 � c3 � c2.

For an example on which AVERAGE FIT beats LARGEST FIT, see Theorem 9. For
an example on which LARGEST FIT beats AVERAGE FIT, see Theorem 10.

5.4 Eliminate and Reverse Eliminate
Our next methods are designed to take into account the elimination style nature of
Baldwin’s and Nanson’s rules.

The first method, which we call ELIMINATE, repeatedly constructs votes in which
the desired candidate is put in first place, and the other candidates in the reverse of
the current elimination order. Thus, the first candidate eliminated is put in last place,
the second candidate eliminated is put in the penultimate place, and so on. For Nan-
son’s rule, we order candidates eliminated in the same round by their Borda score in
that round. The intuition behind ELIMINATE is to move the desired candidate up the
elimination order whilst keeping the rest of the order unchanged.

Our final method, which we call REVELIMINATE, repeatedly construct votes in
which the desired candidate is put in first place, and the other candidates in the current
elimination order. For instance, the first candidate eliminated is put in second place.
For Nanson’s rule, we order candidates eliminated in the same round by the inverse of
their Borda score in that round. The intuition behind REVELIMINATE is to move the
desired candidate up the elimination order, and to assign the largest Borda scores to the
least dangerous candidates.

It is easy to show that all methods will eventually compute a manipulation of Nan-
son’s or Baldwin’s rule in which the desired candidate wins.

Example 4. We revisit Examples 1- 3 and show the operation of ELIMINATE for Bald-
win’s rule. The initial score vector is 〈3, 4, 5, 0〉, so p is eliminated in the first round.
In the second round, the score vector is 〈1, 2, 3〉, so c1 gets eliminated, and in the last
round c3 and c2 are in a tie with the score vector 〈1, 1〉. We assume the tie is broken
in favour of c2, so it wins the election. Therefore, ELIMINATE will have the first ma-
nipulator vote p � c2 � c3 � c1. With one manipulator, this gives the score vector
〈3, 6, 6, 3〉. With tie breaking in favour of p, c1 is eliminated in the first round, so the
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score vector in the second round is 〈4, 3, 2〉, so p is eliminated in the second round.
This means that we need at least one more manipulator. By construction, ELIMINATE
can only change the step in which p is eliminated. The other candidates are eliminated
in the same order amongst themselves. Hence, the vote of the second manipulator is
also p � c2 � c3 � c1. The initial score vector is now 〈3, 8, 7, 6〉. The candidate c1
is again eliminated in the first round. In the second round, the score vector is 〈5, 3, 4〉.
Therefore, c3 is eliminated. In the third round, c2 and p are tied with the score vec-
tor 〈2, 2〉. Since we break ties in favour of the preferred candidate, ELIMINATE has
computed a manipulation with two manipulators. This is optimal.

With REVELIMINATE, the first manipulator votes p � c1 � c3 � c2. This gives
the score vector 〈5, 4, 6, 3〉. Hence p is again eliminated in the first round. The score
vector in the second round is 〈3, 2, 4〉. Hence c2 is eliminated. In the third round,
The score vector in the second round is 〈1, 2〉. Hence c1 is eliminated and c3 wins.
The vote of the second manipulator is therefore p � c2 � c1 � c3. This gives the
score vector 〈6, 6, 6, 6〉. We suppose tie breaking eliminates c3. The score vector in the
second round is 〈4, 4, 4〉. We suppose tie breaking now eliminates c2. The score vector
in the third round is 〈2, 2〉. Since we break ties in favour of p, REVELIMINATE has
also computed an optimal manipulation.

5.5 Theoretical properties
First, we show that LARGEST FIT is incomparable to REVERSE since there exists an
infinite family of problems on which LARGEST FIT finds an optimal manipulation but
REVERSE does not, and vice versa.

Theorem 8. For Borda voting, there exists an election for which LARGEST FIT finds
an optimal 2-manipulation, but REVERSE produces a 3-manipulation.

Proof: We suppose there are just two non-manipulators with votes σ and σ′, and the
preferred candidate p is cm. Let σ = 〈1, 2, . . . ,m− 1, 0〉 and let

σ′ = 〈m
2

+ 1,
m

2
+ 2, ...,

m

2
+
m

2
− 1, 1, 2, ...,

m

2
, 0〉.

Then σ + σ′ =
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)
,
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2
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, ...,

(m
2
− 1 +

m

2
+
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2
− 1
)
,(m
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+ 1
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, ...,

(
m− 1 +

m

2

)
, 0〉

This gives m
2 + 2x for 1 ≤ x ≤ m

2 − 1 and m
2 + 2x − 1 for 1 ≤ x ≤ m

2 , or in other
words, there exists a score m

2 + i for all 1 ≤ i ≤ m− 1. Before continuing, we rename
the candidates so that s(cm, P ) = 0 and s(ci, P ) = m

2 + i for all 1 ≤ i ≤ m− 1.
Recall that the preferred candidate is p = cm. The first vote generated by REVERSE

is v1 = p � c1 � c2 � · · · � cm−1, after which s(ci, P ∪ {v1}) = m
2 + m − 1 for

all candidates ci 6= cm. This is larger than the score of the distinguished candidate
s(p, P ∪ {v1}) = m − 1. Therefore another manipulator is added. Without loss of
generality, we suppose its vote is v2 = cm � c1 � c2 � · · · � cm−1. The resulting
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Figure 1: The 2-manipulation generated by LARGEST FIT for the election in Theo-
rem 8.

scores of the competing candidates are s(ci, P∪{v1, v2}) = m
2 +(m−1)+(m−i−1) =

(5/2)m−2−i. So candidate c1 still has larger score than s(p, P ∪{v1, v2}) = 2m−2.
Therefore, REVERSE does not find a 2-manipulation. Note that, as REVERSE never
uses more than one additional manipulator than is optimal, it will successfully find a
3-manipulation.

LARGEST FIT will first give the highest scores, m − 1, from both manipulators to
the preferred candidate. Then in each iteration, LARGEST FIT will place a score from
the multi-set S2 = {0, . . . ,m − 2} ] {0, . . . ,m − 2} into the manipulation matrix
B. The first m − 1 iterations of LARGEST FIT will place the kth largest score from
S2 into the kth column of matrix B for 1 ≤ k ≤ m − 1. Note that the kth largest
score is m − 2 − b(k − 1)/2c. Let Bm−1 be the tentative manipulation matrix at
this point and write sum(Bm−1(i)) for the sum of the elements of its ith column.
Then, the score of candidate ci under this partial manipulation is sum(Bm−1(i)) +
s(ci, P ) = (m−2−b(i−1)/2c)+ m

2 + i for all i, hence sum(Bm−1(i))+s(ci, P ) ≤
sum(Bm−1(i+1))+s(ci+1, P ) for all 1 ≤ i ≤ m−2, and so the relative order of the
candidates’ scores does not change. The multi-set of scores available at this point is
S′2 = {0, . . . , m2 −1}]{0, . . . , m2 −2}. The nextm−1 iterations of LARGEST FIT will
place the kth largest score from S′2 into the kth column of matrixB for 1 ≤ k ≤ m−1.
So column i will receive the element m

2 − 1− d(i− 1)/2e. Let B2(m−1) be the matrix
when the loop terminates. The score of candidate ci under the manipulationB2(m−1) is
sum(B2(m−1)(i))+s(ci, P ) = (m−2−b(i−1)/2c)+(m

2 +i)+(m
2 −1−d(i−1)/2e) =
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2(m−1) for all i, while the achievable score of candidate p is also 2(m−1). Therefore,
LARGEST FIT finds a 2-manipulation. Figure 1 illustrates how the scores are placed in
matrix B by LARGEST FIT, where the shaded area represents the scores s(ci, P ). 2

Unfortunately, LARGEST FIT does not share the guarantee of REVERSE that in the
worst case it requires one more manipulator than is optimal. In fact the number of extra
manipulators used by LARGEST FIT is not bounded.

Theorem 9. For Borda voting, there exists an election with 4 candidates and 2k votes
(k divisible by 36) on which both REVERSE and AVERAGE FIT will find an optimal
manipulation but LARGEST FIT requires at least k/9− 3 additional manipulators.

Proof: Consider a Borda election in which the scores of four candidates after the non-
manipulators P vote are s(c1, P ) = 6k, s(c2, P ) = 4k, s(c3, P ) = 2k, s(p, P ) = 0.
These scores can be achieved if all 2k votes are c1 � c2 � c3 � p. REVERSE will
use 2k manipulators, all voting p � c3 � c2 � c1, to achieve a score of 6k for all
candidates. This is the only optimal manipulation. To see that AVERAGE FIT will find
the optimal manipulation, note that the initial gaps are 0, 2k, and 4k and the averages
0, 1, and 2 for candidates c1, c2 and c3, respectively. In the first step, AVERAGE FIT
will assign a score of 2 to candidate c3 and will continue to do that as long as the
average of candidate c3 is greater than that of candidate c2. To find when that happens,
we let x be the number of iterations and solve 4k−2x

2k−x = 1⇒ x = 2k. This means that
AVERAGE FIT will give all 2k scores of 2 to candidate c3. Similarly, we see that it will
give all scores of 1 to candidate c2 and only scores of 0 to candidate c1. This means
that all manipulators will vote p � c3 � c2 � c1, the only optimal manipulation.

It remains to argue that LARGEST FIT requires more than 2k + k/9 − 4 manip-
ulators. We exploit the fact that LARGEST FIT is monotonic, in the sense that if it
finds a successful Borda manipulation with a given number of manipulators, it also
succeeds with more. Additional manipulators only give LARGEST FIT more opportu-
nity to increase the score of the preferred candidate over the other candidates. Assume
for contradiction that we find a manipulation using n = 2k + k/9 − 4 = 19k/9 − 4
manipulators. We will follow the execution of LARGEST FIT until a contradiction is
obtained. By monotonicity, LARGEST FIT cannot use 2k + k/9 − 4 or fewer manip-
ulators. Note that given our definition of n, since k is divisible by 4 and 9, n−k

2 is an
integer.

Let B denote the relaxed manipulation matrix constructed by LARGEST FIT, and
let B(i), i ∈ {1, . . . ,m} denote its ith column. We write sum(B(i)) for the sum
of the elements in B(i). First, the algorithm will place k 2’s in B(3), at which point
sum(B(3)) = 2k + 2k = 4k = s(2, P ). Then it will begin to place 2’s in columns
B(2) and B(3) evenly, until all remaining n − k 2’s have been placed into B. At this
point, B(2) contains n−k

2 2’s, and the number of 2’s that B(3) contains is k + n−k
2 =

k/2 + n/2 = k/2 + (19k/9 − 4)/2 = 14k/9 − 2 < 19k/9 − 4 = n. So at this
point, neither B(3) nor B(2) is full yet (B(2) has fewer elements than B(3)). Both
columns sum to 4k + 2(n−k

2 ) = 46k/9 − 4 = 5k + k/9 − 4 < 6k. Therefore,
the algorithm will start putting 1’s in both B(2) and B(3) evenly, until either their
column sums reach 6k or B(3) gets filled. In fact, B(3) will be filled before its sum
reaches 6k, since B(3) requires n−k

2 more elements to be filled, but at this point,
sum(B(2)) = sum(B(3)) = 46k/9− 4 + n−k

2 = 51k/9− 6 = 5k+ 2k/3− 6 < 6k.
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Now, the algorithm will continue by putting k/3 + 6 1’s into B(2), at which point
sum(B(2)) = 51k/9 − 6 + k/3 + 6 = 6k. Then the algorithm will start putting 1’s
evenly in bothB(1) andB(2), until either it runs out of 1’s orB(2) is filled. In fact, the
1’s will run out beforeB(2) is filled, sinceB(2) requires n−(n−k

2 + n−k
2 +k/3+6) =

2k/3− 6 more elements, which is equal to the number of remaining 1’s, but these are
spread between B(1) and B(2). So B(2) will get (2k/3− 6)/2 = k/3− 3 additional
1’s, for a total of sum(B(2)) = 4k+2(n−k

2 )+ n−k
2 +k/3+6+k/3−3 = 19k/3−3 >

19k/3 − 12 = 3n. Since sum(B(2)) > 3n there is no manipulation using n =
19k/9−4 manipulators. Therefore, LARGEST FIT requires at least n+1 = 2k+k/9−3
manipulators. 2

AVERAGE FIT is also incomparable to LARGEST FIT. Like REVERSE,
AVERAGE FIT finds optimal manipulations on the elections in the proof of Theorem 9.
However, there exist examples on which LARGEST FIT finds an optimal manipulation
but AVERAGE FIT does not.

Theorem 10. For Borda voting, there exist an election on which LARGEST FIT finds
an optimal manipulation but AVERAGE FIT requires an additional vote.

Proof: We failed to find a simple example but a computer search using randomly
generated instances gave the following. Consider an election in which the manipulators
wish candidate c8 to win, and 8 non-manipulators have voted as follows:

#voters vote
3 c1�c2�c3�c4�c5�c6�c7�c8
1 c1�c2�c3�c4�c5�c7�c6�c8
1 c1�c2�c3�c6�c5�c4�c7�c8
1 c7�c1�c6�c5�c4�c2�c3�c8
2 c8�c7�c6�c5�c4�c3�c2�c1

This gives the score vector for 〈c1, . . . , c8〉 of:

〈41, 34, 30, 27, 27, 26, 25, 14〉.

On this problem, LARGEST FIT finds an optimal manipulation that makes the final can-
didate win but AVERAGE FIT requires an additional vote. The calculations are shown
in Appendix A. 2

So far we have not found any instances where REVERSE performs better than
AVERAGE FIT.

Finally, we consider properties of heuristic algorithms with respect to Baldwin’s
and Nanson’s rules. It appears that it is harder to find an approximately optimal ma-
nipulation for these rules than for the Borda rule. For all our heuristic methods, we
can give examples where the heuristic computes a manipulation that uses several more
manipulators than is optimal. The most interesting result is that although REVERSE
was shown to never require more than one extra manipulator than optimal under the
Borda rule [45], the result does not transfer to Baldwin’s and Nanson’s rules. Indeed,
even with a fixed number of candidates, REVERSE can require an unbounded number
of extra manipulators.
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Theorem 11. For Baldwin’s rule, there exists an election with 7 candidates and 42n
votes (n even) where REVERSE computes a manipulation with at least 10n more votes
than is optimal.

Proof: Consider an election over candidates a, b, c, d, e, f , and p where p is
the preferred candidate of the manipulators. We define V(u,v) as the pair of votes:
{u�v�Others�p, rev(Others)�u�v�p}, where Others is some fixed ordering of
the other candidates and rev(Others) is its reverse. Note that these votes differ from
the pair of votes W(u,v) defined in Section 2. The non-manipulators cast the follow-
ing votes: 3n copies of V(a,b), V(b,c), V(c,d), V(d,e), and V(e,f). In addition, there
are 6n copies of the votes: p�a�Others and rev(Others)�p�a. After the non-
manipulators have voted, s(a) = s(f) = 138n, s(b) = s(c) = s(d) = s(e) = 141n,
and s(p) = 42n.

If 18n manipulators vote identically p�a� . . .�f then p wins. The following
table shows scores of all candidates in 6 rounds.

s(a) s(b) s(c) s(d) s(e) s(f) s(p)

Round 1 228n 213n 195n 177n 159n 138n 150n
Round 2 189n 174n 156n 138n 117n − 126n
Round 3 150n 135n 117n 96n − − 102n
Round 4 111n 96n 73n − − − 78n
Round 5 72n 54n − − − − 54n
Round 6 30n − − − − − 30n

By the tie-breaking rule, p wins in the last round.
This manipulation provides an upper bound on the size of an optimal manipulation

for Baldwin’s rule.
REVERSE will put p in the first place, then a and f in some order, and then the

remaining candidates. Without loss of generality, we suppose REVERSE breaks ties
by constructing the vote p � a � f � b � c � d � e. It alternates this vote with
p � a � f � e � d � c � b. After n such manipulating votes have been constructed,
the scores of candidates a to f are level at 142n + n/2, and p is at 48n. From then
on, the manipulators put p in first place and alternate the order of the other candidates.
Without loss of generality, we suppose REVERSE breaks ties by constructing the vote
p � a � b � c � d � e � f . It alternates this vote with p � f � e � d � c � b � a.
At least 28n votes are therefore required in total for p to move out of last place. Hence,
REVERSE requires at least 10n extra manipulators compared to the optimum number
for Baldwin’s.

2

Theorem 12. For Nanson’s rule, there exists an election with four candidates and
110n votes where REVERSE computes a manipulation with at least 4n more votes than
is optimal.

Proof: Consider an election over a, b, c, and p, where p is the preferred candidate of
the manipulators. We use the votesW(u,v) defined in Section 2. Non-manipulators cast
the following votes: 15n copies ofW(a,c),W(b,c) andW(b,p), and 10n copies ofW(a,p).
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After the non-manipulators have voted, s(a) = 190n, s(b) = 195n, s(c) = 135n, and
s(p) = 140n. The average score is 165n.

If 21n manipulators vote identically p�c�a�b then p wins. The following table
shows scores of all candidates in two rounds.

average s(a) s(b) s(c) s(p)

Round 1 196.5n 211n 195n 177n 203n
Round 2 65.5n 65n − − 66n

Hence, p wins in the last round.
This manipulation provides an upper bound on the size of an optimal manipulation

for Nanson’s rule.
REVERSE will construct the vote p�c�a�b. After 5n such manipulating votes,

the scores of a and b will become level. REVERSE will then alternate between
p�c�b�a and p�c�a�b. In total, REVERSE will construct 25n such manipu-
lating votes, 15n for p�c�a�b and 10n for p�c�b�a. At this point, p wins under
Nanson’s rule as demonstrated in the following table.

average s(a) s(b) s(c) s(p)

Round 1 202.5n 205n 205n 185n 215n
Round 2 135n 135n 135n − 135n

Note that pwins in the second round by our tie-breaking assumption. Hence, REVERSE
uses 4n extra manipulators compared to the optimum number for Nanson’s.

2

These results demonstrate that, for Baldwin’s and Nanson’s rules, REVERSE does
not approximate the optimal number of manipulators by an additive constant (as it does
for Borda).

6 Experimental results
To test the performance of these heuristic methods in practice, we ran some experi-
ments. Our experimental setup is based on that in [40]. We generated votes drawn
either from the impartial culture model, or the Polya-Eggenberger urn model [6]. In
the urn model, votes are placed in an urn and drawn at random. Votes are placed back
into the urn along with b other votes of the same type. This captures varying degrees
of social homogeneity. We set b = m! so that there is an approximately 50% chance
that the second vote is the same as the first. In both models, we generated between 22

and 27 votes for varying m.

6.1 Borda rule
First we present our results for the Borda rule. Manipulation under the Borda rule can
be easily modelled as a constraint satisfaction problem. We used this property to obtain
optimal solutions for our instances. We tested 1000 instances at each problem size
and determined if the returned manipulations are optimal, by modelling the problem
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LARGEST FIT
m # Inst. REVERSE LARGEST FIT AVERAGE FIT beats

AVERAGE FIT

4 2771 94.2% 92.9% 100.0% 0.00%
8 5893 85.5% 87.7% 99.3% 0.03%

16 5966 76.8% 81.9% 98.6% 0.05%
32 5968 71.1% 80.7% 98.5% 0.02%
64 5962 66.8% 80.0% 98.4% 0.05%

128 5942 65.3% 79.9% 98.0% 0.03%
Total 32502 74.9% 83.0% 98.7% 0.03%

Table 1: Percentage of elections drawn from the impartial culture model for which
each heuristic found an optimal manipulation with Borda voting.

LARGEST FIT
m # Inst. REVERSE LARGEST FIT AVERAGE FIT beats

AVERAGE FIT

4 3929 93.3% 66.3% 100.0% 0.00%
8 5501 85.6% 50.1% 99.9% 0.00%

16 5502 79.2% 41.1% 99.5% 0.02%
32 5532 72.4% 36.3% 99.5% 0.00%
64 5494 67.6% 33.0% 99.7% 0.00%

128 5571 64.5% 30.6% 99.9% 0.00%
Total 31529 76.3% 41.7% 99.7% 0.00%

Table 2: Percentage of elections drawn from an urn model for which each heuristic
found an optimal manipulation with Borda voting.
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Table 3: Average number of manipulators required by each heuristic in elections drawn
from an impartial culture model using the Borda rule.

n Opt. REVERSE LARGEST FIT AVERAGE FIT

4 9.30 9.36 9.37 9.30
8 6.33 6.48 6.45 6.34

16 7.08 7.31 7.26 7.10
32 7.86 8.15 8.06 7.88
64 8.62 8.95 8.82 8.63

128 9.29 9.63 9.49 9.31

Table 4: Average number of manipulators required by each heuristic in elections drawn
from an urn model using the Borda rule.

n Opt. REVERSE LARGEST FIT AVERAGE FIT

4 42.21 42.28 42.94 42.21
8 32.67 32.82 33.78 32.67

16 34.08 34.29 35.68 34.09
32 35.06 35.34 36.97 35.07
64 36.76 37.09 38.92 36.77

128 37.70 38.06 39.98 37.71

of finding an optimal manipulation as a constraint satisfaction problem and solving it
using the solver Gecode [25].

The constraint solver found an optimal manipulation in 32502 out of the 32679
distinct impartial culture elections within the 1 hour time-out. Results are shown in Ta-
ble 1. Both LARGEST FIT and AVERAGE FIT provide a significant improvement over
REVERSE, solving 83% and 99% of instances to optimality. REVERSE solves fewer
problems to optimality as the number of candidates increases, while AVERAGE FIT
does not seem to suffer from this problem as much: AVERAGE FIT solved all of the
four candidate instances and 98% of the 128 candidate ones. Table 3 shows the average
number of manipulators used by each of the heuristics, compared to the average opti-
mal number of manipulators. We also note that in every one of the 32502 instances, if
REVERSE found a k vote manipulation either AVERAGE FIT did too, or AVERAGE FIT
found a (k − 1) vote manipulation, i.e., AVERAGE FIT never found a worse solution
than REVERSE. Furthermore, LARGEST FIT used at most two more manipulators than
the optimum.

With the urn model, we were able to find an optimal manipulation for 31529 out of
the 31530 elections within the 1 hour time-out. Tables 2 and 4 give results. REVERSE
solves about the same proportion of the urn instances as impartial culture instances,
76%. However, the performance of LARGEST FIT drops significantly. It is much worse
than REVERSE solving only 42% of instances to optimality. Furthermore, in contrast
to the impartial culture elections where LARGEST FIT used at most two extra manip-
ulators, here LARGEST FIT used up to 14 more manipulators than the optimum. The
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Table 5: Percentage of elections drawn from an impartial culture model with five
candidates where the heuristic finds an optimal manipulation.

Rules REVERSE LARGEST FIT AVERAGE FIT ELIMINATE REVELIMINATE

Baldwin 74.4% 74.4% 75.8% 62.2% 75.2%
Nanson 74.6% 76.0% 78.0% 65.4% 66.9%
Borda 95.7% 98.8% 99.8% 95.7% 10.7%

Table 6: Percentage of elections drawn from an urn model with five candidates where
the heuristic finds an optimal manipulation.

Rules REVERSE LARGEST FIT AVERAGE FIT ELIMINATE REVELIMINATE

Baldwin 75.1% 75.4% 77.3% 68.9% 83.4%
Nanson 78.1% 79.0% 79.8% 72.2% 79.4%
Borda 96.1% 92.7% 99.9% 96.1% 4.4%

reason for such behaviour is that the non-manipulators’ profiles in urn instances are
similar to the profiles in the proof of Theorem 9, where LARGEST FIT requires an un-
bounded number of additional manipulators. The good performance of AVERAGE FIT
is maintained. It found an optimal manipulation on more than 99% of the instances. It
never lost to REVERSE and was only beaten by LARGEST FIT on one instance in our
experiments.

These results suggest that while Borda manipulation is NP-hard, in practice the
simple heuristic algorithms that we proposed can compute optimal manipulations in
the vast majority of cases. Thus, it appears that Borda elections are vulnerable to
manipulation.

6.2 Baldwin’s and Nanson’s rules
It is much more difficult to model the unweighted coalitional manipulation problem un-
der Baldwin’s and Nanson’s rules as a constraint satisfaction problem since the scores
of the candidates in each vote change in each round. Hence, we partitioned our ex-
periments into two parts: small problems where we can find an optimum solution in a
brute-force manner and large problems that show how heuristic algorithms scale.

Our first set of experiments used 3000 elections with five candidates and five non-
manipulating voters. This is small enough to find the optimal number of manipulators
using brute force search, and thus to determine how often a heuristic computes an
optimal solution. We threw out the 20% or so of instances generated in which the
preferred candidate has already won before the manipulators vote. Results are given
in Tables 5–6. The tables demonstrate that heuristics that are very effective at finding
an optimal manipulation for the Borda rule do not perform as well for Baldwin’s and
Nanson’s rules. For example, AVERAGEFIT almost always finds an optimal manipu-
lation of the Borda rule but can only find optimal solutions about three quarters of the
time for Baldwin’s or Nanson’s rules. Note that ELIMINATE and REVELIMINATE are
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strictly speaking defined just for Nanson’s and Baldwin’s rules. With the Borda rule,
we can simply use the same manipulating votes they construct with, say, Baldwin’s
rule. These put the preferred candidate in first place so eventually must be successful
in constructing a successful Borda manipulation.

In our second set of experiments, we eschew computation of an optimal manip-
ulation in order to use larger problems. This amplifies the differences between the
different heuristic methods. Similarly to Section 6.1, we tested 1000 instances at each
problem size, which gives 6000 instances in total.

Tables 7–10 show the results for the average number of manipulators. The results
show that, with Nanson’s and Baldwin’s rules, REVERSE works slightly better overall
compared to LARGESTFIT and AVERAGEFIT, which themselves outperform the other
two methods especially for problems with large number of candidates. This contrasts
with the results on the Borda rule in the previous section, where LARGESTFIT and
AVERAGEFIT do much better than REVERSE. In most cases AVERAGEFIT is less
effective than LARGESTFIT except urn elections with Nanson’s rule.

These experimental results suggest that Baldwin’s and Nanson’s rules are harder to
manipulate in practice than Borda. Heuristic methods that work well on the Borda rule
are significantly less effective on these rules. Overall, REVERSE, LARGESTFIT, and
AVERAGEFIT appear to offer the best performance, though no heuristic dominates.

7 Related problems
There exists an interesting connection between the problem of finding a coalition of
two manipulators for the Borda voting rule and two other problems in discrete math-
ematics: the problem of finding a permutation matrix with restricted diagonals sums
(PMRDS) [11] and the problem of finding multi Skolem sequences [32]. We consider
this connection for two reasons. First, future advances in these adjacent areas may give
insights into new manipulation algorithms or into the complexity of manipulation. Sec-
ond, this connection reveals an interesting open case for Borda manipulation – Nordh
has conjectured that when the gaps g(i) of all candidates are distinct, then manipulation
can be done in polynomial time [33].

A permutation matrix is an n by n Boolean matrix which is obtained from an iden-
tity matrix by a permutation of its columns. Hence, a permutation matrix contains a
single value 1 in each row and each column. Consider the 2n − 1 diagonals of the
matrix, numbering them from the top right to bottom left, and let di be the sum of
the elements of the ith diagonal. Finding a permutation matrix such that its diagonal
sums form a given sequence (d1, . . . , d2n−1) is the permutation matrix with restricted
diagonals sums problem. This problem occurs in discrete tomography, where we need
to construct a permutation matrix from its X-rays for each row, column, and diagonal.
The X-ray values for each row and column are one, while the values for the diagonal
are represented by the sequence (d1, . . . , d2n−1).

We transform a Borda manipulation problem with m + 1 candidates and 2 manip-
ulators such that

∑m
i=1 g(i) = m(m− 1) to a PMRDS problem on an m by m matrix.

Note that here we use m to denote the number of candidates excluding the preferred
candidate. Note that such a manipulation problem is tight, i.e., all gaps will be matched
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Table 7: Average number of manipulators required by each heuristic in elections drawn
from an impartial culture model using Baldwin’s rule.

n REVERSE LARGEST FIT AVERAGE FIT ELIMINATE REVELIMINATE

4 2.25 2.25 2.25 2.44 2.21
8 2.99 3.07 3.01 3.35 3.06

16 4.31 4.41 4.40 4.79 4.67
32 5.93 6.03 6.14 6.61 6.84
64 8.56 8.65 8.84 9.54 11.02

128 12.13 12.24 12.41 13.37 16.06

Table 8: Average number of manipulators required by each heuristic in elections drawn
from an impartial culture model using Nanson’s rule.

n REVERSE LARGEST FIT AVERAGE FIT ELIMINATE REVELIMINATE

4 2.15 2.17 2.15 2.25 2.28
8 2.91 2.96 2.84 3.05 3.21

16 4.13 4.27 4.05 4.44 4.99
32 5.80 5.88 5.81 6.18 7.46
64 8.51 8.58 8.82 8.99 12.04

128 12.07 12.09 13.00 12.60 17.90

Table 9: Average number of manipulators required by each heuristic in elections drawn
from an urn model using Baldwin’s rule.

n REVERSE LARGEST FIT AVERAGE FIT ELIMINATE REVELIMINATE

4 3.26 3.23 3.24 3.35 3.14
8 5.95 5.96 5.99 6.37 5.82

16 11.64 11.66 11.87 12.74 11.52
32 21.70 21.78 22.35 24.67 22.41
64 43.09 43.37 44.24 49.07 45.70

128 82.19 81.82 83.62 95.37 91.80

Table 10: Average number of manipulators required by each heuristic in elections
drawn from an urn model using Nanson’s rule.

n REVERSE LARGEST FIT AVERAGE FIT ELIMINATE REVELIMINATE

4 3.20 3.19 3.20 3.28 3.22
8 5.93 5.98 5.95 6.13 6.09

16 11.62 11.93 11.64 12.16 12.37
32 22.36 22.78 22.53 24.00 24.39
64 44.56 45.50 44.77 48.81 49.69

128 87.18 87.55 86.76 97.02 99.43
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Figure 2: Permutation matrix with restricted diagonals sums (PMRDS)

exactly, and all candidates will have the same score after the manipulation. In parallel
with the description of the transformation, we illustrate it with the following example
with five candidates. Our preferred candidate is 4. Let 〈4, 4, 6, 6, 0〉 be a score vector,
where our preferred candidate has 0 score, and 〈4, 4, 2, 2〉 be the corresponding gap
vector. We label rows of a permutation matrix with scores given by the first manipula-
tor, and columns of the permutation matrix with the reverse of the scores given by the
second manipulator. We label each element of the matrix with the sum of its row and
column labels. Figure 2a shows the labelling for our example in gray.

Note that each element on a diagonal is labelled with the same value. Therefore,
each diagonal labelled with value k represents the gap of size k in the manipulation
problem. Hence, the sum of the diagonal di labelled with k encodes the number of
occurrences of gaps of size k. For example, d3 = 2 ensures that there are two gaps of
size 2 and d5 = 2 ensures that there are two gaps of size 4. The remaining diagonal
sums, di, i ∈ {1, 2, 4, 6, 7}, are fixed to zero.

Consider a solution of PMRDS (Figure 2b). Suppose the cell P (x, y) contains the
value one. We conclude that the first manipulator gives the score x and the second gives
the score m− y− 1 to a candidate with the gap x+ (m− y− 1). In our example, cell
P (0, 1) contains one, hence the first manipulator gives the score 0 and the second gives
the score m− y − 1 = 4− 1− 1 = 2 to a candidate with the gap 2. By examining all
cells with the value one, we obtain the complete votes of the manipulators, which in our
example are (4 � 1 � 2 � 0 � 3) for the first manipulator and (4 � 0 � 3 � 1 � 2)
for the second, to fill the gaps 〈4, 4, 2, 2〉. As the number of ones in each diagonal
is equal to the number of occurrences of the corresponding gap, the constructed two
manipulator votes make our candidate a winner. The total scores are 〈8, 8, 8, 8, 8〉.

Finding a coalitional manipulation under the Borda rule using two manipulators
is also connected to the problem of finding multi Skolem sequences used for the
construction of Steiner triple system [32]. Given a multi-set of positive integers
H = {h1, . . . , hm} we need to decide whether there exists a partition P of the set
{1, . . . , 2m} into pairs (pi, p

′
i), i = 1, . . . ,m, so that H ≡ {pi − p′i | (pi, p

′
i) ∈ P}.
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There is a reduction from a manipulation problem with m+ 1 candidates and 2 manip-
ulators with gapsG = {g(1), . . . , g(m)} such that

∑m
i=1 g(i) = m(m−1) to a special

case of multi Skolem sequences with
∑m

i=1 hi = m2 similar to the reduction from a
scheduling problem in [32].2 The multi Skolem sequence instance that corresponds to
a manipulation instance is defined by H = {2m− g(1)− 1, . . . , 2m− g(m)− 1}. If a
manipulation is given by the votes σ, π, then the partitions (2m−σ(i), π(i)+1) satisfy
2m− σ(i)− π(i)− 1 = 2m− g(i)− 1. Conversely, suppose there exists partition P
of the set {1, . . . , 2m} into pairs (pi, p

′
i), i = 1, . . . ,m, so that hi = pi− p′i, (pi, p′i) ∈

P, i = 1, . . . ,m. Then the votes are given by σ(i) = 2m − pi, π(i) = p′i − 1, which
satisfy σ(i) + π(i) = 2m− pi + p′i − 1 = 2m− (2m− g(i)− 1)− 1 = g(i).

8 Conclusions
In this paper we have investigated theoretically and empirically the computational com-
plexity of manipulation problems for the Borda voting rule and two extensions of Borda
voting, Baldwin’s and Nanson’s rules. We proved that it is NP-hard to compute a
coalitional manipulation of the Borda rule with just two manipulators. This resolves
a long-standing open question regarding the computational complexity of unweighted
coalitional manipulation for common voting rules. We showed that two other rules,
Baldwin’s and Nanson’s rules, which are derived from the Borda rule are also NP-hard
to manipulate both with weighted and unweighted votes. Because of these NP-hardness
results, we proposed several simple heuristic methods. We showed that they can com-
pute optimal manipulations of the Borda rule in almost all the randomly generated
elections. This suggests that the Borda rule is not resistant to manipulation in prac-
tice. In contrast, these heuristic algorithms did not perform as well in either Baldwin
or Nanson elections, suggesting that these elimination style rules are more resistant to
manipulation than the Borda rule.
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A Proof of Theorem 10
In Table 11, we show the operation of LARGEST FIT when trying to find a manipulation
with four manipulators. This is easily seen to be optimal because the maximum score
of the preferred candidate that can be achieved with three manipulators is 35, which is
not enough to defeat the 1st candidate. Based on these assignments, we find a perfect
matching on the manipulation matrix (not shown), as described in Theorem 7. This
gives the following votes for the manipulators:

〈0, 4, 2, 3, 1, 5, 6, 7〉
〈1, 0, 4, 2, 3, 6, 5, 7〉
〈0, 1, 5, 4, 6, 3, 2, 7〉
〈0, 3, 1, 6, 5, 2, 4, 7〉
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In Table 12, we show the operation of AVERAGE FIT. At this point, the algorithm has
yet to place a 2, but all candidates have gap of at most 1, so it has failed to find a
manipulation. 2
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c1 c2 c3 c4 c5 c6 c7 Vote
1 8 12 15 15 16 17 6:7
1 8 12 15 15 16 11 6:6
1 8 12 15 15 10 11 6:5
1 8 12 15 9 10 11 6:4
1 8 12 9 9 10 11 5:3
1 8 7 9 9 10 11 5:7
1 8 7 9 9 10 6 5:6
1 8 7 9 9 5 6 5:5
1 8 7 9 4 5 6 4:4
1 8 7 5 4 5 6 4:2
1 4 7 5 4 5 6 4:3
1 4 3 5 4 5 6 4:7
1 4 3 5 4 5 2 3:4
1 4 3 2 4 5 2 3:6
1 4 3 2 4 2 2 3:5
1 4 3 2 1 2 2 3:2
1 1 3 2 1 2 2 2:3
1 1 1 2 1 2 2 2:4
1 1 1 0 1 2 2 2:6
1 1 1 0 1 0 2 2:7
1 1 1 0 1 0 0 1:1
0 1 1 0 1 0 0 1:2
0 0 1 0 1 0 0 1:3
0 0 0 0 1 0 0 1:5
0 0 0 0 0 0 0

Table 11: Operation of LARGEST FIT when trying to find a manipulation with four
manipulators. The first seven columns show the gaps of the candidates. In the final
column, we use the notation x : y to indicate that LARGEST FIT assigns vote x to
candidate y. The preferred candidate (c8, not shown in the table) gets 7 from all four
manipulators, thus its score is 42. We omit the 0 scores.
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c1 c2 c3 c4 c5 c6 c7 Vote
1/4 8/4 12/4 15/4 15/4 16/4 17/4 6:7
1/4 8/4 12/4 15/4 15/4 16/4 11/3 6:6
1/4 8/4 12/4 15/4 15/4 10/3 11/3 6:5
1/4 8/4 12/4 15/4 9/4 10/3 11/3 6:4
1/4 8/4 12/4 9/3 9/3 10/3 11/3 5:7
1/4 8/4 12/4 9/3 9/3 10/3 6/2 5:6
1/4 8/4 12/4 9/3 9/3 5/2 6/2 5:3
1/4 8/4 7/3 9/3 9/3 5/2 6/2 5:5
1/4 8/4 7/3 9/3 4/2 5/2 6/2 4:4
1/4 8/4 7/3 5/2 4/2 5/2 6/2 4:7
1/4 8/4 7/3 5/2 4/2 5/2 2/1 4:6
1/4 8/4 7/3 5/2 4/2 1/1 2/1 4:4
1/4 8/4 7/3 1/1 4/2 1/1 2/1 3:3
1/4 8/4 4/2 1/1 4/2 1/1 2/1 3:2
1/4 5/3 4/2 1/1 4/2 1/1 2/1 3:3
1/4 5/3 1/1 1/1 4/2 1/1 2/1 3:5
1/4 5/3 1/1 1/1 1/1 1/1 2/1 2:7
1/4 5/3 1/1 1/1 1/1 1/1 0/0 2:2
1/4 3/2 1/1 1/1 1/1 1/1 0/0 2:2
1/4 1/1 1/1 1/1 1/1 1/1 0/0

Table 12: Operation of AVERAGE FIT when trying to find a manipulation with four
manipulators. Since the algorithm works on averages, we show averages as fractions
to convey both the actual gap, and the remaining number of votes.
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