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Abstract— In this paper, we initiate a structure theory of linear
codes with bounded trellis complexity. The theory is based on
the observation that the family of linear codes over Fq , some
permutation of which has trellis state-complexity at most w,
is a minor-closed family. It then follows from a deep result of
matroid theory that such codes are characterized by finitely many
excluded minors. We provide the complete list of excluded minors
for w = 1, and give a partial list for w = 2. We also give
a polynomial-time algorithm for determining whether or nor a
given code has a permutation with state-complexity at most 1.

I. INTRODUCTION

Given a linear code C over the finite field Fq , the fundamen-
tal problem of trellis decoding is to find an equivalent code
C′ whose minimal trellis representation has the least state-
complexity among all codes equivalent to C. This problem is
known to be difficult; indeed, for any fixed finite field Fq , the
following decision problem is NP-complete [12]:

Problem: STRONG TRELLIS STATE-COMPLEXITY (STSC)
Instance: An m × n generator matrix for a linear code C

over Fq , and an integer w > 0.
Question: Is there a code C ′ equivalent to C, whose minimal

trellis has state-complexity at most w?
The outlook is not so gloomy if we weaken the above

problem by not considering the integer w to be a part of the
input to the problem. In other words, for a fixed finite field Fq ,
and a fixed integer w > 0, we consider the following problem:

Problem: WEAK TRELLIS STATE-COMPLEXITY (WTSC)
Instance: An m × n generator matrix for a linear code C

over Fq .
Question: Is there a code C ′ equivalent to C, whose minimal

trellis has state-complexity at most w?
In this paper, we provide strong evidence in support of our
belief that WTSC is solvable in polynomial time.

Our approach to the above problem relies on the notion
of code minors. A minor of a code C is any code that can be
obtained from C by a (possibly empty) sequence of shortening
and puncturing operations. A minor of C that is not C itself
is called a proper minor of C. A family, F, of codes over
Fq is said to be minor-closed if, for each C ∈ F, any code
equivalent to a minor of C is also in F. A code, D, is said to
be an excluded minor for a minor-closed family F, if D /∈ F,
but every proper minor of D is in F. It is not hard to see that,
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if F is a minor-closed family, then a code C is in F iff no
minor of C is an excluded minor of F.

Given an integer w > 0, we define a family, TCw;q , of
linear codes over Fq as follows: a code C is in TCw;q iff there
exists a code C′ equivalent to C, such that the minimal trellis of
C′ has state-complexity at most w. It is fairly straightforward
to show, as we do in Section III, that TCw;q is minor-closed.
A deep result of matroid theory [7, Theorem 1.4] then implies
that TCw;q in fact has a finite number of excluded minors.
This connection to matroid theory is drawn in Section IV.

The problem of deciding whether or not C is in TCw;q is
thus equivalent to that of deciding, for each of the finitely
many excluded minors, D, of TCw;q , whether or not C
contains D as a minor. Now, a conjecture in matroid theory
[6, Conjecture 1.3], when extended to codes, states that if D
is a fixed code over Fq , then, given any code C over Fq , it
is decidable in time polynomial in the length of C, whether
or not C contains D as a minor. Hence, if the conjecture is
true1, then membership of a code C in TCw;q can be decided
in time polynomial in the length of C. There is firm evidence
in the literature in support of the conjecture [6].

In Sections V and VI, we find an explicit list of excluded
minors for the binary code families TC1;2 and TC2;2 (which
we denote simply by TC1 and TC2, respectively). We show
that our list of excluded minors for TC1 is complete, but we do
not make the same claim for TC2. We also give a polynomial-
time algorithm for deciding membership of a code in TC1.

Excluded-minor characterizations of TCw;q are a means of
identifying those substructures within a code that prevent the
code from having low trellis state-complexity. These character-
izations could thus be used to design codes of low trellis state-
complexity. It should also be pointed out that TCw;q is not an
asymptotically good code family, in the sense that either the
dimension or the minimum distance of any sequence of codes
from this family must grow sub-linearly with codelength [13].
Thus, its excluded-minor characterizations tell us what kind
of code substructures must be present in asymptotically good
code families.

We begin our exposition by defining the notation to be used
in the rest of the paper.

1Actually, the conjecture as stated here for codes is slightly stronger than
the original conjecture for matroids. However, the conclusion about TCw;q

holds even if the weaker matroid conjecture turns out to be true.



II. NOTATION

Let C be a linear code of length n over Fq . The dimension
of C is denoted by dim(C), and the coordinates of C are
indexed by the integers from the set [n] = {1, 2, . . . , n} as
usual. We will also associate with the coordinates of C a
set, E(C), of coordinate labels, so that there is a bijection
αC : [n] → E(C). The label sequence of C is defined to be
the n-tuple (α1, α2, . . . , αn), where αi = αC(i). From now
on, we will simply let αC denote the label sequence of C.
Unless specified otherwise (as in the case of code minors and
duals below), we will, by default, set E(C) to be [n], and αC

to be the n-tuple (1, 2, 3, . . . , n). In such a case, the label of
each coordinate is the same as its index.

Given a J ⊂ E(C), we will denote by C/J (resp. C \J)
the code obtained from C by puncturing (resp. shortening at)
those coordinates having labels in J . Thus, C \J = (C⊥/J)⊥.
We will also sometimes use C|J to denote the restriction of C
to the coordinates with labels in J , i.e., C|J = C/Jc, where
Jc denotes the set difference E(C) − J .

It is straightforward to see that for any X ⊂ E(C), we have

dim(C \X) = dim(C) − dim(C|X). (1)

Also, if X, J ⊂ E(C) are disjoint, then we obviously have

dim((C/X)|J ) = dim(C|J ), (2)

and it is not difficult to deduce from (1) that

dim((C \X)|J ) = dim(C|J∪X) − dim(C|X). (3)

Another property of dimension that is often useful is the
property of submodularity: for any X,Y ⊂ E(C),

dim(C|X∪Y ) + dim(C|X∩Y ) ≤ dim(C|X) + dim(C|Y ). (4)

A minor of C is a code of the form C/X \Y for disjoint
subsets X,Y ⊂ E(C). We set E(C/X \Y ) = E(C)−(X∪Y ),
and take the label sequence of C/X\Y to be the (n−|X∪Y |)-
tuple obtained from the n-tuple αC = (α1, α2, . . . , αn) by
simply removing those entries that are in X ∪ Y .

The label sequence of the dual code C⊥ is specified to be
the same as that of C, i.e., αC⊥ = αC . Thus, in particular,
E(C) = E(C⊥).

Two length-n linear codes C and C ′ over Fq are defined to
be equivalent if there is an n × n permutation matrix Π and
an invertible n × n diagonal matrix ∆, such that C ′ is the
image of C under the vector space isomorphism φ : F

n
q → F

n
q

defined by φ(x) = (Π∆)x. Informally, C ′ is equivalent to
C if C′ can be obtained by first multiplying the coordinates
of C by some nonzero elements of Fq , and then applying a
coordinate permutation. In such a case, we will write C ≡ C ′.
The equivalence class of codes equivalent to C will be denoted
by [C].

III. TRELLIS COMPLEXITY AND MINORS

We will define trellis state-complexity via the rather useful
notion of the connectivity function of a linear code C. This is

the function λC : 2E(C) → Z defined by

λC(J) = dim(C|J ) + dim(C|Jc) − dim(C), (5)

for each J ⊂ E(C). It is obvious that for any J ⊂ E(C),
we have λC(J) ≥ 0 and λC(J) = λC(Jc). Observe also that
λC(∅) = λC(E(C)) = 0.

Let C be a linear code over Fq , with label sequence αC =
(α1, α2, . . . , αn). The state-complexity profile [5], [9] of C
is the sequence s(C) = (s0(C), s1(C), . . . , sn(C)) defined as
follows: s0(C) = sn(C) = 0, and for 1 ≤ i ≤ n − 1,

si(C) = λC({α1, α2, . . . , αi}). (6)

The quantities si(C) determine the size of the minimal trellis
of C — the number of vertices (states) at time i in the
minimal trellis is precisely qsi(C). The state-complexity of (the
minimal trellis of) the code C is defined to be smax(C) =
maxi∈[n] si(C).

As was noted by Muder [15], equivalent codes C and C ′

may have very different minimal trellises. Therefore, we may
have s(C) 6= s(C′), and even smax(C) 6= smax(C

′). It thus
makes sense to consider the minimum state-complexity,

σ[C] = min
C′∈[C]

smax(C
′) = min

C′∈[C]
max
i∈[n]

si(C
′),

of codes within the equivalence class [C].
In this paper, we are primarily concerned with the family,

TCw;q , of codes C over Fq that satisfy σ[C] ≤ w, where w is
a fixed positive integer. Clearly, TCw;q is closed under code
equivalence, since for any C ∈ TCw;q , we have [C] ⊂ TCw;q .
Furthermore, TCw;q is closed under duality — C ∈ TCw;q iff
C⊥ ∈ TCw;q . This follows from the well known fact [4] that
s(C) = s(C⊥) for any code C, and hence, σ[C] = σ[C⊥].

It is also easily verified that TCw;q is closed under direct
sums, i.e., if C1 and C2 are in TCw;q , then so is C1 ⊕C2. This
is because smax(C1 ⊕ C2) = max { smax(C1), smax(C2) }, so
that σ[C1 ⊕ C2] ≤ max{σ[C1], σ[C2]}.

The main aim of this section is to show that TCw;q is a
minor-closed family, i.e., if C ∈ TCw;q , then for any minor, D,
of C, [D] ⊂ TCw;q . For this, we need to study the connectivity
function λC in more detail.

From the fact that s(C′) = s(C′⊥) for all codes C′ in the
equivalence class [C], we see that λC(J) = λC⊥(J) for all
J ⊂ E(C). Moreover, it follows easily from (4) that λC also
has the submodularity property: for any X,Y ⊂ E(C),

λC(X ∪ Y ) + λC(X ∩ Y ) ≤ λC(X) + λC(Y ). (7)

The next result, which is less obvious, is well known in the
matroid theory literature. We provide a proof here for the
sake of completeness.
Lemma III.1 If D is a minor of C, then for all J ⊂ E(D),
λD(J) ≤ λC(J).

Proof: We start by noting that we may write λC(J) as

λC(J) = dim(C|J ) + dim(C⊥|J ) − |J |. (8)

Indeed, from Lemma 2 of [5], we have dim(C|Jc) = |Jc| −



dim(C⊥ \J), and hence, by (5),

λC(J) = dim(C|J ) + |Jc| − dim(C⊥ \J) − dim(C)

= dim(C|J ) + dim(C⊥) − dim(C⊥ \J) − |J |

= dim(C|J ) + dim(C⊥|J ) − |J |,

with the last equality following from Lemma 1 of [5].
We first prove the lemma in the case when D = C \X for

some X ⊂ E(C). From (8), we have for any J ⊂ E(C \X),

λC\X(J) = dim((C \X)|J ) + dim((C⊥/X)|J ) − |J |

= dim(C|J∪X) − dim(C|X) + dim(C⊥|J ) − |J |,

the second equality above being due to (2) and (3). Therefore,
we have

λC(J) − λC\X(J) = dim(C|J) + dim(C|X) − dim(C|J∪X).
(9)

Since the right-hand side above is always non-negative, we
have that λC(J) ≥ λC\X(J).

We next consider the case when D = C/Y for some Y ⊂
E(C). Since (C/Y )⊥ = C⊥ \Y , we have λC/Y = λC⊥\Y .
Therefore, for any J ⊂ E(C/Y ),

λC(J) − λC/Y (J) = λC⊥(J) − λC⊥\Y (J).

Hence, from (9) above, it follows that λC(J) − λC/Y (J) =
dim(C⊥|J )+dim(C⊥|Y )−dim(C⊥|J∪Y ) ≥ 0. Thus, we also
have that λC(J) ≥ λC/Y (J).

Finally, consider any minor D = C \X/Y . For any J ⊂
E(D) = E(C) − (X ∪ Y ), we have

λC(J) ≥ λC\X(J) ≥ λ(C\X)/Y (J) = λD(J),

as desired.

We can now prove the main result of this section.
Theorem III.2 TCw;q is minor-closed.

Proof: Let C be an arbitrary code in TCw;q , so that
σ[C] ≤ w, and let D be a minor of C. We want to show that
[D] ⊂ TCw;q .

Let C′ be the code in [C] for which smax(C
′) = σ[C]. Clearly,

C′ has a minor D′ that is in [D]. It is enough to show that
D′ ∈ TCw;q , for it then follows from the fact that TCw;q is
closed under code equivalence, that [D] = [D′] ⊂ TCw;q .

Thus, without loss of generality, we may assume that C ′ = C
(so that smax(C) = σ[C]) and D′ = D. Let αC = (α1, . . . , αn).

Suppose first that D = C \{αj}, for some j ∈ [n]. Then,
αD = (α1, . . . , αj−1, aj+1, . . . , αn). Now, for 1 ≤ i < j, we
have from (6) and Lemma III.1,

si(D) = λD({α1, . . . , αi}) ≤ λC({α1, . . . , αi}) = si(C).

And for j ≤ i ≤ n − 1, using the same reasoning as above,
as well as the fact that λD(J) = λD(E(D) − J), we have

si(D) = λD({α1, . . . , αj−1, αj+1, . . . , αi+1})

= λD({αi+2, . . . , αn})

≤ λC({αi+2, . . . , αn})

= λC({α1, . . . , αi+1}) = si+1(C).

It follows that σ[D] ≤ smax(D) ≤ smax(C) = σ[C] ≤ w, and
hence, D ∈ TCw;q .

If D = C/{αj} for some j ∈ [n], the same argument
as above shows that D ∈ TCw;q as well. Thus, any minor
obtained from C by puncturing or shortening at a single coor-
dinate is in TCw;q . It follows by a straightforward induction
argument that if D is any minor of C, then D ∈ TCw;q .

Recall that a code D is called an excluded minor (or
sometimes, a forbidden minor) of the minor-closed family
TCw;q if D /∈ TCw;q , but every proper minor of D is in
TCw;q . It is fairly easy to see that a linear code C over Fq is
in TCw;q iff it contains no minor that is an excluded minor
of TCw;q . The results of the next section show that the list
of excluded minors for TCw;q is in fact finite. Thus, deciding
membership of a code C in TCw;q is accomplished by testing
whether or not C contains as a minor one of the finitely many
excluded minors of TCw;q .

IV. TRELLIS COMPLEXITY AND BRANCHWIDTH

A notion closely related to state-complexity that has re-
ceived considerable recent attention in the matroid theory
literature, is that of branchwidth. We define branchwidth
in the context of codes below, and provide an important
application to state-complexity of matroid-theoretic results on
branchwidth.

A cubic tree is a tree in which the degree of any vertex
is either one or three. One of the degree-one vertices is
distinguished as the root of the tree, while the remaining
degree-one vertices are called leaves. The vertices of degree
three are called internal nodes. For n ≥ 2, let Tn, denote the
set of all cubic trees with n leaves. For any cubic tree T , we
shall let E(T ) denote the set of its edges.

Let C be a linear code of length n over Fq , with label set
E(C). Given a T ∈ Tn, let L be a one-to-one function, called
a labelling, from the set of its leaves to E(C). Note that the
root and the internal nodes do not receive labels from E(C).
Each edge e ∈ E(T ) connects two subtrees of T , so T − e
has two components. We say that edge e displays a subset
X ⊂ E(C) if X is the set of labels of leaves of one of the
components of T − e. Note that if e displays X , then it also
displays Xc. If X is displayed by e, then define wC(e) to be
λC(X), λC being the connectivity function of C. Now, define
the width of T , with respect to the labelling L, to be

wC(T,L) = max
e∈E(T )

wC(e).

The branchwidth of C is defined to be the quantity

β[C] = min
(T,L)

wC(T,L) = min
(T,L)

max
e∈E(T )

wC(e), (10)

the minimum being taken over all pairs (T,L) with T ∈ Tn

and L a labelling of T .
It is easily verified that if C′ is a code equivalent to C,

then β[C′] = β[C]. This is because, given any T ∈ Tn,
for each labelling L of T , there exists a labelling L′ such
that wC(T,L) = wC′(T,L′). So, branchwidth is really a
characteristic of the equivalence class [C].
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Fig. 1. The tree bT , and the labelling bL.

Now, let C be a code with label sequence αC =
(α1, . . . , αn). Let T̂ ∈ Tn be the tree, and L̂ its labelling,
shown in Figure 1. It is clear that for i ∈ {0}∪[n−1], we have
wC(ei) = λC({α1, . . . , αi}) = si(C), while for i ∈ [n − 1],
wC(e′i) = λC({αi}). In particular, wC(e′i) ∈ {0, 1} for each
i ∈ [n − 1].

Lemma IV.1 If wC(e′i) = 1 for some i ∈ [n − 1], then either
si−1 ≥ 1 or si ≥ 1.

Proof: Using the fact that λC(J) = λC(Jc), we have

si−1 + si = λC({αi, αi+1, . . . , αn}) + λC({α1, . . . , αi})

≥ λC({αi}) + λC(E(C)) = w(e′i),

the inequality above arising from (7). The lemma directly
follows.

From the last lemma, it is evident that wC(T̂ , L̂) =
maxi∈[n−1] si(C) = smax(C). The following result is thus a
direct consequence of the relevant definitions.

Lemma IV.2 For any code C, we have β[C] ≤ σ[C].

In particular, any code in TCw;q has branchwidth at most
w. Now, a deep matroid-theoretic result of Geelen and Whittle
[7], when translated into coding-theoretic language, states the
following.

Theorem IV.3 ([7], Theorem 1.4) Let F be a minor-closed
family of linear codes over Fq , and let k be a positive integer.
If each code in F has branchwidth at most k, then F has finitely
many excluded minors.

In view of Theorem III.2, Lemma IV.2 and Theorem IV.3,
the following result is now obvious.

Corollary IV.4 For any finite field Fq and integer w, TCw;q

has finitely many excluded minors.

Therefore, as explained at the end of Section III, member-
ship of a given code C in TCw;q can be decided by testing
whether or not C contains as a minor one of finitely many
codes. It is conjectured [6, Conjecture 1.3], [11, Conjec-
ture 7.2] that the problem of deciding whether or not a given
code C contains a fixed code D as a minor, can be solved in
time polynomial in the length of C. There is strong evidence
in the literature in favour of the validity of this conjecture
[6]. Clearly, if the conjecture is true, then the WTSC problem
stated in Section I can be solved in polynomial time.

V. EXCLUDED MINORS FOR TC1;2

In this section and the next, we restrict our attention to
binary linear codes C with σ[C] ≤ w. To keep our notation
simple, we will use TCw, instead of TCw;2, to denote the
family of such codes. We will illustrate the practical difficulties
involved in precisely determining the excluded minors of TCw

by considering the cases of w = 1 and w = 2 only. In
this section, we deal with the family TC1; the family TC2

is considered in Section VI.
With a little effort, we can determine the complete list of

excluded minors for TC1. In order to do so, we need to bring
in the concept of the cycle code of a graph. Let G be an
undirected graph with vertex set V (G) = {v1, . . . , vm} and
edge set E(G) = {e1, . . . , en}. Let AG be the vertex-edge
incidence matrix of G, i.e., the m × n matrix whose (i, j)th
entry, ai,j , is 1 if vertex vi is incident with edge ej ; and ai,j =
0 otherwise. The cycle code, C(G), of G is the binary linear
code that has AG as a parity-check matrix. The reason for the
nomenclature is that a binary word (c1, . . . , cn) is in C(G) iff
the set of edges {ej : cj = 1} forms a cycle in G. The label
sequence of C(G) is taken to be αC(G) = (e1, . . . , en), and
hence, E(C(G)) = E(G). A code C is said to be graphic if it
is the cycle code of some graph.

We record here some useful facts about cycle codes. Proofs
of these can be found in [16], albeit couched in the language of
matroid theory. If a code C is graphic, then there is a connected
graph G such that C = C(G). When G is connected, the rank
of the matrix AG is |V (G)| − 1, and therefore, dim(C(G)) =
|E(G)|−|V (G)|+1. Furthermore, for any J ⊂ E(G), if AG |J
denotes the matrix obtained by restricting AG to the columns
labelled by the edges in J , then

rank(AG |J ) = dim(C(G)⊥|J ) = r(J), (11)

where r(J) denotes the number of edges in any spanning
forest of the subgraph of G induced by J . To be precise,
letting G[J ] denote the subgraph of G induced by J , we have
r(J) = |V (G[J ])|−ω(G[J ]), where ω(G[J ]) is the number of
connected components of G[J ]. The following useful lemma
is now immediately obvious from the definition of λC⊥ .

Lemma V.1 Let w be a positive integer, and let C = C(G) for
a connected graph G. Then, C⊥ (and hence, C) is in TCw iff
there is an ordering (e1, e2, . . . , en) of the edges of G such that
∀j ∈ [n], r(e1, . . . , ej) + r(ej+1, . . . , en) ≤ |V (G)| + w − 1.

Given e ∈ E(G), define the graph G \e to be the graph
obtained by deleting the edge e along with any vertices that
get isolated as a result of deleting e. Also, define G/e to be the
graph obtained by contracting e, i.e., deleting e and identifying
the two vertices incident with e. A minor of the graph G is
any graph obtained from G via a (possibly empty) sequence
of edge deletions and contractions. The operations of edge
deletion and contraction are the graphic analogues of code
shortening and puncturing, respectively. To be precise, for any
e ∈ E(G), we have

C(G)/e = C(G/e) and C(G) \e = C(G \e). (12)
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Fig. 2. The graph K4 \e.

It follows that any minor of a graphic code is graphic.
We are now in a position to state the main result of this

section, which is an excluded-minor characterization of TC1.
As is usual, we let Kn denote the complete graph on n
vertices, and Km,n the complete bipartite graph with m
vertices in one part, and n in the other.

Theorem V.2 A binary linear code is in TC1 iff it contains no
minor equivalent to C(K4), C(K2,3) or C(K2,3)

⊥.

We first prove the easier “only if” part of the above theorem.
This is accomplished by the following proposition.

Proposition V.3 The codes C(K4), C(K2,3) and C(K2,3)
⊥ are

excluded minors for TC1.

Proof: Let (e1, e2, . . . , e6) be an ordering of the edges
of K4. Then, r(e1, e2, e3) ≥ 2, with equality iff {e1, e2, e3}
forms a triangle, in which case {e4, e5, e6} forms a triad (i.e.
a tree of three edges all incident with a common vertex).
It follows that r(e1, e2, e3) + r(e4, e5, e6) ≥ 5. Hence, by
Lemma V.1, C(K4) is not in TC1.

To show that any proper minor of C(K4) is in TC1, it is
enough to show that for any e ∈ E(K4), C(K4)/e and C(K4)\
e are in TC1. Now, C(K4) is the binary linear code generated
by the matrix




1 0 0 1 1 0
0 1 0 1 1 1
0 0 1 0 1 1


 . (13)

It is obvious that C(K4) is equivalent to its dual, and hence,
(C(K4)/e)

⊥ = C(K4)
⊥ \e ≡ C(K4) \e. Therefore, we only

need to show that C(K4) \ e = C(K4 \ e) is in TC1. For
any e ∈ E(K4), K4 \e is isomorphic to the graph shown in
Figure 2, and the ordering (e1, . . . , e5) of the edges shown in
the figure satisfies the condition of Lemma V.1. Thus, C(K4)\e
is in TC1, and hence, C(K4) is an excluded minor for TC1.

The proof for C(K2,3) and C(K2,3)
⊥ is very similar. For

any J ⊂ E(K2,3) with |J | = 3, it is easy to verify that
r(J) = 3. Therefore, for any partition (J, J c) of E(K2,3),
with |J | = |Jc| = 3, we must have r(J) + r(J c) = 6. Hence,
by Lemma V.1, neither C(K2,3) nor C(K2,3)

⊥ is in TC1.
For any e ∈ E(K2,3), the graphs K2,3/e and K2,3 \e are

as shown in Figure 3. The ordering (e1, . . . , e5) of the edges
shown in the figure satisfies the condition of Lemma V.1, and
hence, C(K2,3)/e and C(K2,3) \e are both in TC1. It follows

1e
e2

e3

e4

e5 e2 e4

e5e31e

Fig. 3. The graphs K2,3 \e and K2,3/e.

K2,3 K2,3
*K4

Fig. 4. The graphs whose cycle codes are excluded minors for TC1.

that C(K2,3) is an excluded minor for TC1, and therefore, so
is C(K2,3)

⊥.

To prove the converse part of Theorem V.2, we need to
show that the codes listed in Proposition V.3 constitute all
the excluded minors of TC1. For the remainder of the proof
of Theorem V.2, we take C to be a binary linear code that
contains no minor equivalent to C(K4), C(K2,3) or C(K2,3)

⊥.
Note that C⊥ also cannot contain a minor equivalent to any
of C(K4), C(K2,3) and C(K2,3)

⊥. Our goal is to show that
C ∈ TC1, or equivalently, that C⊥ ∈ TC1.

It is easily verified that C(K4) is a minor of the [7,4]
Hamming code H7: shortening H7 at any coordinate yields
a code equivalent to that generated by the matrix in (13).
Since K4 (as a graph) is a minor of K5 as well as K3,3, we
find that, by (12), C(K4) is a minor of the codes C(K5) and
C(K3,3). Furthermore, since C(K4) is equivalent to its dual,
it is also a minor of the codes H⊥

7 , C(K5)
⊥ and C(K3,3)

⊥.
Hence, C contains no minor equivalent to any of the codes
H7, H⊥

7 , C(K5), C(K5)
⊥, C(K3,3) and C(K3,3)

⊥. Therefore,
by Theorem 13.3.3 and Proposition 5.2.6 in [16], C = C(G)
for some planar graph G. Evidently, we may take G to be
connected as a graph.

Since TC1 is closed under direct sums, we may assume that
C is connected as a code, i.e., it cannot be expressed as the
direct sum of smaller codes. Therefore, G is either a graph
consisting of a single vertex with a self-loop incident with it,
or G is a loopless graph. Indeed, if |V (G)| ≥ 2, and e were a
self-loop in G, then C ≡ C(G \e) ⊕ {0, 1}. The cycle code of
a graph consisting of a single self-loop is just {0, 1}, which
is obviously in TC1. So, we may assume that G is loopless.
It is a simple matter to check, using Lemma V.1, that for all
loopless, connected graphs G on two vertices, C(G) ∈ TC1.
Hence, we may assume that |V (G)| ≥ 3, in which case, by
Corollary 8.2.22 in [16], G is 2-connected as a graph.

At this point, we need the following definition. A graph
is called an umbrella if it is of the form shown in Figure 5.

2Corollary 8.2.2 in [16] states that for a graph G with |V (G) ≥ 3, and no
isolated vertices, C(G) is connected as a code iff G is 2-connected as a graph.



...

Fig. 5. An “umbrella” graph. A dotted line between a pair of vertices
represents zero or more parallel edges between them.

More precisely, an umbrella is a graph H that consists of a
circuit on m + 1 vertices u0, u1, . . . , um, and in addition, for
each i ∈ [m], zero or more parallel edges between u0 and ui.
Note that H − u0 is a simple path, where H − u0 denotes
the graph obtained from H by deleting the vertex u0 and all
edges incident with it.

The role of umbrellas in our proof is evident from the next
lemma concerning the loopless, 2-connected, planar graph G
such that C = C(G). The lemma also requires the well-known
graph-theoretic notion of the geometric dual of a planar graph
(see e.g. [8, p. 113] or [16, p. 91]).

Lemma V.4 G has a geometric dual G∗ that is isomorphic to
an umbrella.

We prove the lemma using the concept of an outerplanar
graph. A planar graph is said to be outerplanar if it has a
planar embedding in which every vertex lies on the exterior
(unbounded) face. We will refer to such a planar embedding
of the graph as an outerplanar embedding. Outerplanar graphs
were characterized by Chartrand and Harary [2] as graphs
that do not contain K4 or K2,3 as a minor.

Proof of Lemma V.4: Since C contains no minor equivalent
to C(K4) or C(K2,3), by (12), G cannot contain K4 or K2,3 as
a minor. Therefore, by the Chartrand-Harary result mentioned
above, G is outerplanar. Let G∗ be the geometric dual of an
outerplanar embedding of G.

Now, C(G∗) ≡ C⊥. Since C is connected, so is C⊥, and
hence G∗ is loopless as well. If |V (G∗)| = 2, then there is
nothing to prove, so we may assume that |V (G∗)| ≥ 3. Hence,
by Corollary 8.2.2 in [16], G∗ is 2-connected as a graph.

Let x be the vertex of G∗ corresponding to the exterior face
of the outerplanar embedding of G. By a result of Fleischner
et al. [3, Theorem 1], G∗ − x is a forest. In fact, since G∗ is
2-connected, G∗ − x is a tree.

We claim that no vertex of G∗ − x has degree greater than
two, and hence, G∗ −x is a simple path. Indeed, suppose that
G∗−x has a vertex u adjacent to three other vertices v1, v2, v3.
Since G∗ is 2-connected, there are paths π1, π2 and π3 in G∗

from v1, v2 and v3, respectively, to x that do not pass through
u. Also, since G∗ − x is a tree, these paths must be internally
disjoint in G∗. The graph G∗ thus has a subgraph as depicted in
Figure 6. But this subgraph is obviously contractible to K2,3,
and hence G∗ has K2,3 as a minor. However, this is impossible,
as C(G∗) ≡ C⊥, and C⊥ does not have C(K2,3) as a minor.

Thus, G∗−x is a simple path. The two degree-one vertices
(end-points) of this path must be adjacent to x in G∗; other-

x

v3

v1 v2u

π π π
1 23

Fig. 6. If G∗−x has a vertex of degree at least 3, then G∗ has a K2,3 minor.

wise, G∗ is not 2-connected. It follows that G∗ is isomorphic
to an umbrella.

Now, to complete the proof of Theorem V.2, it is enough
to show that C(G∗) ∈ TC1, since C⊥ ≡ C(G∗). This is done
by the following lemma.

Lemma V.5 If H is an umbrella, then C(H) ∈ TC1.

Proof: Let H be an umbrella on m + 1 vertices
u0, u1, . . . , um, where u0 is the vertex such that H − {u0}
is a simple path. For i ∈ [m], let Ei denote the set of edges
between u0 and ui. Also, for j ∈ [m − 1], let ej denote the
edge between uj and uj+1. Consider the ordering of the edges
of H given by

(E1, e1, E2, e2, . . . , Em−1, em−1, Em),

where it is understood that for each i ∈ [m], the edges within
Ei (if any) are given an arbitrary order.

We will apply Lemma V.1. Consider any J =(⋃j−1
i=1 (Ei ∪ {ei})

)
∪ X , with X ⊂ Ej (X may be empty).

We want to determine r(J) + r(E(H) − J). Note that the
subgraph, H[J ], of H induced by the edges in J is incident
only with vertices in {u0, u1, . . . , uj}. Therefore, r(J) =
|V (H[J ])| − 1 ≤ j. Similarly, the subgraph of H induced
by the edges in E(H) − J is incident only with vertices in
{uj , uj+1, . . . , um, u0}, and so, r(E(H) − J) ≤ m − j + 1.
Therefore, r(J)+r(E(H)−J) ≤ m+1 = |V (H)|. It follows
from Lemma V.1 that C(H) ∈ TC1.

The proof of Theorem V.2 is now complete.

The characterization given in Theorem V.2 can be used to
derive a polynomial-time algorithm that, given a generator
(or parity-check matrix) for a binary code C, determines
whether or not C is in TC1. This is based on the following
lemma, which can be deduced from Theorem V.2 and
the aforementioned excluded-minor characterization of
outerplanar graphs due to Chartrand and Harary [2].

Lemma V.6 Let C be a binary linear code such that C = C(G)
and C⊥ = C(G̃) for some graphs G and G̃. Then, C ∈ TC1

(equivalently, C⊥ ∈ TC1) iff G and G̃ are outerplanar.

The algorithm outlined below takes as input a k × n
generator matrix for a binary linear code C, and decides
whether or not C is in TC1.



Fig. 7. Some of the planar graphs whose cycle codes are excluded minors for TC2.

Step 1: Determine whether C and C⊥ are graphic;
if either of them is not, then C /∈ TC1, STOP;
if both are graphic, determine graphs G and G̃ such
that C = C(G) and C⊥ = C(G̃).

Step 2: Determine whether G and G̃ are outerplanar;
if either of them is not, then C /∈ TC1, STOP;
if both are outerplanar, then C ∈ TC1.

There are efficient procedures known [1], [14] for perform-
ing both steps of the algorithm. From the running times of
these procedures, we determine that the above algorithm can
be implemented to run in O(k2(n − k)2n2) time. We remark
that the above algorithm may be easily extended to determine
the code C′ equivalent to C such that smax(C

′) ≤ 1.

VI. EXCLUDED MINORS FOR TC2;2

While we are able to give complete excluded-minor and
algorithmic characterizations for codes in TC1, the same is
not yet the case for TC2. The methods of the previous section
can be used to show the following result.

Proposition VI.1 The codes H7, H⊥
7 , C(K5), C(K5)

⊥,
C(K3,3), C(K3,3)

⊥, and C(G), where G is any of the planar
graphs in Figure 7, are excluded minors for TC2.

However, the list of excluded minors above does not
appear to be complete. The following corollary to the above
proposition gives a necessary condition that must be satisfied
by an excluded minor not listed in the proposition.

Corollary VI.2 If D is an excluded minor of TC2 not listed in
Proposition VI.1, then D = C(G) for some planar graph G that
does not contain as a minor any of the graphs in Figure 7.

The above corollary is a direct consequence of Theo-
rem 13.3.3 and Proposition 5.2.6 in [16]. For the same reason,
we also have the following necessary condition for a code to be
in TC2: C ∈ TC2 only if C = C(G) for some planar graph G
that does not contain as a minor any of the graphs in Figure 7.
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