
American Journal of Computational and Applied Mathematics 2012, 2(1): 21-24 
DOI: 10.5923/j.ajcam.20120201.03 

 

New Exact Solutions for the Variable Coefficient 
Two-Dimensional Burger Equation  

Rehab M. El -Shiekh  

Department of Mathematics, Faculty of Education, Ain Shams University, Heliopolis, Cairo, Egypt 

 

Abstract  In this paper, the variable coefficient two-dimensional Burger equation is studied by two distinct methods. 
The Exp-function method with the aid of symbolic computation is used to derive soliton solutions of this equation. The 

'G
G

 - expansion method is used also to construct travelling wave solutions for the variable coefficient two-dimensional 

Burger equation with the aid of symbolic computation. The travelling wave solutions are expressed by the hyperbolic, the 
trigonometric functions and rational functions. The study highlights the significant features of the employed methods and 
its capability of handling exact solutions for the variable coefficient two-dimensional Burger equation without any restric-
tions on the form of the variable coefficient. The obtained solutions are considered new with the comparison of other solu-
tions obtained before. 
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1. Introduction 
An evolution equation usually means a partial differential 

equation with one of the independent variables being time t. 
There are many nonlinear evolution equations arising from 
physics, mechanics, biology, chemistry, material science 
and plasma physics etc. indeed in this paper we confine our 
attention to the variable coefficients nonlinear evolution 
equations since they are able to model the real world in 
many fields of physical and engineering science although 
their coefficient functions often make the studies very hard 
also they covers the constant coefficients case by assuming 
that the coefficient functions constants. One of the variable 
coefficients nonlinear evolution equations is the variable 
coefficient two-dimensional Burger equation 

( ) ( ) 0t x xx x yyu uu u s t u+ − + =
       

 (1.1) 

Equation (1.1) with s=constant is sometimes referred to 
as Zabolotskaya-Khokhlov equation in nonlinear acous-
tics[1,2]. Painlevé analysis of the constant coefficient ver-
sion of (1.1) was carried out in[3]. The authors showed that 
the equation possesses the conditional painlevé property 
and obtained its exact solutions by use of truncation. Also 
Moussa et al in[4] have applied the symmetry method on 
Zabolotskaya-Khokhlov equation and obtained new exact 
solutions for it. Güngӧr in[5-6] used the symmetry method  
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to find similarity reductions for Eq. (1.1) with it's variable 
coefficient s(t) but those solutions obtained for only some 
forms of s(t). 

2. The Exp-function Method 
To illustrate the basic idea of the Exp-function method[7], 

we consider the following nonlinear evolution equations 
with only three independent variables 

( , , , , , , ) 0,t x y xx yy xyP u u u u u u u =      (2.1) 

where P is a polynomial function with respect to the in-
dicated variables or some function can be reduce to a poly-
nomial function by using some transformation. 

Making use of the travelling wave transformation  
( ) 1 2, ,u u t c x c yξ ξ= = + +       (2.2) 

Where 1c and 2c are arbitrary constants to be deter-
mined later Then Eq. (2.1) reduces to an ordinary differen-
tial equation 

2 2
1 2 1 2( , ', ', ', '', '',...) 0u u c u c u c u c uΨ =       (2.3) 

The Exp-function method is based on the assumption that 
the travelling wave solution of the previous equation can be 
expressed in the following form 

exp( )
( )

exp( )

d

n
n c

q

m
m p

a n
u

b m

ξ
ξ

ξ

=−

=−

=
∑

∑
             (2.4) 

where c; d; p and q are unknown positive integers, na
and nb are unknown constants. To determine c and p we 
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balance the linear term of the highest order in (2.3) with the 
highest order nonlinear term. 

Similarly, we can determine d and q by balancing the 
linear term of the lowest order in (2.3) with the lowest order 
nonlinear term. 

3. The 'G
G

- expansion Method 
The same assumptions as given before in Eqs. (2.1-2.3) 

are used but we assume that the solution of Eq. (2.3) takes 
the following form[8] 

0

' ,
im

i
i

Gu A
G=

 =  
 

∑                 (3.1) 

where ( )G G ξ=  satisfy a second order linear differential 
equation 

'' ' 0,G G Gλ µ+ + =                (3.2) 

where ( ) ( )2

2' ,  G''= ,
dG d G

G
d d

ξ ξ
ξ ξ

=

 
λ  and µ  are constants to be 

determine later. The integer m can be determine by consid-
ering the homogeneous balance between the highest deriva-
tives and the highest order nonlinear terms appearing in Eq. 
(2.3). Then by substituting Eq. (3.1) along with Eq. (3.2) into 
Eq. (2.3), collecting all terms with the same order of 'G

G
 
 
 

 

together, the left hand side of Eq. (2.3) is converted into 
another polynomial in 'G

G
 
 
 

. Equating each coefficient of 

this polynomial to zero, yield a set of algebraic equations for

1( 1, 2,..., ), , ,iA i m cλ µ=  and 2c  which can be solved by 
using Maple program, along with the general solutions of Eq. 
(3.1).

 

4. Solutions of Equation (1.1) by using 
Exp-function Method 

Let 1 2( ),   where  ( )u u c x c y t dtξ ξ τ= = + + ∫    
(4.1) 

Eq. (1.1) becomes 
2 2

1 1 1 2( ( ) ' ' '') ' ( ) ' 0,c t u c u u c u s t c uτ + − + =     (4.2) 
Integrate Eq. (4.1) with respect to ξ  twice, we get  

2
2 2 31

1 2 1( ( ) ( )) ' 0.
2

cc t c s t u u c uτ + + − =      (4.3) 

By re-writing Eq. (2.4) in an alternative form as follows:  
exp( ) ... exp( )
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In order to determine values of c and p, we balance the 
linear term u′ of the highest order in Eq. (4.3) with the 
highest order nonlinear term u² and we have  

1

2

exp[( ) ] ...
'
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          (4.4) 

2 3

4

exp[2 ] ...
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C p
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+
,            (4.5) 

Where iC  are constant coefficients for simplicity. By 

balancing the highest order of Exp-function in Eqs. (4.4) and 
(4.5), we have c + p = 2c, which leads to the limit 

p c=                         (4.6) 
Proceeding the same manner as illustrated above, we can 

determine values of d and q. Balancing the linear term of 
lowest order in Eq. (4.3) 

1

2

... exp[ ( ) ]
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.... exp[ 2 ]
d d qu

d q
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+ − +

=
+ −

            (4.7) 

2 3

4

.... exp[ 2 ]

.... exp[ 2 ]
d d

u
d q

ξ
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+ −
=

+ −
            (4.8) 

where id  are determined coefficients only for simplicity, 
we have - (d + q) = -2d, which leads to results  

d q=                          (4.9) 
Case 1.  p = c = 1 and d = q = 1, then solution of Eq. (4.3) 

takes the following form. 
1 0 1

1 0 1
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By substituting from Eq. (4.10) into Eq. (4.3) and equating 
the coefficients of the Exp-functions to zero we obtain the 
following algebraic system 
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Solving the system of algebraic equations (4.11) with the 
aid of  Maple, we obtain  

2
1 1 1 0 1 1 2

1 0
1 1 1 1

, , ( ) ( )
2

a b a b a c ca a t s t
b b b c

τ−
− =   =   = − −

 

by back substitution we get the following new exact solution 
for the variable coefficient two-dimensional Burger equation 

1 0 1 1
1

1 1
1

1 0 1
2
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Case 2.  p = c = 2 and d = q = 1, then Eq. (4.3) has the 
following solution for 

2 1 0 1

2 1 0 1

exp(2 ) exp( ) exp( )
exp(2 ) exp( ) exp( )

a a a a
u
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ξ ξ ξ
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−
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Substituting Eq. (4.13) into Eq. (4.3). Equating to zero the 
coefficients of all powers of exp( )nξ  yields a set of algebraic 
equations for 2 1 0 1 2 1 0 1 1, , , , , , , ,a a a a b b b b c− −  and 2c . Solving 
this system of algebraic equations with the aid of Maple, we 
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obtain two sets of solutions 
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Therefore the variable coefficient two-dimensional Bur-
ger equation has the following solitary wave solutions 
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where 
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where 
2

2 2
1 2 1

1
( ( )) ,

cc x c y c s t dt
c

ξ = + − +∫  and 1 1 0a , ,a b−  

and 2b  are constants. 
Case 3. p=c=2 and d=q=2, by the same manner as we have 

done in the previous two cases we obtain the following exact 
solution for the variable coefficient two-dimensional Burger 
equation 
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Where 
2

2 2
1 2 1

1
( ( ))

cc x c y c s t dt
c

ξ = + + −∫  and 0 1 2 1a , , ,a a b−

and 2−b are constants.  

5. New Solutions for Equation (1.1) by 
using 

'G
G -expansion Method 

By substitution from Eq. (3.1) in (4.3) and balancing the 
nonlinear term 2u with the linear 'u yield that the leading 
order m=1, therefore 
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            (5.1) 

By substitution from (5.1) in (4.2) and by using (3.2), then 

Eq. (4.2) becomes a polynomial in 'G
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Solving the previous system yields the following solutions 
for it 
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(5.3) 

From (5.3) into (5.1) and by using (4.1), we get the fol-
lowing rational and periodic solutions for the variable 
coefficient two-dimensional Burger equation 
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If 1 0,k =  then we get 
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Also, if we put 2 0k =  we obtain the following new so-
lution 
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Case 2: 2 4 0λ µ− <  
( ) ( )1 22
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If 1 0,k =  then we get 
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Also, if we put 2 0k =  we obtain the following new exact 
solution 
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In equations from (5.4)-(5.8) 1 2and k k are arbitrary con-
stants. 
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6. Conclusions 
In this paper, we have applied the Exp-function method 

and the 'G
G

 -expansion method on the variable coefficient 

two-dimensional Burger equation and many new exact so-
lutions in the form of  exp-function, hyperbolic, trigono-
metric functions and rational functions without any restruc-
tions on the variable coefficient s(t) which makes those so-
lutions new and not obtained before. 
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