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Abstract – The influence of external uniform electric field on the electron mobility variance in a 

non-degenerate n-type semiconductor is considered. In the course of analysis of results of 

mobility fluctuation theory, according to which electron mobility variance in equilibrium 

semiconductor equals infinity, it is shown that in the presence of uniform electric field the 

mobility variance becomes finite. The effect is explained in terms of the so-called electron-

phonon FIT (field-induced tunnel) scattering. The results of numerical computations of mobility 

variance dependence on the electric field for n-Si and n-Ge at 300 K are presented. It is revealed 

that mobility variance decreases by the logarithmic law with the electric field increase. The 

consideration of a mobility noise reciprocal problem established that the frequency dependence 

of mobility noise spectral density has a range of low-frequency plateau as well as ranges of 1/f 

and approximately 1/f dependencies. Low-frequency limit of 1/f dependence decreases to zero 

when the electric field tends to zero. A good agreement between mobility noise and current 1/f-

noise in single crystal n-silicon is observed. 
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1. Electron mobility variance 

The development of the electron mobility fluctuation theory and the establishment of main 

peculiarities of mobility fluctuations can have an important meaning for the physics of 

semiconductors and semiconductor devices. Spectral density and variance are the basic 

parameters, which describe fluctuation processes. Study of current, carrier concentration and 

mobility fluctuations by the variance of those quantities was called as variance approach [1, 2]. It 
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is an effective method, which allows detecting and investigating the microscopic mechanisms of 

fluctuations in equilibrium as well as in non-equilibrium semiconductors. So, in Ref.[2], on the 

basis of variance approach, the variance of electron current in thermal equilibrium 

semiconductor is calculated and analyzed. It is established that not only the electron intraband 

random scattering (Nyquist’s thermal noise) but also generation-recombination random 

transitions and the shot effect can be current equilibrium noise sources in a semiconductor. It 

should be noted that these three components of current equilibrium fluctuations have the same 

variance [2] equal to variance of Nyquist’s thermal noise. In Ref.[1] for the electron mobility 

variance 2
  in non-degenerate n-type semiconductor the following expression was obtained: 
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where   is the electron mobility, N  is the number of conduction electrons, k  is the electron 

quasi-momentum relaxation time, the bolded symbol k  is the electron quasi-wave vector, and 

the non-bolded symbol k  is the magnitude of k , “ ” is the symbol of averaging over statistical 

ensemble and indicates the non-fluctuating dc component of the corresponding value,   is the 

symbol of k -averaging (averaging via quantum states of the conduction band): 
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Tkx B , mk 222  is the conduction electron energy, m  is the electron density-of-states 

effective mass, T  is the temperature, Bk  is the Boltzmann’s constant. 

Eq.(1) clearly shows that mobility variance depends on the electron scattering mechanisms 

through electron quasi-momentum relaxation time k . Analyzing the contributions of different 

types of electron scattering processes in Ref.[3] it is established that in equilibrium flat-bands 

semiconductors the mobility variance equals infinity ( 2
 ). On the other hand, from the 

well-known relation between mobility fluctuation spectral density )( fS   and mobility variance 
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it follows that mobility variance is equal to the square of the surface limited by the curve )( fS   

and frequency f  axis. From this simple geometrical interpretation of relation (5) it follows that 

mobility variance infinity is directly related to the peculiarities of frequency dependence of 

mobility fluctuations spectral density )( fS   in a low-frequency range. 

Investigating the physical background of the mobility variance infinity in Ref.[3] electron-

phonon interaction theory in the presence of an electric field F  is developed and a new 

mechanism of electron-phonon scattering, called as electron-phonon field-induced tunnel (FIT) 

scattering, is observed. The results of Ref.[3] show that in non-equilibrium titled-bands 

semiconductor mobility variance becomes finite ( 2
 ). It is concluded that mobility variance 

depends on the electric field. In the present paper, details of the mobility variance dependence on 

the uniform constant electric field is studied for n-Si and n-Ge. 

 

2. Electron relaxation time 

As follows from Eqs.(1)-(3), for the evaluation of the mobility variance magnitude it is 

necessary to determine the scattering mechanisms which act in the given semiconductor sample. 

It is well known that in 77 K - 400 K wide temperature range in n-Ge and n-Si electron mobility 

is mostly determined by lattice scatterings (inter-valley and intra-valley scatterings induced by 

acoustic and/or optical phonons) [4, 5]. Therefore, in that temperature range the total relaxation 

time of the electron quasi-momentum can be presented as 

optac ,,

111

kkk 
 ,            (6) 

where ac,k   and opt,k  are the electron quasi-momentum relaxation times related to electron-

acoustic phonon and electron-non-polar (intra-valley or inter-valley) optical phonon scatterings, 

respectively. 

It is known [4, 5] that 
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where r  is the reduced mass density of the crystal, 0v  is the sound velocity of the longitudinal 

acoustic mode, ac  is the acoustic-phonon deformation potential. 

In the framework of FIT scattering mechanism in Ref.[3] the following more general expression 

for opt,k  in a low electric field region is obtained 
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Here D  is the non-polar optical deformation potential constant, 0  is the non-polar optical 

phonon energy, 0N  is the non-polar optical phonon equilibrium distribution according to the 

Bose-Einstein statistics, )(sAi  is the Airy function [6],  
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Parameter e  can be represented as  
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Note that Eqs.(7) and (8) describe the intra-valley scattering processes. In many-valley 

semiconductors such as Ge and Si the inter-valley scattering, when electrons are scattered 

between different valleys plays a very important role in electron transport [4, 5]. Electron 

transitions between states in two different equivalent1 or non-equivalent valleys can be induced 

by electron scattering with both acoustic and optical modes. Inter-valley scattering is very 

similar to the intra-valley non-polar optical phonon scattering [4, 5]. It can be treated as a 

deformation-potential interaction in the same way as intra-valley scattering is treated by non-

optical phonons [4, 5]. The relaxation time for inter-valley phonon scattering is evaluated with a 

relation similar to that for non-polar optical phonon scattering [4, 5]. Therefore, Eq.(8) can be 

modified for equivalent inter-valley electron-phonon scattering by simply replacing the values 

2D  and 0  by the 2
ii Dz  and i , respectively, where iz  is the number of possible equivalent 

final valleys in the inter-valley scattering, iD  and i  are the inter-valley deformation potential 

and the inter-valley phonon energy, respectively. As a result of such replacement the relaxation 

time of electron-phonon equivalent inter-valley scattering can be presented as 
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1 Equivalent inter-valley scattering process is subdivided into f-type and g-type processes (more detail, see [4, 5]). 
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3. Numerical computation results 

Substituting Eq.(6) into Eq.(3) and taking into account expressions (7)-(11) and (2), the 

dependence of electron mobility relative variance 22   N  on electric field F  can be 

established. However, the obtaining of an exact analytical expression for )(F  dependence is 

related to difficulties of integral computations. For revelation of )(F  function peculiarities here 

numerical methods of integration are used. Numerical computations of )(F  are carried out on 

the basis of Eq.(2) for n-Si and n-Ge at 300T K using “Wolfram Mathematica” PC program 

packet. Numerical values of the intra-valley and equivalent inter-valley deformation potentials 

and corresponding TA, LA, TO, LO phonon energies relative to n-Si (in n-Si the optical intra-

valley scattering is negligible [4, 7]) and n-Ge are presented in Tables I and II from [4, 7]. At 

numerical calculations following additional parameters of conduction band principal valley are 

used [7]:           

Si: 32.0/ 0 mm , 9ac eV, 3
0 1043.8 v  m/s, (in the direction [100]), 2329r kg/m3; 

Ge: 217.0/ 0 mm , 11ac eV, 3
0 104.5 v m/s (in the direction [111]), 5320r kg/m3.  

Table I. Deformation potentials and phonon energies for electron lattice scatterings in Si [4, 7]. 
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Table II. Deformation potentials and phonon energies for electron lattice scatterings in Ge [7]. 
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The results of numerical calculations carried out for low electric field ( cmVF / 600 , 

Ohmic) regime show that the )(F  dependences for n-Si and n-Ge have the same forms. In 

Figs.1 and 2 typical curves of )(F  dependences are shown for n-Si and n-Ge, respectively. The 

cause of the week expressed peaks is the presence of the Airy function in Eqs.(8) and (11). 

Curves are well described by the logarithmic function  

)ln()( , FFcbF ic ,             (13) 

where b , c  and icF ,  are the constants, numerical values of which for different type of electron-

phonon scattering presented in Tables I and II. Characteristic field icF ,  depends on lattice 

scattering parameters (see Eq.(12)) and it order is 54 1010~   V/cm. 
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Fig.1. )(F dependence for n-Si in loglog scale, 
when electron-phonon g -type XX equivalent 
inter-valley scattering parameters are: 

10)(
, 10113 LOg
XXiD eV/m, 62)(

,
3 LOg
XXi meV; doted 

curve refers to Fln1064.648.1 2 . 
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4. Mobility noise reciprocal problem 

Thus, the following peculiarities of electron mobility variance, determined by the integral 

expression (1), are established: 

p.1) in non-equilibrium semiconductor under external electric field F mobility variance 

is finite, )(2 F ; 

p.2) in thermal equilibrium semiconductor the mobility variance is infinite, 

 )0(2 F ; 

p.3) mobility variance depends on electric field F ; the dependence described by the 

)ln()( , FFcbF ic  logarithmic law with cb  . 

Spectral density and variance are inter-related characteristics of fluctuation processes. If 

frequency dependence of noise spectral density is known, the noise variance is easy to determine 

by simple integration of spectral density over frequency (see Eq.(5)). This method of variance 

determination is widely used in noise theory. In the given case under consideration one has the 

reciprocal problem: mobility variance peculiarities are known (see p.1)-p.3)); it is necessary to 

reveal peculiarities of the mobility noise spectrum.  

Fig.2. )(F  dependence for n-Ge in loglog 
scale, when electron optical phonon L intra-
valley scattering parameters are: 

10105.5 D eV/m, 370  meV; doted 

curve refers to Fln1095.256.0 3 . 
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Let us consider the mobility noise reciprocal problem. Mobility fluctuations are 

equilibrium and stationary fluctuations [1, 3], which exist in equilibrium ( 0F ) as well as in 

non-equilibrium ( 0F ) semiconductors. Mobility variance depends on electric field, )(2 F . 

Therefore, spectral density of mobility fluctuation depends on electric field also, ),( FfS . 

According to the well-known Wiener-Khintchine theorem, 



f

FfS 0),(  and derivative 

0),(
0


f
dfFfdS . Noise spectral density has a maximum at zero frequency 0f . 

Therefore, )(),(
0

FconstFfS
f 
 . Around the maximum the noise spectrum is independent of 

frequency, )(),( FconstFfS  . One can assume that near the zero frequency there is 

characteristic cut off frequency 0f  so that in the range 00 ff   spectrum 

)(),( FconstFfS  , i.e. near the zero frequency there is low-frequency plateau. 

As established in Ref.[3] the cause of electron mobility variance infinity in an equilibrium 

semiconductor (  )0(2 F ) is the fracture of the curve )( ; The fracture point 

(  kd  at 0  ) is located in electron long-wavelength (low energy) region. At presence 

of an electric field the electron-phonon FIT scatterings originate and the fracture disappears [3]. 

Low-energy electrons with 0   are characterize by extremely high FIT scattering relaxation 

times [3]. It can be state that infinity of the mobility variance at 0F  related to divergence of 

integral in Eq.(5) on lower limit 0f . Therefore, at 0F  in low-frequency region frequency 

dependence of mobility noise spectrum must have 


 1/1~)0,( fFfS  form with 0 . On 

the other hand, integral in Eq.(5) must converge on the upper limit f . This means that in 

high-frequency region noise spectrum must have 


 1/1~)0,( fFfS  form with 0 . 

On the basis of the above mentioned let us consider mobility noise spectrum which is given 

by  
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Here 0f , 0C , C  and   are the parameters, where exponent   is not a negative quantity 

( 0 ).  

From Eq.(14) function two branches suturing condition 
0

1
0 ff

fCC


   at 0ff   follows: 

 1
00 / fCC . Coefficients 0C  and C  are interrelated quantities. Parameters 0f , 0C , C  and   
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in general case can be functions of an electric field. At the same time Eq.(14) it is shown that the 

function )(FC  cannot tend to zero or infinity at 0F . It can be supposed that constFC
F 0

)(

 . 

Then, around the point 0F  function )(FC  can be expanded into the Taylor series and limited 

by the first term at week electric fields. In low-field region one can assume that 

constCFC  )0()( . In contrary to C  coefficient 0C  can depend on F . That dependence is 

determined by the possible field dependencies of )(0 Ff  and/or )(F . Coefficient )0(C  is more 

convenient to represent as NC 2
0)0(  , where 0  is another field independent coefficient. 

Then, Eq.(14) is presented as 
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For calculation of electron mobility relative variance on the basis of Eq.(15) it is necessary to 

evaluate the following integral: 
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To carry out integration the cases 0)( F  and 0)( F  should be considered separately 

because at 0)( F  the second integral in the r.h.s. of Eq.(16) is expressed by the logarithmic 

function and at 0)( F  it is expressed by the not logarithmic function. First, let us discusses 

case when 0)( F  and 0)( F . Then, substituting Eq.(15) into Eq.(16), we obtain 
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For mobility relative variance one has two expressions: Eq.(17) and Eq.(13). Those expressions 

must be equal identically:  
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Identity means that the l.h.s and r.h.s. of Eq.(18) must be equal term by term. Below the possible 

two sub-cases of Eq.(18) identity are considered. 

Sub-case a):  
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These relations can be presented as 
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Eqs.(20) show that exponent   and the cut off frequency 0f  depend on F . In particular, 
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It is obvious that  )0(F  is physically incorrect result. The noise spectrum of a physical 

quantity cannot have infinite exponent  . The sub-case under consideration must be excluded. 

Sub-case b): 
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These relations can be presented as 
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From Eq.(23) it follows that exponent   is positive because icFF , . Field dependence of the 

frequency 0f  is given by     bFFc icbf /)ln(
00

,  . Exponent   tends to zero when electric field 

tends to zero, 0)(
0


F

F . Then, for the cut off frequency )(0 Ff  one should have the following 

limits: 
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Case 
0

0 )(
F

Ff  corresponds to ideal white noise. It is well known that a real physical quantity 

fluctuation cannot have ideal white noise spectrum. This case must be ignored. On the other 

hand, condition 0)0( F  means that in an equilibrium semiconductor frequency 

dependence of mobility noise spectrum is described by the f/1  law in the range 0f  (if 

0)(
0

0 


F
Ff ) or 1f  (if 1)(

0
0 


F

Ff ): 

fN
FfS 0

2

)0,(


  .     (25) 
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At spectrum Eq.(25) the integral in Eq.(5) diverges on the upper limit f . This circumstance 

and condition 0)0( F  are contrary to the above presented initial assumptions according to 

which the integral in Eq.(5) must converge on the upper limit f  and exponent   should not 

equal zero ( 0)( F ). Therefore, the sub-case under consideration must be excluded as well. 

Thus, one can state that mobility noise spectrum cannot have the form of Eq.(15) with 0 . 

Now case 0  is considered. For convergence of integral in Eq.(5) on the upper limit 

f  it is necessary to modify the spectrum Eq.(14). It is assumed that in the low-frequency 

range 10 fff   mobility noise spectrum ),( FfS  varies by the f/1  law and in high-

frequency range 1 ff   it varies by the 1/1 f  law with 0 . As a result one obtains the 

following frequency dependence for mobility noise spectrum 
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Here 0f , 1f , 0C , C , 1C  and   ( 0 ) are the parameters which can be functions of an electric 

field F .  

Obviously the coefficients C  and 1C  can not tend to zero or infinity at 0F . It can be 

supposed that constFC
F 0

)(

 , constFC

F 0
1 )(


 . As in the above case of Eq.(14), here also one 

can use Taylor series near the point 0F  and limit by the first term at weak electric fields. As a 

result one can assume that in low-field region coefficients C  and 1C  are independent of F : 

constCFC  )0()( , constCFC  )0()( 11 . From suturing condition of Eq.(26) function 

branches at 0ff   and 1ff   one has 

00 fCC  ,   
11 CfC  .           (27) 

From second relation of Eq.(27) follows that exponent   and frequency 1f  are field independent 

quantities. Using relation NC M
2 , Eq.(26) can be presented as  
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where M  is  another field independent coefficient which can be called as mobility noise 

coefficient.  

The evaluation of integral  
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on the basis of Eq.(28) gives the following expression for the mobility relative variance:  
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Now let us take into account peculiarity p.2) according to which at the absence of an electric 

field ( 0F ) mobility variance equals infinity,  )0(2 F  (or  )0(F ). It means that 

the r.h.s. of Eq.(30) must tend to infinity at 0F . On the other hand, coefficient M , exponent 

  and frequency 1f  are independent of F  quantities. It can be concluded that the cut off 

frequency 0f  depends on electric field F . With decrease in F  the frequency 0f  must decrease 

so that 0)0(0 Ff . Then, around the point 0F  function )(0 Ff  can be expanded by the 

Taylor series. Taking into account that )(0 Ff  is the even function one obtains 
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Limited by the first term of Taylor series one can assume that in the low field region 

2
00 )( FFf  ,         (32) 

where 2)0(''00  Ff . 

It is more comfortable the characteristic frequency 1f  presented as 2
,11 icFf  , where 1  is the 

coefficient of proportionality. Then, Eq.(30) presented as 
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Thus for mobility relative variance one has two expressions: Eq.(33) and Eq.(13). Those 

expressions must be equal identically:  
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Here it is possible the following two sub-cases of Eq.(34) identity. 

Sub-case c):  
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Eq.(35) can be presented as 
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As it is mentioned above, parameters M , b , c , 0 , 1  and   are independent of F . Second 

equation of Eq.(36) cannot be satisfied because its l.h.s. depends on F  at the same time its r.h.s. 

is independent of F . This sub-case must be excluded obviously. 

Sub-case d):  
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Eq.(37) can be presented as 
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2cM  .              (39) 

It is easy to make sure that Eq.(28) with relations Eqs.(38) and (39) perfectly meet the above 

presented requirements. There is not any contrast between these relations and peculiarities p.1)-

p.3). It can be stated that the frequency dependence of mobility noise spectrum ),( FfS  is 

described by Eqs.(28), (38) and (39).  

Now let us analyze relations Eq.(38) on the basis of numerical values of b  and c  

parameters presented in Tables I and II. As the data in Tables I and II show, there are essentially 

big differences between the magnitudes of b  and c . Order of the ratio cb2  is 52 1010~  . 

Then, Eq.(38) with good approximation can be presented as  

cb2ln
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Now consider the two limiting cases. First assume that )ln(1 01   . Then, in l.h.s. of 

Eq.(40), ignoring term 1 , one obtains cbe2
01  . From numerical estimation 

)1010exp( 52
01   follows that 01   . There is a very big difference between the 

magnitudes of characteristic frequencies 0f  and 1f  because 00 ~ f , 11 ~ f . Taking into 

account condition 01 ff   it can conclude that the either frequency 1f  is very large quantity or 

frequency 0f  is near zero ( 0~0f ). Mobility noise spectrum varies by the f1 -law in very large 

frequency range 10 fff  . At second limiting case when )ln(1 01    from Eq.(38) one 
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has bc 2 . The magnitude of exponent   is determined by the ratio of constants c  and b . 

Practically analogous results are obtained if we assume that 1  and )ln( 01   are the same 

order quantities ( cb2)ln(~1 01  ). Numerical values of coefficient M  and exponent   

evaluated on the basis of relations 2cM   and bc 2  at different scattering parameters of 

n-Si and n-Ge are presented in Tables I and II.  

Mobility noise, like the well-known generation-recombination, thermal, shot or 1/f noises, 

is a real physical phenomenon [1,3] and must be observed in electric current fluctuations. 

According to the above-presented peculiarities there are significant similarities between the 

mobility noise and 1/f-noise.  The Tables’ data seem very interesting if Hooge’s dimensionless 

coefficient H  experimental data relative to current 1/f-noise in n-Si and n-Ge are taken into 

account. So, in Refs. [8,9] (where some experimental results from single crystal semiconductors 

and metals are summarized) for different samples of n-Si and n-Ge the following values or 

ranges of H  at  300 K are presented: 

n-Si: 45 104103   , 35 10310   , 46 10102   , 34 10102   [8]; 5106  , 5102  , 6103  [9]; 

n-Ge: 3102  , 3104   [8]. 

1/f-noise parameter H  is between 610~   and 310~   at  300 K. As it is seen from the Tables I 

and II the numerical values of the mobility noise coefficient M , which depends on electron-

phonon scattering parameters2, is between 610~   and 210~  . The wide range of variation of 

M  involves the above mentioned experimental data of Hooge’s coefficient H . There is a quite 

good agreement between the Hooge’s coefficient H  and the mobility noise coefficient M  

numerical values. 

Second interesting circumstance relates to the numerical values of the exponent  , which 

are very small positive quantities. Its order is between 110  and 410  for n-Si; 310 , 610  for n-

Ge at 300 K. The wide range of variation of   is meant that it is very sensitive to electron both 

lattice and impurity scattering parameters. Mobility noise coefficient M  and exponent   are 

interrelated quantities. The ratio M  equals b . It is nearly a constant quantity equal to 5.0~  

for n-Si and n-Ge at 300 K. Note that observing and distinguishing the f1  and 11 f  

dependency ranges is a very difficult experimental task because 10   . 

 

                                                 
2 In scientific literature data there are some deviations among the numerical values of electron-phonon scattering 
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Coefficients b , c  and   are temperature dependent quantities. In Table I the results of 

numerical calculation for silicon carried out for 300T K are presented. Analogous calculation 

we carried out for temperatures: 80 K, 100 K, 120 K,…, 300 K. As a result we obtained a set of 

Tables for those temperatures. On the base of the Tables set the temperature dependencies of 

)(Tc , )(Tb  and )(T  can be established. In particular, in Fig.3 plotted 2/)()( TcTM   

dependences for n-silicon, calculated at electron-phonon scattering parameters corresponding to 

Si-1, Si-2, …, Si-6 (see, first column of Table I). Figs. 4-7 illustrate the experimental data of 

temperature dependencies of Hooge’s coefficient )(TH  for n-Si from the well-known Refs. [9-

12] and theoretical curves which are chosen from Fig.3. As it is seen, there are good quantitative 

and qualitative agreements between the theoretical and experimental data.  

 

 

 

 

                                                                                                                                                             
   parameters (e.g., deformation potentials and phonon energies) in Si and Ge [4, 7]. 
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5. Conclusions 

Thus discussing the mobility noise characteristics in low field region icFF ,  one can state 

that frequency dependence of mobility noise spectrum has the form Eq.(28). That dependence is 

plotted in Fig.8. On the curve of ),( FfS  there is a range of low-frequency plateau 

( 00 ff  ) and ranges of f1  (at 10 fff  ) and 11 f  (at 1ff  ) dependencies.  

 

Dependences f1  and 11 f  coincide practically because 10    (see Tables I and II). 

There is a very big difference between the magnitudes of characteristic frequencies 0f  and 1f . 

Mobility noise coefficient M , exponent   and frequency 1f  are independent on electric field. 

The cut off frequency 0f , which determines the length of low-frequency plateau, is located near 

zero and it depends on the electric field. Dependence )(0 Ff  is given by the parabolic law 

2
0 )( FFf  . Low-frequency plateau disappears when electric field tends to zero, 0)(

0
0 


F

Ff . 

For a thermal equilibrium semiconductor ( 0F ) from Eq.(28) one obtains 
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For mobility variance study on the basis of Eq.(1) a numerical method integration is used 

above. However, Eq.(1) gives principal possibility to obtains logarithmic dependence Eq.(13) in 

the analytical form by using approximate methods of integration. It is a very important task 

because in that case one will have analytical expressions for exponent  , coefficient M  and 

frequencies 0f , 1f  or ratio 01 ff . 

It should be noted that the background of the present study are the peculiarities of electron-

non-polar optical phonon FIT scattering, which are observed and considered in Ref.[3]. On the 

Fig.8. Frequency dependence of  
mobility noise spectrum. 
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basis of electron FIT scattering is the phenomena of semiconductor bands titled anther electric 

field. Bands of real semiconductor with finite sizes can be tilted under external as well as under 

internal electric fields such as, e.g., a semiconductor surface, semiconductor-metal or p-n 

junctions fields etc. Mobility noise spectrum (and variance) depends on external as well as 

internal fields. That dependence reveals as )(0 Ff  dependence. The length of low-frequency 

plateau of mobility noise spectrum depends on the electric field. 

The above-developed theory of electron mobility noise in non-polar semiconductors (Si, 

Ge) can be employed for polar (compound) semiconductors such as GaAs, InSb, GaSb, etc. Non-

polar optical phonon scattering may exist in non-polar as well as in polar crystals. However, in 

polar semiconductors electron scattering by polar optical phonons have played an important role 

[4, 5]. Here mobility fluctuations in polar semiconductors are not analyzed because the theory of 

electron FIT scattering by polar optical phonons is not developed and a corresponding expression 

for relaxation time is not obtained, yet.  

Generalizing, it can be stated that FIT scattering ontology and the concept itself provide 

handy theoretical toolkit for a clear explanation of the finiteness and infiniteness switching effect 

of the mobility variance; it also reveals that mobility variance decreases with the electric field 

increase by logarithmic law. The developed theory has perspectives to become an instrumental 

element in modeling advanced semiconductor devices where noise issues are of key importance. 

A part of the present study previously was reported in 22th Int. Conf. on Noise and 

Fluctuations (ICNF), Montpellier, France (2013). 
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