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Abstract
In hidden Markov model-based speech synthesis, speech is
typically parameterized using source-filter decomposition. A
widely used analysis/synthesis framework, STRAIGHT, de-
composes the speech waveform into a framewise spectral en-
velope and a mixed mode excitation signal. Inclusion of an
aperiodicity measure in the model enables synthesis also for
signals that are not purely voiced or unvoiced. In the tradi-
tional approach employing hidden Markov modeling and deci-
sion tree-based clustering, the connection between speech spec-
trum and aperiodicities is not taken into account. In this paper,
we take advantage of this dependency and predict voice aperi-
odicities afterwards based on synthetic spectral representations.
The evaluations carried out for English data confirm that the
proposed approach is able to provide prediction accuracy that is
comparable to the traditional approach.
Index Terms: aperiodicity prediction, hidden Markov model,
speech synthesis

1. Introduction
Hidden Markov model (HMM) based speech synthesis [1] pro-
vides a flexible framework for statistical parametric speech syn-
thesis. It enables simultaneous modeling of all speech features
of the parameterization scheme and easy modification of indi-
vidual features. A typical speech parameterization scheme em-
ploys source-filter decomposition that provides representations
for the speech spectrum and excitation signal. STRAIGHT
vocoder [2] is a high-quality speech analysis/synthesis tool that
is widely used in HMM-based speech synthesis.

Modeling of speech aperiodicities is essential for high-
quality waveform synthesis. A binary voicing decision de-
scribes whether the signal is voiced or not i.e. whether there
is a fundamental frequency (F0) associated with the signal or
not. However, even for the speech segments defined voiced the
vocal-cord vibration is not perfectly periodic. The amount of
devoicing, occurring especially in the high frequencies, is de-
scribed by the voice aperiodicity [3] and including it in the pa-
rameterization improves the vocoding quality. In HMM-based
speech synthesis, average band aperiodicity (BAP) [4] is typi-
cally used for modeling mixed excitations. An alternative two-
band mixed excitation parameterization for HMM-based speech
synthesis has been proposed e.g. in [5].

In the conventional HMM-based speech synthesis, speech
features such as spectral parameters, F0, and voice aperiodicity
are modeled simultaneously within the same HMM but clus-
tered separately to provide prediction for unseen contexts and
to cope with the data sparseness. For the prediction, typically
statewise decision trees are built for each speech feature and
the possible correlation between the spectral and aperiodicity

parameters is thus not taken into account. In the training, the
spectrum part is needed to create reliable labeling for the train-
ing data and to provide segmental intelligibility for synthesis.
Intonation is modeled segmentally or supra-segmentally based
on the training data F0 values. Voicing decisions are typically
derived from the weights of the voiced and unvoiced distribu-
tions of the multi-space probability distribution HMMs (MSD-
HMMs) [6] used for F0 modeling. Even though the aperiodic-
ity measure is needed in synthesis, its role in HMM training is
rather limited. However, increasing the number of model pa-
rameters also increases the computational load of the training.

Asynchronous speech feature modeling for HMM-based
speech synthesis has been proposed e.g. in [7], where the asyn-
chronous HMM parameter estimation of spectral parameters
and F0 was found to increase the F0 prediction accuracy. In
this paper, we investigate the modeling of voice aperiodicity
and propose an alternative, asynchronous modeling scheme for
the bandwise aperiodicity and voicing decisions. Instead of the
traditional synchronous HMM training of STRAIGHT speech
parameters combined with the asynchronous model clustering,
we propose to predict signal aperiodicity and voicing decisions
afterwards based on synthetic spectral parameters. Prediction
based on the spectral representation instead of the context-
dependent labels also takes into account the possible correlation
between spectral and aperiodicity parameters.

The proposed approach enables more efficient HMM train-
ing by decreasing the number of HMM model parameters and
the use of synthetic spectral parameters as a basis for the pre-
diction ensures that the voice aperiodicity and voicing deci-
sions are aligned with the spectral representation. The proposed
prediction scheme employs local multivariate regression-based
modeling with Gaussian mixture models (GMM) and dynamic
modeling, an approach similar to [8], where the approach was
used for spectral transformation in the framework of voice con-
version. The objective evaluation shows that the proposed ap-
proach is able to provide a prediction accuracy comparable to
the traditional HMM-based approach.

The paper is organized as follows. Section 2 gives an
overview of the HMM-based speech synthesis and the widely
used STRAIGHT parameterization scheme. Section 3 describes
the proposed prediction approach using multivariate regression
and GMM modeling. Analysis of the prediction accuracy is
given in Section 4. Section 5 concludes the paper.

2. Overview of HMM-based synthesis
2.1. Speech parameterization using STRAIGHT

In parametric speech synthesis, such as HMM-based synthe-
sis, speech is parameterized into a form that allows con-
trol on the perceptually important features of speech. Typi-
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cal parameterization schemes use the familiar source-filter de-
composition to decompose speech into spectral and excitation
parts. STRAIGHT analysis/synthesis tool [2] provides a flexi-
ble framework for this decomposition. It parameterizes speech
waveform into a spectral envelope without periodic interfer-
ences in time or frequency domain [2] and a mixed mode ex-
citation signal [9].

The mixed mode excitation signal of STRAIGHT consists
of F0 and the level of voice aperiodicity. Frequency domain
voice aperiodicity is defined as the relative energy of aperiodic
components [9] and it is estimated as a ratio between the in-
harmonic component energy and the total energy of the warped
spectrum with a constant F0 and regular harmonic structure [9].
For HMM-modeling, BAP values are typically used instead of
aperiodicity of every frequency bin. Binary voicing decisions
determine whether there is F0 related to the signal segment or
not.

Estimation of the spectral envelope of STRAIGHT uses
pitch-adaptive time windows and complementary windows to
reduce the time-domain periodic interferences. This is followed
by inverse filtering removing frequency domain interference
while preserving harmonic structure [2]. For HMM-modeling,
spectral envelope is typically encoded as perceptually better
motivated mel-cepstral coefficients (MCCs) [10] or line spec-
tral frequencies (LSFs).

2.2. HMMmodeling of speech

In HMM-based speech synthesis, speech is modeled using con-
text dependent HMMs [1]. Modeling typically involves 5-state
left-to-right HMMs with no skips allowed. Statewise observa-
tions are modeled using Gaussian densities or mixtures of them.
Duration densities can be explicitly included in the modeling by
using hidden semi-Markov models (HSMMs) [11].

The training phase HMM parameter estimation aims at
finding a parameter set λ∗ that maximizes the probability
P (O|λ):

λ
∗ = arg max

λ

P (O|λ) = arg max
λ

X
all q

P (O, q|λ), (1)

whereO denotes a matrix of training data observations of delta-
augmented speech parameters and q a hidden state sequence.
P (O, q|λ) refers to the conditional probability of O and q given
the model parameters λ. A local optimum is found by the ex-
pectation maximization algorithm.

The HMM models are further used in synthesis to generate
synthetic parameter trajectories. A sentence HMM is formed by
concatenating the required context-dependent models and one
of the speech parameter generation algorithms [12] is used for
finding the maximum-likelihood matrix O∗ of T observations:

O∗ = arg max
O

P (O|λ∗, T ). (2)

2.3. Prediction of unseen contexts

Including all context-dependent phones of a language in the
training database is practically impossible. To cope with the
data sparseness and to enable synthesis for unseen contexts,
minimum description length (MDL) based decision tree clus-
tering is typically used [13]. In the training phase, statewise
decision trees are formed for each speech feature and state and
these trees are then used in synthesis to predict model parame-
ters for the labels unseen in the training data. Construction of
a MDL-based decision tree takes into account both the acoustic

similarity of the cluster models and the tree complexity. Data
is clustered iteratively using binary decisions based on MDL
criterion.

3. Local prediction models using
multivariate regression and GMMs

In this paper, we propose to use local prediction for aperiod-
icity features (BAP and voicing decisions) based on synthetic
spectral features in HMM-based speech synthesis. The training
phase aims at finding a prediction function that provides a map-
ping from predictors into responses and in the synthesis phase,
the formed prediction function is then further used for mapping
data unseen in the training phase.

The prediction employs spectral parameters modeled us-
ing MCCs and GMM-based local modeling originating from
the GMM-based voice conversion introduced in [14]. We use
local mappings from dynamics-augmented spectral representa-
tions into aperiodicity parameters. The approach was success-
fully applied to spectral conversion in [8], where GMM-based
local mappings and dynamic information combined with the use
of partial least squares regression were used for transforming
the spectral parameters of one speaker into the spectral param-
eters of another specific speaker. In this paper, standard multi-
variate regression using pseudoinverse is used instead of partial
least squares regression.

3.1. GMMmodeling

In GMMmodeling, the distribution of an input vector xt is mod-
eled as a sum of N Gaussian components:

p(xt) =

NX
n=1

αnN (xt; μn,Σn), (3)

where αn is the prior probability of the nth Gaussian and
N (xt; μn,Σn) a multivariate Gaussian distribution with mean
μn and covariance Σn. Parameters of the Gaussian model can
be estimated using expectation maximization algorithm.

The posterior probability ωn,t of the observation xt belong-
ing to the nth cluster is defined as:

ωn,t =
αnN (xt; μn,Σn)PN

m=1
αmN (xt; μm,Σm)

. (4)

In the following section, the posterior probabilities are used to
enable the forming of local mappings from spectral parame-
ters into aperiodicity parameters. Compression of the posterior
probability dynamics can be used to avoid the dominance of
single Gaussian components.

3.2. Multivariate regression with GMMs

The mapping from spectral representations into aperiodicity
representations can be found using multivariate regression. It
aims at modeling the relation between predictors xt and re-
sponses yt:

yt = βxt + et, (5)

where β denotes a regression matrix providing a mapping from
a column vector xt into a column vector yt (t = 1, . . . , T ) and
et denotes modeling error.

Instead of one global mapping, we employ a set of local
mappings enabled by the use of GMM-based modeling as pro-
posed in [8]. The spectral parameter vectors are expanded to
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form new predictors x̃t:

x̃t =

2
64

ω1,txt

ω2,txt

. . .

ωN,txt

3
75 , (6)

where the weights ωn,t are taken from the posterior probabili-
ties of (4). The new regression model is:

yt = βx̃t + et. (7)

The standard multivariate regression using pseudoinverse can
be used to find the least-squares solution for β:

β̂ =
h
(X̃T

X̃)−1
X̃

T
Y

iT

, (8)

where X̃ = [x̃1, x̃2, . . . , x̃T ]T and Y = [y1,y2, . . . ,yT ]T ,
both centered to zero-mean.

3.3. Dynamic modeling

In speech signals, adjacent frames tend to exhibit rather strong
correlation. To exploit this correlation to improve the model-
ing accuracy, we augment the predictor x̃t of time t with the
corresponding representations of the neighboring frames.

The dynamics-augmented input vector of multivariate re-
gression at time t is denoted by x̃d

t and it can be used instead
of x̃t in (7). It is formed by augmenting the regression input
vector x̃t with the representations of the preceding frame x̃t−1

and the following frame x̃t+1:

x̃
d
t =

2
4

x̃t−1

x̃t

x̃t+1

3
5 . (9)

Dynamic modeling is likely to increase the correlation of the
adjacent predictors since after augmentation, vector x̃t can be
included in the regression input vectors x̃d

t−1, x̃d
t , and x̃d

t+1.

4. Evaluation
The experiments carried out consisted of objective evaluation of
the prediction accuracy of the traditional aperiodicity modeling
described in Section 2 and the proposed prediction scheme of
Section 3 predicting aperiodicities based on synthetic spectral
parameters.

The objective evaluation shows that the accuracy difference
between the traditional and proposed method is rather small. In
BAP prediction, the traditional approach slightly outperformed
the proposed approach whereas for the prediction of voicing de-
cisions, the proposed approach with GMMs resulted in slightly
higher accuracy. The small difference suggests that comparable
accuracy can be achieved by the traditional and proposed ap-
proaches. The small differences are, however, extremely diffi-
cult to detect in the synthesized waveforms due to the vocoding
and no full-scale listening tests were carried out. Instead, the
reader is encouraged to listen to the randomly chosen synthesis
samples available at http://www.cs.tut.fi/sgn/arg/silen/is2011/
AperiodicityPrediction.html.

4.1. Speech databases

The evaluation data consisted of English speech data from CMU
ARCTIC databases available at http://festvox.org/cmu arctic/,
a female voice database slt and a male voice database rms.

For both speakers, half of the data (Set A with 593 sentences)
was used for training and the remaining half (Set B with 539
sentences) for testing. All the models were trained speaker-
dependently using all the sentences of the training data.

Speech waveforms were parameterized using STRAIGHT
into a spectral envelope, F0, and relative voice aperiodicity that
were further modeled as MCCs of order 24, logarithmic F0,
and BAP values of the five frequency bands (0-1kHz, 1-2kHz,
2-4kHz, 4-6kHz, 6-8kHz), respectively. For HMM training de-
scribed in Section 2, speech parameters were augmented with
the 1st and 2nd order deltas. In the BAP and voicing decision
prediction of Section 3, the systems with dynamic modeling
employed the source representation augmentation of (9).

4.2. System description

Five systems were considered in the evaluation:

• Proposed I: prediction based on spectral parameters
(MCCs) using GMMs and multivariate regression with
dynamic modeling,

• Proposed II: as Proposed I but without dynamic model-
ing,

• Proposed III: prediction based on spectral parameters
(MCCs) using standard multivariate regression with dy-
namic modeling (no GMMs),

• Proposed IV: as Proposed III but without dynamic mod-
eling, and

• Baseline: traditional HMM-modeling with HSMMs and
decision tree-based context clustering.

In the systems Proposed I-II, BAP values and voicing decisions
were predicted from synthetic spectral parameters modeled as
MCCs using the approach of Section 3. In the training, GMMs
with N = 8 Gaussian components with diagonal covariance
matrices were trained based on synthetic versions of the train-
ing data MCCs. Mappings fromMCCs into BAP values or voic-
ing decisions were obtained using the regression model of (7)
with compressed posterior probabilities. In the synthesis phase,
the models were used to predict aperiodicities based on MCCs
unseen in the training. As a reference, systems Proposed III-
IV were trained using direct prediction based on MCCs without
using GMMs. In each case, the prediction models for BAP and
voicing decisions were trained separately using synthetic MCCs
(omitting the zeroth coefficient) and the BAP values or voicing
decisions of the recorded data of Set A. For the systems Pro-
posed I and III, dynamic modeling of (9) was used.

The system Baseline refers to the standard HMM-based ap-
proach with the context clustering resulting in approximately
100 nodes for each of the five states in BAP modeling for the
voice slt. The voicing decisions of the system were derived
from the probabilities of the voiced and unvoiced distributions
(decision threshold 0.5) of the trained F0 MSD-HMMs with ap-
proximately 300 clusters for each state for the voice slt. For
the voice rms, the number of nodes in both BAP and F0 mod-
eling was somewhat higher.

For all the systems, models for the spectral MCC values
and logarithmic F0 as well as the BAP models in Baseline were
trained using the standard HMM-based approach with HSMMs
(continuous-density or MSD) and context clustering provided
by the Hidden Markov model-based speech synthesis system
(HTS) [15]. For the systems Proposed I-IV, only the center-
most frame of each non-pause state was considered in the BAP
and voicing decision model training whereas for the Baseline,
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Table 1: RMSE values for the average voice aperiodicity of the
five frequency bands and voicing decision error percentages for
the CMU ARCTIC databases slt and rms.

Band aperiodicity Voicing
1 2 3 4 5

slt
Baseline 4.53 4.32 2.98 2.37 2.01 7.2 %
Proposed I 4.66 4.52 3.06 2.40 2.03 5.5 %
Proposed II 4.94 4.72 3.12 2.41 2.03 5.4 %
Proposed III 5.24 5.05 3.28 2.47 2.05 5.7 %
Proposed IV 5.57 5.28 3.36 2.49 2.06 5.7 %

rms
Baseline 3.97 3.70 3.03 1.99 1.84 6.5 %
Proposed I 4.38 3.93 3.15 2.05 1.88 6.1 %
Proposed II 4.66 4.10 3.25 2.08 1.89 6.4 %
Proposed III 5.27 4.53 3.49 2.17 1.93 8.5 %
Proposed IV 5.52 4.64 3.54 2.19 1.94 8.9 %

all the data in Set A was used. For a straightforward predic-
tion accuracy comparison, Viterbi-aligned state durations of the
corresponding recorded test sentences were used in synthesis.

4.3. Analysis of the prediction accuracy

The results of the objective evaluations for BAP and voicing
decision prediction are given in Table 1. For the systems Pro-
posed 1 and Baseline, the differences in root mean square er-
ror (RMSE) in BAP prediction and the percentage of erroneous
voicing decisions are rather small for both datasets slt and
rms.

In BAP prediction, the differences in RMSE values for the
systems Proposed 1 and Baseline are small, suggesting that the
proposed prediction scheme of Section 3 is able to provide pre-
diction accuracy comparable to the traditional HMM-based ap-
proach of Section 2. The comparison of the systems Proposed
I-IV shows that both the use of GMM-based modeling and dy-
namics can increase the prediction accuracy compared to the
direct mapping from spectral parameters into bandwise aperi-
odicities.

The relative amount of errors in voicing decision predic-
tion is shown in the rightmost column of the table. For both
speakers, the systems Proposed I-II have provided a somewhat
smaller prediction error compared to the system Baseline. For
the female speaker slt, the differences between the systems
Proposed I-IV are small whereas for the male speaker rms there
is a larger difference depending on whether the GMM-based lo-
cal mapping is used.

5. Conclusions
In this paper, we proposed a method for the prediction of voice
aperiodicities in the framework of HMM-based speech synthe-
sis. Instead of the traditional approach using context depen-
dent HMM modeling and context clustering for all speech fea-
tures, we proposed to use a prediction scheme with spectral
parameter-based prediction. The proposed approach employs
GMM modeling and multivariate regression to form local map-
pings from synthetic spectral features into bandwise aperiod-
icities and voicing decisions. The role of band aperiodicity in
HMM parameter estimation is limited and it can therefore be
left out from the training. The voicing decision modeling is
typically embedded in the F0 modeling. Analysis of the predic-
tion accuracy on English data reveals that there is only a small
accuracy difference between the proposed and traditional ap-

proaches, for the preference of the traditional approach in band-
wise aperiodicity prediction and for the preference of the pro-
posed approach in the voicing decision prediction. The results
suggest that in the framework of HMM-based speech synthesis,
voice aperiodicities can be predicted based on synthetic spectral
features.
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