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ABSTRACT 

Introduction/Hypothesis: 

The subfornical organ, one of the central circumventricular organs, has been shown to mediate many of the 
effects of circulating angiotensin II (AngII).   Where these signals are processed downstream is not fully 
understood. The SFO does indeed project to prominent cardiovascular regulatory centers such as the 
paraventricular nucleus (PVN), of whose neurons are activated by central AngII.   We reasoned that AngII sensed 
at the SFO would cause neuronal activation at downstream hypothalamic areas such as the median preoptic 
nucleus and paraventricular nucleus, and as such would be diminished in animals with lesions of the SFO. 

Materials and Methods:  

To test this hypothesis, groups of rats underwent either SFO lesion (SFOx) or sham operation. Five days later rats 
were instrumented with radiotelemetry transducers for monitoring of mean arterial pressure (MAP) and venous 
catheters for infusions.   MAP and heart rate were measured continuously.   After a 4 day control period, 
infusion of AngII (0.575 µg/kg/min) was begun for a period of 2 hours. Rats were then sacrificed and brains were 
processed for neuronal Fos expression.  

Results:    

AngII produced Fos expression in the SFO, MnPO and PVN of sham rats. Fos expression was greatly attenuated 
in the PVN of SFOx rats. 

Conclusion:  

These results support our hypothesis, suggesting that AngII sensitive neurons of the SFO can mediate neuronal 
activation in the PVN. 
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INTRODUCTION 

 The central nervous system monitors body 
fluid and adjusts its sympathetic nervous output 
and hormonal secretion based on circulating blood 
angiotensin II (AngII) concentration and osmolality 
[1-7]. These signals are sensed by circumventricular 
organs (CVOs) in the brain, unique central sites that 
line the third and fourth ventricles and have an 
incomplete blood brain barrier due to the presence 
of fenestrated capillaries [8, 9]. These special 
characteristics of CVOs allow circulating 
substances, including peptide hormones such as 
AngII, to gain access to the brain where they are 
normally otherwise excluded.   Of particular 
relevance to the present study, is the subfornical 
organ (SFO), which lines the third ventricle and has 
been implicated in the central effects of AngII [10].   
The SFO has a wealth of AT1 receptors [11] and has 
been shown to be involved in mediating both 
pressor [12-14] and dipsogenic [12, 15] effects of 
AngII, as well as centrally mediated release of 
vasopressin [16].   Lastly, we have recently 
demonstrated attenuated hypertensive effects in 
rats with lesions of the SFO during a ten day 
chronic infusion of AngII [17].  

 The central sites where sensory information 
is processed downstream from areas such as the 
SFO, and ultimately influence hindbrain activity are 
not fully understood. The SFO projects to the 
median preoptic nucleus (MnPO), a potential relay 
station to the paraventricular  nucleus (PVN)  [18-
26],  as  well  as  directly  projecting  to  the  latter. 
Evidence supports that the MnPO has an important 
role in relaying and integrating information 
received by the SFO. For example, this nuclear 
region has substantial afferent inputs from the SFO 
[25], and its neurons have been shown to increase 
their metabolic activity when the SFO is electrically 
stimulated [22]. After MnPO ablation, reductions  
in  water  intake  and  vasopressin  output  have  
been  observed,  as  well  as attenuated arterial 
pressure responses to AngII infusion [27-32]. 
Additionally it has been shown that the ventral 
MnPO is critical for expression of the immediate 
early gene, c-Fos in the PVN following i.c.v. infusion 
of AngII [33].   Lastly, we have recently reported 
reduced chronic hypertensive responses to AngII in 
animals with either chemical or electrolytic lesions 
of the MnPO, supporting a role of the MnPO 
neurons in this response [32, 34]. 

 With regard to the PVN, SFO neurons 

identified as projecting to the PVN are excited by 
AngII administration [35] and this is blocked by 
prior treatment with saralasin [36]. Likewise, 
lesions of the PVN decrease pressor responses to 
SFO stimulation [37]. Furthermore, PVN cells 
projecting to the intermediolateral cell column are 
excited by SFO stimulation [38]. Lastly, PVN or 
rostral ventral lateral medulla pretreatment with 
an AngII antagonist blocks pressor responses seen 
with AngII injection at the SFO [39]. 

 Taken together, the SFO, MnPO, and PVN are 
brain structures of interest that are involved  in  
sensing  AngII  or  participate  in  downstream  
actions  of  this  hormone. Expression  of  the  
proto-oncogene  c-fos  has  been  shown  to  
increase  in  neurons  in response to a number of 
stimuli [40-42], and thus, increased formation of 
the protein product of c-fos expression, Fos, may 
indicate increased activity of neurons [43]. In the 
present study, experiments were designed to test 
the hypothesis that the SFO is a primary site of 
action of AngII that leads to downstream activation 
of Fos in the MnPO and/or PVN,  providing  
evidence  to  support  a  central  pathway  that  
may  mediate  central regulation of blood pressure. 
In order to test this hypothesis, Fos expression was 
measured in hypothalamic nuclei (MnPO and PVN) 
after intravenous AngII infusion in animals with or 
without an intact SFO. 

METHODS 

 Adult male Sprague Dawley rats (Charles 
River Laboratories, Wilmington, Mass) weighing 
275-300g upon arrival, were used in all 
experiments. Rats were maintained under a 
12h:12h light dark cycle and given standard rat 
chow and distilled water ad libitum. All procedures 
were conducted in accordance with the National 
Institutes of Health guidelines and approved by the 
University of Minnesota Institutional Animal Care 
and Use Committee. 

Surgical Procedures  

 Rats were randomly assigned to either a 
lesion of the subfornical organ (SFOx, n=6) or a 
sham (n=5) operation. Pentobarbital sodium (39 
mg/kg, IP) was given as a preanesthetic medication 
with atropine (0.2mg/kg), and followed by an 
intramuscular injection of a combination of 
acetylpromazine, butorphanol tartrate, and 
ketamine (0.2 mg/kg; 0.15 mg/kg, 18.5 mg/kg, 
respectively) to achieve a surgical plane of 
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anesthesia. An intramuscular injection of 
antiobiotic (gentamicin 2.5 mg) was given pre-
operatively as antimicrobial prophylaxis.    
Anesthetized rats were then positioned in a Kopf 
stereotaxic apparatus. A dorsal midline incision was 
made through the skin of the skull. Bregma and 
lambda landmarks were exposed, and a 3 mm hole 
was drilled 1.5 mm posterior to bregma. A Teflon 
coated, tungsten electrode with 0.008 inches 
exposed at the tip was passed into the brain at 4 
predetermined coordinates relative to bregma. The 
four coordinates caudal and ventral to bregma 
were -0.8, and -5.2 mm, -1.0 and -5.1 mm, -1.2 and 
-4.9 mm, and -1.4 and -4.7 mm, respectively.   At 
each location, a 1 mA current was passed for 8 
seconds to complete the lesion.    The hole was 
then closed with bonewax, and the skin sutured 
with 3-0 silk suture. Sham operations were 
identical to lesion surgeries, with the exception 
that ventral coordinates were 1.5 mm less, and no 
current was passed.   A subcutaneous injection of 
0.075 mg of butorphanol tartrate was given post-
operatively for analgesic purposes, and animals 
were kept on a heating pad until they recovered. 

 On day 5 post lesion surgery, animals were 
implanted with radiotelemetry blood pressure 
transducers (Model TA11PA-C40, Data Sciences 
International, St. Paul, MN) and femoral venous 
infusion catheters, for 24 hour sampling of mean 
arterial blood pressure (MAP) and heart rate (HR), 
and infusion of AngII, saline, or phenylephrine, 
respectively. Briefly,  a  midline  abdominal  incision  
skin  was  made  to  expose  the abdominal aorta, 
the artery was clamped proximally, and the tip of 
the catheter advanced directly into the artery after 
a hole was made with a bent 21g needle.  A patch 
was affixed and glued into place on the outer wall 
of the vessel where entry occurred, and the clamp 
was then removed.   The body of the unit was 
sutured to the abdominal wall to secure it. For the 
infusion catheter, the inner thigh was incised and 
blunt dissection used to expose the femoral vein 
for placement of the venous catheter.   Silk sutures 
were used to briefly occlude the vessel for catheter 
placement.   The catheter was advanced to the 
level of the atrium, and sutured into place with 3.0 
silk. Hemostats were used to draw the other end of 
the catheter subcutaneously through a scapular 
incision, and once exteriorized at the nape of the 
neck, sutured in place.   Animals were fitted in 
jackets attached to springs enclosing the catheters. 

Each rat was housed singly with the spring attached 
to a swivel mounted above a metabolic cage. 
Animals were injected with antibiotics (Ampicillin 
15 mg/kg) daily for  3 days, followed by heparinized 
saline  (50 IU/ml) to maintain line patency  until  
infusion  and  subsequent  tissue  collection  for  
Fos  immunoreactivity measurements. 

Experimental Protocol  

 Blood pressures were monitored over 3 days. 
Four days after implantation surgery, animals were 
infused for 2 hours (1 ml saline/hour) with one of 
three solutions: AngII (0.575 µg/kg/min), isotonic 
saline, or phenylephrine (10 µg/kg/min). The dose 
of AngII was chosen based previous reports 
demonstrating centrally induced Fos expression in 
response to this dose [12]. SFOx (n=6) or sham 
(n=5) animals were treated with AngII, and 
separate non-lesioned controls (n=3) were infused 
with phenylephrine (at a dose chosen to cause a 
similar rise in pressure as those animals infused 
with AngII) to control for the increase in blood 
pressure produced by AngII. Separate saline control 
animals (n=2) were examined as well as 24 hour 
water deprived Fos positive control rats for 
expression in the PVN (n=9). It is well known that 
water deprivation causes Fos expression in this 
area of the hypothalamus. 

Immunohistochemistry  

 Within 20 minutes post infusion, all rats were 
anesthetized to a surgical plane, as assessed  by  
response  to  noxious  stimulus,  then  rapidly  
decapitated  and  the  brains removed. Brain tissue 
was immersed in 0.1M acetate fixative on ice, 
placed on a shaker at 4° C for approximately 6 
hours, transferred to 0.1M borate fixative at 4° C 
for approximately 2-3 days, then transferred to a 
20% glycerol in 0.1M phosphate buffer solution at 
4° C for 1 ½ days. 

 40 µm coronal slices were then collected 
from the SFO, MnPO, and PVN using a sliding 
cryotome with freezing stage set at -19° C.   Tissues 
were transferred from PBS into cryoprotectant for 
storage in -20° C until immunohistochemistry was 
performed. Alternating slices from each nucleus 
were selected and processed. 

 After removal from cryoprotectant and 
rinsing with PBS, sections were reacted with 3% 
H2O2 and 10% methanol mixture, blocked with 
normal goat serum in PBS-T, and incubated 
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overnight with anti-c-Fos (Ab-5) rabbit polyclonal 
antibody (1:80,000 in 2% NGS/PBS-T; Calbiochem) 
at 25° Celsius. After rinsing with PBS-T, sections 
were incubated  with  biotinylated  goat  anti  
rabbit  IgG  secondary  antibody (1:400  in 2% 
NGS/PBS-T,  Vector  Labs,  Burlingame,  CA)  for  1  
hour,  followed  by  avidin-biotin complex for 1 
hour (Vector Labs), and followed by the addition of 
diaminobenzidine as per kit instructions (Vector 
Labs). Sections were mounted on gelatin-coated 
glass slides and coverslipped with Permount 
mounting media after being dehydrated with 
alcohol and methyl salicylate. Fos-IR 
(immunoreactivity) cells in the SFO, MnPO, and 
PVN were counted using the Metamorph Imaging 
System®. At least 4 slices per section for each 
nucleus were counted, averaged and compared 
between groups. 

 In the SFOx group, only rats with greater 
than 90% lesions and no or slight damage to 
adjacent areas were included in the analysis, as 
determined by visualization of the SFO by light 
microscopy. 

Analysis  

 Fos positive nuclei were identified under 
normal brightfield illumination. Statistical analysis 
between lesioned, sham, and phenylephrine 

treated groups was performed by one way ANOVA 
using the statistical packages NCSS (NCSS, Kaysville, 
UT) and Abacus concepts, Inc. Between group 
comparisons of Fos counts were done with sham 
and lesion animals and within group comparisons 
between baseline and two hour MAP and HR were 
performed after AngII infusion (Microsoft Excel, 
Microsoft Corp, Redmond, WA).  All values were 
presented as means + SE. 

RESULTS 

Effects of AngII infusion on blood pressure 
and heart rate 

 Table 1 shows resting baseline levels 
(measured as average values during the 60 minutes 
prior to the start of infusion) of MAP and HR, and 
the changes in these parameters induced by 
intravenous infusion of AngII or phenylephrine for 
a period of two hours. MAP showed an abrupt and 
sustained increase with acute AngII infusion that 
was not lessened by lesion of the SFO (SFOx, n=6; 
124+7 mmHg) in comparison with sham animals 
(n=5; 129+6 mmHg). Phenylephrine infusion (n=3) 
raised MAP to similar levels as seen in both sham 
and SFOx lesion groups that received AngII. 
Baseline HR were similar in all three groups and 
treatments produced similar bradycardic responses 
in all 3 groups (see Table 1).  

 

Table 1:  Absolute values of mean arterial pressure and heart rate before and after treatments (either AngII or 
phenylephrine) in sham or SFO lesioned (SFOx) rats. (HR=heart rate, MAP=mean arterial pressure, SFOx=rats with 
lesion of the SFO). 

 Sham AngII group SFOx AngII group Phenylephrine group 

n Pre Post n Pre Post n Pre Post 

MAP (mmHg) 5 102±7 129±6 6 98±3 124±7 3 99±8 124±12 

HR (bpm) 5 430±15 335±27 6 428±22 353±11 3 431±18 327±22 

 

Effects of AngII infusion on Fos production  

 AngII infusion induced Fos expression in the 
SFO, MnPO, and PVN in addition to other brain 
nuclei sites, while saline and phenyleprhine 
infused controls resulted in more limited 
responses. Figure 1 shows a typical example of a 
positive control animal demonstrating Fos 
expression in the PVN of an animal that was water 
deprived for 24 hours. Figure 2 displays examples 

of Fos expression in the SFO, MnPO and PVN in 
SFOx animals after stimulation with AngII over two 
hours time compared with sham animals. 
Additionally, Fos expression in these areas is 
shown in the phenylephrine treated group.   
Averages of number of Fos expressing cells in SFO, 
MnPO and PVN are shown in figure 3 for all 3 
groups (AngII-sham, AngII-SFOx and 
phenylephrine treated).  
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Figure 1: Low and high magnification (inset) of a typical coronal section of PVN from a Fos positive (black dots 
represent counts of Fos production) control animal. Water was withheld for 24 hours prior to tissue collection to 
induce Fos expression. One such control animal was performed with every group to verify DAB staining intensity 
(PVN=paraventricular nucleus). 

Magnification bar = 100 µm 

 

 While having no effect on the acute blood 
pressure response, lesions of the SFO (SFOx) 
suppressed Fos activation in the PVN compared to 
sham animals in response to AngII infusions (figure 
3).   Fos expression was still present in both the 
MnPO and PVN in SFOx animals, but was 
significantly decreased in the PVN of SFOx rats.  

SFO  

 As presented in Figure 3, following AngII 

infusion, Fos activation in the SFO of sham animals 
was marked (258+64). Phenylephrine treated 
control animals had a paucity of activation here 
compared to AngII infused shams (36+32).   
Separate saline infused controls (both sham and 
SFOx animals) had few Fos positive neurons (4+1 
and 3+3 respectively). Figure 2 shows 
representative examples of the SFO (top row) in 
the treated groups. 
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Figure 2:  Representative coronal sections from subfornical organ (SFO; top row), dorsal median preoptic nucleus 
(MnPO; middle row) and paraventricular nucleus (PVN; bottom row) in animals following 2 hours of intravenous 
infusion of AngII in sham (first column) and SFOx (second column) animals, as well as phenylephrine (final column) 
treated control rats. Midline structures of the lamina terminalis are labeled in the third column as SFO and MnPO, as 
well as the bilaterally paired areas of the hypothalamic PVN. 

Magnification bar = 100 µm. 

 

 

Figure 3: Bar graph representing counts of Fos activation in MnPO (d=dorsal, v=ventral), SFO and PVN in animals 
following intravenous infusion of AngII in sham and SFOx animals, as well as phenylephrine treated control rats. 

 * = p<0.05 between groups in SFO; + = p<0.05 between groups in PVN. 

 

MnPO  

 AngII infusion in sham animals produced Fos 
activity in both dorsal (d=50+7) and ventral 
(v=36+8) MnPO regions. As shown figure 3, lesion 
of the SFO did not reduce the numbers of Fos 
activated cells in SFOx rats (d=41+17; v=23+5) 

compared with sham animals. Phenylephrine 
treated animals also demonstrated some activation 
in all regions of the MnPO (d=15+7; v=20+10). Fos 
expression in separate saline infused controls were 
as follows:   sham; d=26+7, v=17+12 and SFOx; 
d=19+8, v=4+0.1. Figure 2 (middle row) shows 
representative examples of the dorsal region of the 
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MnPO in the treated groups. 

PVN  

 Dense groups of neurons were activated in 
the PVN after Ang II infusion in sham animals 
(172+25). As shown in figure 3, there was however, 
a marked and significant reduction in the number 
of Fos activated cells seen in AngII treated SFOx 
animals (91+17). Phenylephrine treated animals 
had similarly less activation noted in this area 
(97+31). Fos counts in the PVN of saline infused 
controls (sham and SFOx) were 92+9 and 78+12, 
respectively. Figure 2 (bottom row) shows the Fos 
expression in the PVN after AngII infusion in both 
SFOx and sham animals, as well as phenylephrine 
treated controls. 

DISCUSSION 

 Many of the central actions of AngII are 
thought to be mediated through central nervous 
system sites known as CVOs [40, 45]. Of these, the 
SFO and its role in the actions of AngII has been 
studied in the past, and the results have been 
consistent regarding the ability of AngII to induce 
SFO neuronal activation [46, 47]. The SFO is 
abundant in AT1 receptors [48, 49], and is involved 
in both the central dipsogenic and pressor 
responses to AngII [50]. We have recently 
demonstrated a role of the SFO in the long term 
hypertensive effects of AngII as well [17]. Once 
AngII is sensed at the SFO, it is of interest what 
downstream central sites may be further activated. 
It has been reported that many SFO neurons 
containing AT1 receptors project to the PVN [51], 
and is therefore logical that AngII activation in the 
SFO might be mediated and/or integrated at this 
downstream site. 

 Neuroanatomical studies have shown that 
the SFO sends axonal projections to the PVN and 
supraoptic nucleus (SON) [24, 25], via two main 
efferent pathways [25], either synapsing directly or 
relaying at the MnPO before reaching these 
hypothalamic nuclei. The present study was 
conducted to test the hypothesis that the SFO is a 
primary site of action of AngII which leads to 
downstream activation of Fos in the MnPO and/or 
PVN via central effects. As such, the results of the 
present study demonstrate that after SFO ablation, 
there is significant suppression of neuronal 
stimulation in response to IV AngII administration 
in the PVN. Rats were placed in two main groups: 

SFOx or sham. The SFO was removed to test if Fos 
expression in the downstream MnPO or PVN would 
be lessened in response to AngII. Animals were 
infused for 2 hours with one of three possible 
solutions:  AngII (0.575 µg/kg/min), isotonic saline, 
or phenylephrine (10 µg/kg/min). Controls infused 
with phenylephrine were used to control for any 
pressure induced baroreceptor input/activation 
produced by the acute pressor effects of circulating 
AngII. Our results, (as seen in Figure 2) indicate 
diminished neuronal activation of the PVN in 
response to AngII infusion in SFOx animals, 
whereas Fos expression in the MnPO remained 
unchanged. 

 The novel results of the present study extend 
the findings of McKinley et al, in that while 
intravenous phenylephrine and AngII infusions 
both elicited Fos responses in neurons of the PVN, 
we further demonstrated a significant reduction of 
PVN neuronal Fos expression in animals with SFO 
ablations after AngII infusion, confirming the 
central effects of AngII at the SFO in this pathway.   
Interestingly, McKinley et al observed that Fos 
activation occurred with AngII and phenylephrine 
infusion in the PVN, as well as another  CVO,  the  
area  postrema (AP),  yet  was  diminished  in  the  
MnPO  after phenylephrine treatment [18]. While 
we observed less Fos expression in the MnPO of 
both SFOx-AngII as well as phenylephrine treated 
animals compared to sham-AngII, neither of these 
differences were statistically significant. Overall, 
these studies complement previous findings and 
further suggest a role of the SFO in relation to AngII 
induced Fos activation in the PVN. Additionally, 
these findings are in agreement with earlier studies 
using both lesion and electrophysiological 
recording methods, which indicated that the SFO 
was crucial in the central effects of AngII on PVN 
neuronal activity [51-53]. 

 Baseline HR and MAP were similar in all 3 
groups. Additionally, while MAP and HR changed 
significantly within groups in response to 
treatments of AngII or phenylephrine, the changes 
in these paramenters in response to these 
treatments were not different between groups 
(Table 1). The change in pressure in the 
phenylephrine group was similar to the AngII 
treated groups and therefore used as a control for 
the pressor effects of AngII apart from its direct 
central effects. Furthermore, SFOx had no effect on 
the acute cardiovascular responses to AngII at this 
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dose. 

 In contrast to Rowland et al [21], we found 
that SFO lesions did not completely abolish 
neuronal activity in the MnPO or OVLT (not shown) 
and that phenylephrine infusions, dosed at levels 
that mimicked the blood pressure and heart rate 
effects of AngII treatment, caused some Fos-like 
activity in all regions we studied except for the SFO 
itself. Reasons for divergent results between our 
work and that of Rowland et al are not clear, but 
possibilities include activation from neuronal 
pathways originating from other CVOs, including 
the area postrema (AP), which has been previously 
and clearly shown to be significant in the central 
hypertensive effect of AngII [54]. While Rowland et 
al was unable to detect Fos-like activity in the AP, 
we and others [18] have observed activity in this 
region that could account for these differences. 
Additionally, a notable difference was that a lower 
dose of AngII was used in our experiments that 
could have altered activity seen in this hindbrain 
region. Indeed, the AP was the first CVO thought to 
mediate acute central actions of AngII with dose 
dependant effects [44]. While Fink et al [54] 
previously showed that the AP was necessary for 
the chronic hypertensive actions of AngII in a high 
salt model, recent results from our laboratory 
appear to diminish the role of the AP as a critical 
mediator of the chronic hypertensive effect of 
intravenous AngII during normal sodium intake 
[55]. 

 Lastly, it should be noted that Fos activation 
in saline treated control animals was observed in all 

regions we monitored, however to a much lesser 
extent than other treatment groups.   This is 
actually in agreement with previous studies where 
it was also noted that isotonic saline causes Fos 
activation in the PVN [20]. Moreover, in that study 
they  noted  there  was  a  significant  difference  
between  the  saline  infused  sinoaortic 
denervated (SAD)  animals  and  the  AngII  infused  
SAD  animals,  indicating  AngII's greater effect than 
saline on Fos expression, regardless of 
baroreceptor input. 

 In the present study, we have demonstrated 
AngII induced Fos activation in the hypothalamus 
and most notably the PVN. These results validate 
previous work by others examining this pathway 
[18, 19], and more importantly report the 
observation of reduced Fos expression in the PVN 
in animals with lesions of the SFO in response to 
AngII treatment. SFOx had no effect on Fos 
expression in the MnPO of AngII treated animals. 
These results provide further support for the role 
of neurons of the SFO projecting to and providing 
input to the PVN in response to and modulating the 
central effects of increased circulating AngII. 
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