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Limit Analysis of Hollow Disk 
Forging 
Part 2: Lower Bound 
A lower bound for hollow disk forging is presented. The hollow disk is separated into sev
eral regions by permissible surfaces of stress discontinuity. The friction stress in each 
zone is assumed to be either variable or constant; the overall friction stress distribution 
has characteristics similar to experimentally determined distributions. A statically ad
missible stress field describes the stress distribution within each deforming zone. The de
pendence of the relative average pressure, the friction stress distribution and the neutral 
radius upon friction and ring geometry is given. It is found that only for thin rings is the 
friction stress constant over most of the interface. Finally, it is proposed that friction fac
tors being measured by use of the mathematically calibrated ring compression test may 
be somewhat high. 

I n t r o d u c t i o n 

A lower bound solution for hollow disk forging [l]1 is presented in 
this paper. The analytical procedure utilized is very similar to that 
established by Avitzur [2,3] for solid disks. The constant shear factor 
m description of friction and the Mises material assumptions are 
made. 

D e r i v a t i o n 

As presented by Prager and Hodge [4], the lower bound theorem 
states that "among all statically admissible stress fields, the actual 

one maximizes 

I TiVids. (1) 

In the above expression for power, T; is the normal stress at the 
tool-workpiece interface (computed from the assumed statically ad
missible stress field), u; is the tool velocity, and s represents the area 
of the tool-workpiece interface. 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Production Engineering Division and presented at the 

Winter Annual Meeting, Atlanta, Ga., November 27-December 2,1977 of THE 
AMERICAN SOCIETY OF MECHANICAL ENGINEERS. Manuscript re
ceived at ASME Headquarters June 24,1977. Paper No. 77-WA/PROD-3. 

To be statically admissible, a stress field must meet the imposed 
boundary conditions, including the assumed friction stress distri
bution, satisfy the equilibrium equations and obey the Mises' yield 
criterion. In addition, the relaxed stress continuity requirements, as 
described in reference [4], must be maintained. 

To obtain a lower bound solution, the hollow disk is first divided 
into six zones as shown in Fig. 1. Within each zone, the stress distri
bution is to be described by a statically admissible stress field. The 
radial positions of the cylindrical surfaces of permissible stress dis
continuity (i?i, fl2, Rn, R3, Rd will be found through maximization 
of the total power within the constraints imposed by the Mises' yield 
criterion. 

The following boundary conditions are imposed on the stress fields. 
Since the free surfaces at R0 and if, cannot support shear stresses, 

ORY 1\RO = ® and r-VIk = 0. (2) 

If external (p0) and internal (p;) pressures restrain these surfaces, 

-P° and (3) 

Additional boundary conditions will be considered after the assumed 
friction stress r distribution is described. 

The assumed variation of the friction stress T is, illustrated in Fig. 
1. T is assumed to be equal to —mr/o/VI between fl2 and fli and 
+ m<ro/v/3 from fl4 to R3. Since T acts in opposite directions on op
posite sides of Rn, stress continuity requires T to pass through zero 
at Rn. The friction stress is equivalent to the shear stress at the hollow 
disk-platen interface (T = any I Y=TII). Since ORY is zero along R0 and 

Journal of Engineering for Industry AUGUST 1978, VOL 100 / 347 

Copyright © 1978 by ASME

Downloaded From: https://manufacturingscience.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



_». J ' L w JZJ^. ^_ 

1 
L 
WA Z/j. 

'//, 
0 -

•31 

p 
_a „ 3 

y4 4 
m. 

•»a R 

y4 
m 

— R o —gs« 

Pig, 1 Assumed friction stress (r) distribution In hollow disk forging (B„ > 
»/) 

Ri (equations (2)), T must also be zero at these radial positions. All 
increases and decreases in T are assumed to be linear. This distribution 
has characteristics similar to the friction stress distributions deter
mined experimentally by Unksov [5; Figs. 51, 52, and 61] for bar 
forging under plane strain conditions. 

The remaining boundary conditions result from friction at the 
ring-platen interface. 

ma0 i R0 - R 
ORYl\Y=TI2 ' 

/ f l o - f l \ 
\R0 - RJ 

(4) 

„II CRY |Y=T/2 = _ 

TYMTo / R — Rn
 N 

ma0 I Rn — R^ 

V3 

"RY \Y-Tli ' 

/Hn~K\ 

\Rn ~ Ry 

ma0 

" vf 
VI ma0 IK - Ki\ 

aRY l y = T / 2 = 7f(flT^/ 

(5) 

(6) 

(7) 

(8) 

(9) 

The shear stress acts in opposite directions on opposite sides of R = 
Rn and Y - 0. Therefore, <SRY must pass through zero at these posi
tions. 

< w m k = < W I v k = 0 

w ' - ^ l y ^ ^ 
(10) 

(U) 

Since a hollow disk is axisymmetric, the stress components are in
dependent of 9 and the shear stresses ORB and aey vanish. The equi
librium equations given by equations (7.2) of reference [3] reduce 
to 

doRR deny ORR — ceo 

dR dY R 

SORY doyy , ORY 
—, 1 (. = ŷ  

dR dY R 

0 

(12) 

If the restriction that ORR = tree (When «RR = tee as assumed in solid 
disks [2, 3], it follows from the Mises stress-strain rate law 

kj - uSij (13) 

and 

Sij = aij - Sdij (14) 

that the corresponding stress components are equal.) is imposed on 
the stress field, the equilibrium equations become 

d(XRR 9 (TRY 

dR 

doRy 

9R 

dY 

Sffyy 

ay 
+ 

u 

ORY 

R 

(15) 

0. 

With this restriction, the stress field deviates still farther from the 
exact field, and the resulting solution becomes lower. However, if this 
sacrifice in accuracy is made, the calculations are simplified. 

For an axisymmetric state of stress, the Mises yield criterion is 
written as 

(16) 

Substituting ORR = oee into inequality (16) and then rearranging to 
obtain a convenient form of the criterion gives 

kflfl - c ry | ^ <r0 V 1 - 3 ( ) • 
\ <r0 / 

(17) 

To maintain equilibrium, the radial ORR and shear ORY stresses must 
be continuous across the cylindrical surfaces at R\, R2, Rn, R3 and R\. 
For instance, atf l i , 

ffftfiMfll = 0'fiflII|Rl>* ORYl\lti ?yII|R r (18) 

However, the axial stress is permitted to be discontinuous [4] 

OYYI\R1 ^ <ryyn|fl,; "YY11\R2 ^ ffyYln|«2etc- ( I 9 ' 

-Nomenclature-

m = Constant shear factor 
mc = Critical constant shear factor 
pave = Average pressure 
pi = Internal pressure 
p0 = External pressure 
R, 0, Y = Axes of a cylindrical coordinate 

system 
Ri = Internal radius 
Rn = Neutral radius 
R0 = Outer radius 

fli, #2, Rn, Ri, R4 = Radial positions of cy
lindrical surfaces of permissible stress 
discontinuity 

S - Hydrostatic stress 
Sij = Stress deviator component 
s = Surface 
T = Thickness 
Ti = Normal stress at tool-material inter

face 
U = Platen velocity 

Vi = Velocity 
dij = Kronecker delta: a unit tensor where, if 

i = ;', then 6,7 = 1 and if i ^ ;', then 6,7 = 
0 

iij = Strain rate component 
M = Scalar function of strain rates 
oij - Stress component 
o0 = Yield limit in uniaxial tensile test 
T = Friction stress 
I, II, I I I , . . . Zone numbers 
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at these boundaries since this relaxation does not upset the equilib
rium. An example of a surface of stress discontinuity is the interface 
between two cylinders which have been shrink-fitted together. In this 
case, the circumferential stress is discontinuous. 

To initiate the determination of a statically admissible stress field 
in zone I, the distribution of the shear stress ORY1 is assumed. The 
following distribution, which is assumed to be linear in R and Y, obeys 
the boundary conditions in equations (2), (4) and (11). 

[<*--*>2-(2-DTK (29) 

and OYY1 is 

OYY 

CRY 
o„ I Y \ /R0 - R\ 

| / _ 1 I : , 1 

V3 Vr/2/ \RO-RJ 

•\fi 9 /R° -RV <*o m 1 
V \ R 0 - Rj VZTRO-RX 

X[(2_D(Y2_I!) + M 2 ] . (30) 

The derivative of ORY1 with respect to Y is 

doRY1 _ _ _Oo_ I 1 

ay VS\T 
i _ \ /Ro-R\ 

72/ \R0-RJ' 

(20) 

(21) 

Substitution of equation (21) into the first of equations (15) and then 
integration yields ORR1. 

The derived stress field must satisfy the Mises yield criterion 
throughout zone I. The assumption is made that if the yield criterion 
is obeyed at the corners of each zone, it is obeyed throughout the zone. 
Substituting equations (24), (30) and (20) into inequality (17) gives 

- ' - ^ ( ^ ( " - T V (Y) (22) 

The integration constant [/'(Y)] is found by meeting the boundary 
condition atR0 (equation (3)). 

ff»Vl"m
 (R-^RV

 +Vl VZT R0 — Ri 

-V.-(£)'(£££)'. ™ 
/ '(Y) 

Co 

'Vs 
(J!L) / _ J _ \ (*<£) _ 
\ T / 2 / \R0-Rj \ 2 / Po (23) 

At Y = 772, the inequality is satisfied for all R values. At Y = 0, 

4 
and 

"RR 
oo 

'Vs L \ 2 / \Tl2l R0-R1 \<7 0 /V3/J 

Taking the derivative of ORY1 (equation (20)) with respect to R, 

^ = + mwJL\/^\ (25) 
dR s/z\Tn) \R0-RJ 

substituting equations (20) and (25) into the second of equations (15) 
and then integrating leads to 

o0 

, . (2-^y 
v \R0 -Ri> VI: i R0 ~~ R\ 

<o0. (32) 

Evaluating inequality (32) at R = R0 and solving for RJR0 yields 

1 m 

R0~ ' 8V3R0/T' 
(33) 

The following additional restrictions are obtained after substituting 
R = R\ into inequality (32). 

oYY 
oo / 1 \ /2-RJR\ /Y 2 \ n i ^ 

(26) 
i-,(1+iV(i)'^)^< Rt 1 

—- < -
R0 2 

Since no boundary conditions are imposed on the axial stress OYY, the 
expression for fl(R) is determined from the Mises yield criterion. 
Substituting equations (24), (26) and (20) into inequality (17) gives 

-*('-ivGR. (34) 

where 

1 

\ / 3 T # 0 - f l i 
(R, - fl)2 - (2 - £ 2 ) Y 2 ] - p0 - fi{R) I < o0 

A = 
4V3(1 + VT^m^RolT 

: y i 
\T/2/ 

which leads to 
(«::»,)<- i . ^ , . ! ^ ! ^ ) , ! 

- / i^fl , Y) < -hl(R, Y)- f\R) < / W , Y) 

/i'(fl, Y) - /2i(fl, Y) > /'(A) > - / i ' ( /e , Y) - /2i(fl, Y), 

-'Kv^R. 
(35) 

where 

where 4 V 3 ( V T ^ ? - DRolT ' 

«"--v^Q'(S) ! {28) 

and 

/•. %y)=+^?^[(fl-fl)2"(2-f)y2K 

Thus, the following stress field for zone I is statically admissible if the 
permissible surface of stress discontinuity at R\ remains within the 
limits (inequalities (33), (34) and (35)) governed by the yield criteri
on. 

Setting f\R) equal to the right side rather than the left side of the 
above inequality results in a larger negative value for OYY and sub
sequently an upper, lower bound. However, fl(R) must only be a 
function of R if the equilibrium equations are to be obeyed. Letting 
Y = T/2 (explained in paragraph following equations (36)) and hence 
satisfying inequality (28) only at Y = T/2, fl(R) becomes 

# „ / Y N 
1 - -

«„ Vzm T \R0) 

1 mR0 

o0 o0 Vz T 

R_ 

Ro I ORB1 <rev 

V 3 T f l 0 -Ri 
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Ro 

( l - A ) 2 ' 
\ Ro/ 

R„ 

(36) 
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At this point, the reason can be given for choosing Y = 772 rather 
than y = 0 when determining an expression for /'(ft). Letting Y = 0 
results in a stress field with restrictions on R\IR0 which cannot be met. 
To be specific, at the position Y = 772 and R = R0, 

: m - - < 0 . (37) 
4V3 fl0-.Ri 

Obviously, fti cannot be greater than Ra. 
As in zone I, the first step in the determination of a statically ad

missible stress field for zone II is to assume a distribution of ffRy". In 
addition to meeting the boundary conditions in equations (5) and (11), 
07}y11 must maintain stress continuity across the surface at R\. 

"RY11\RI = "RY1\RI 

The assumed distribution of O-RY11 is 

mo„ Y 

" \ / f 772 

CRY 
ma0 Y 

\ / 3 772 ' 

The derivatives of the shear stress ORY11 are 

dcrRY11 ma0 1 doTjy11 

= _ a n (J _ : 

dY V3 772 dR 

(38) 

(39) 

(40) 

Substituting the first of equations (40) into the first of equations (15) 
and then integrating leads to 

"RRl 
_™°o I 1 \ 

' V 3 \TI2l 
R + fll(Y). (41) 

The function fn(Y) enables a/at11 to meet the stress continuity : 
quirementatft i . 

"RRU\RI - °RR1\RI ValT ° o0/Vz\ 

"RRU becomes 

-n-^[(?) tS- + Rl-M, + ^ } 

(42) 

(43) 

The axial stress uyy11 and the yield criterion restrictions are found 
according to the procedure used in zone I. The stress field in zone 
II 

CRY 2 mR0 i Y\ ORB11 

VI T \RJ' <r0 

ffey H 
- = 0 

ffKfl" _ T O O " 1 mRg / fli _ R \ _ P o 

<r0 a0 v f T \ R0 R0I a0 (44) 

1 
+ --

• V T 

l 

1 mfi, 

V 3 T L V R„ RJ 

I 

4(ft0 /T)2ft /ft 

is statically admissible if 

« 2 . 

o \ i ?o ' R/Ro-1 <r0 

R0 4V3 (1 - V l - m2)Ro/T' 
(45) 

Statically admissible stress fields for zones III, IV, and V are de
termined in a manner similar to that used for zones I and II. The only 
difference is that in zones III and IV, the expressions for fIIl(R) and 
/IV(ft) satisfy the yield criterion at Y = 0 instead of Y = 772. The re
sults are found in the Appendix. 

The procedure for zones I-V must be altered for zone VI. The radial 
stress in zone VI must not only meet the continuity requirement at 
#4 but also the boundary condition at ft; (equation (3)). If ORR VI were 
derived from the first of equations (15) after assuming uflyVI, only one 
of these conditions could be met. This difficulty can be avoided by 
first assuming linear distributions for both ORYVI and ORRVI which 
meet all conditions and then lifting the restriction that crflKVI is equal 
to <reeVI. Therefore, to be statically admissible, the stress field in zone 
VI must obey the equilibrium equations in equations (12) and the 
Mises yield criterion in inequality (16). The statically admissible stress 
field for zone VI is given in the Appendix. 

The lower bound on the relative average forging pressure pmJa„ 
is computed from the axial stress components at the hollow disk-
platen interface. The total lower bound on power is found by applying 
expression (46) to each of zones I-VI and then summing these 
terms. 

f TiVids = f {-ay 
<LSSU *J 

=m)(U)(27rRdR) 

* * • * ' J " ^ i—(£)'(£)• (46) 

Equating this total power to the externally supplied power (equation 
(11), Part 1) results in 

Pave 

"o ©' 
I K\\ / , . s in * m \ 

2 

6V3 TV R0 \R0I \R0J R0 \R0 

\R0/ ft0 Vft0/ ft0 \ft</ V V fto \Ro' 

_ /R*y+K±(*L)2
+/^2*i+ (*±y+ /«iVl 

\R0l R0 \R0l \R0I Ro \R0l \R0I J 

_j_j»_/«H+«3ur^v-^vi 
2V3ft0/7'Vft0 Rj l\R0l \R0/ J 

_ fi / » ) \ {"•"• ^„/£.). K (1) /A) d (A) 
<J0 \Ro> JRilRo \ f t< / \R0' VR 0 / Vfto/ 

>(47) 

where 

H ( - ) -W 

ft 
R0 

/?4 

fto 

Ri\ 2 

fto 1 

R>) 
Ro 

K ©-• te=?[( 

l - T O 2 

1 + £ i - ^ - 2 f l " 
Ro Ro R0 

Ro Ro ) \ ft„ Ro' J 
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Integration of the last term in equation (47) is performed numeri
cally. 

Within the limits governed by the Mises yield criterion, the values 
ofRi/Ro, R2/R0, RJRo, R3/R0 axi&RJRo maximize Pave/̂ o- These 
radial positions are found through a computer program [1]. In Figs. 
2(a) and 2(b), the relative average pressure Pave/̂ o is plotted as a 
function of m for various R0/T and ft,/ft0 combinations. Corre
sponding RJR0 values are presented in Figs. 3(a) and 3(6). The so
lution terminates when R2/R0 becomes equal to Ri/R0. This even
tually occurs as m decreases from mc, the critical (maximum) value 
of the constant shear factor (to be discussed). 

For the special case of a solid disk (Rn =Ra = Ri = ft; = 0),paVe/,ro 
in equation (47) reduces to equation 7.77 of reference [3], the lower 
bound solution for a solid disk. 

Discussion 
Friction Hill. The presence of a friction stress at the platen-

hollow disk interface results in the "friction hill" phenomenon: an 
increase in the interface pressure from the edges to the neutral radius 
Rn- The relative shear stress distribution at the hollow disk surface 
"RY/OO I y=r/2 (equivalent to the relative friction stress r/a0) predicted 
by the lower bound through maximization (within yield criterion 
limits) of Pave/"0 in equation (47) and the corresponding relative axial 
stress distribution at the interface —<ryy/<r0| y=r/2 (equivalent to 
relative interface pressure) are plotted in Fig. 4 for m = .4, R0IT = 
10/1 and Ri/R0 = 1/10. Moving outward from ft; and inward from fti 
toward ft„, - OYY/OO \ Y=T/2 increases with the allowed discontinuities, 
reaching a maximum at Rn. A linear increase is observed where T/<T0 

is constant, However, since the friction stress drops to zero at R„, the 
peak becomes rounded-off. The "friction hill" is shifted upward with 
increased m and R0/T and decreased ft;/ft0. 

3 
o 
< 

< 
I -
hi 
2 
UJ 

> 

FRICTION 

Fig. 3(a),(<5) Relative neutral radius predictions oi lower bound 

Similar friction and axial stress behavior has been determined ex
perimentally by Unksov [5; Figs. 51,52 and 61] for forging bars under 
plane strain conditions. Thus it should be noted that the friction and 
axial stress distributions in Fig. 4 are quite realistic. 
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Friction Characteristics. The critical value of the constant shear 
factor mc maximizes pavJa0. As seen in Figs. 2(a) and (b), pavJa0 

increases up to a maximum with increased m. If m becomes greater 
than mc, Pave/ffo drops. Since pave/°"o is expected to increase with 
increased m, the curves are terminated at mc. The value of mc in
creases with increased R0/T and decreased ft;/ft0. 

y/s. / 

Rj 

Ro 10 

Fig. 5 The effect of the constant shear factor (m) on the relative friction 
stress (rla0) distribution 

Fig. 6 The effect of the Internal radius ratio (H//R0) on the relative friction 
stress (TIO0 ) distribution 

The critical value of m is always less than one although it becomes 
quite close to unity for large values of R0/T. According to the inter
pretation of this result in "Limit Analysis of Solid Disk and Strip 
Forging" by Avitzur [2], the shear stress at the hollow disk-platen 
interface (equivalent to friction stress) never reaches the maximum 
value of a0lVZ; not even for rough, unlubricated surfaces. The max
imum shear stresses in the hollow disk occur over surfaces inclined 
to the interface. 

The effect of the constant shear factor m on the relative friction 
stress rla0 distribution is illustrated in Fig. 5. For a hollow disk with 
dimensions of R0 = 10, T = 2, and ft; = 1, mc - .79. At this friction 
level, two zones of constant TIO0 exist. For decreased m, ft 2, Rn> Rx a n ^ 
ft4 are located closer to ft; resulting in a wider zone II (fti — ft 2) but 
a narrower zone V(R3 - R4). (See m = .4.) Eventually, #3 becomes 
equal to Ri and zone V disappears. (See m = .2.) As m is decreased 
further, the merged ft3 and R4 and R„ get closer to ft;, and R2 moves 
outward (due to restriction in zone II) toward fti, causing zone II to 
narrow. (See m = .09.) At m = .06, R2 is nearly equal to fti, and #3,4 
and ftn are very close to ft,-. Since the present computer program [1] 
must be modified before considering the r/a0 distribution for m = mi 

< .06 (Ri = ft3 = #3,4; -R2 = fti = #2,1). the solution is terminated at 
m = .06 as noticed in Figs. 2(a) and (6). 

A friction stress distribution is proposed for m = tn\ where 0<"ii 
< mi- ft2,i will be closer to ft0, and ft„ will be less than ft;. When m 
= 0, ft,, will coincide with the axis of symmetry (ft„ = 0), and ft 2,1 will 
be at fto; the friction stress will be zero. 

Fig. 6 illustrates the effect of ft; on the rla0 distribution when m 
= .2, fto = 10 and T = 2. As ft; is increased from ft; = 1, ft3, ft4> (note 
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Fig. 7 The effect of the outer radius to thickness ratio (Ft0/T) on the relative 
diction stress ( T / ( ? „ ) distribution 

that R$ = R4), Rn and R% move outward, resulting in the reduction 
in width of zone II. 

The T/<T0 distribution is also a function of the outer radius to 
thickness ratio R0/T. Fig. 7 illustrates the dependency for m = .2, ft; 
= 1, and R„ = 10. At R0/T = 10/4, ft 3, Ri(Ra = #4), and Rn are close 
to Ri while R2 is much farther from ft,-; hence zone II is relatively 
narrow. For a thinner disk, R0/T = 10/2, ft3, ft4 and Rn are farther 
outward. Since R2 is now close to Rn, zone II is quite wide. As T is 
reduced still further, R3, Rn, and ft 2 move outward with R3 and #2 
approaching Rn. Since ft4 moves toward ft,-, the friction stress becomes 
constant over most of the interface. The limit of the friction stress 
distribution as R0/T —• °> is | r | = ma0/\f& across the entire interface 
[1]. This predicted friction stress behavior is in agreement with the 
experimental results of Unksov [5; Figs. 51, 52, and 61]. 

Ring Compression Test [6,7]. The parallel velocity field and the 
neutral radius predictions of the upper bound analysis of Avitzur [3] 
ate utilized to determine a limited segment of a calibration curve for 
a 6:3:0.5 ring and m = 0.1. This curve is represented by a solid line in 
%• 8. If the parallel velocity field [3] and the RnIR0 values of the lower 
wund are used to compute a calibration curve for the same conditions, 
a definite upward shift occurs. Consequently, it is proposed that actual 
calibration curves are higher than those in references 6 and 7. In other 
Words, the friction factors being measured may be somewhat high. 

Conclus ions 

1- Maximization (within limitations governed by the yield crite-
r,on) of the lower bound on power reveals a realistic friction stress 

0 2 

PERCENT 

4 6 

REDUCTION OF THICKNESS 

Fig. 8 The effect of using R„IB0 values predicted by the lower bound to 
calculate theoretical calibration curve for ring compression test 

distribution. The friction stress is predicted to be constant over only 
a portion of the hollow disk-platen interface or variable across the 
entire surface, depending upon the friction factor and the ring ge
ometry. Only for a thin ring is the friction stress constant over most 
of the interface. 

2. It is proposed that the friction factors being measured by uti
lization of the mathematically calibrated ring compression test [6,7) 
are somewhat high. 
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