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Abstract

One of the today issues in software engineering is to
find new effective ways to deal intelligently with the in-
creasing complexity of distributed computing systems. In
particular, one of the aspects under study in the field of
autonomic computing concerns the way such systems can
autonomously reach a configuration that allows the entire
system to work in a more efficient and effective way. In
this paper we investigate how it is possible to obtain self-
aggregation of distributed components. We have used ex-
isting self-aggregation algorithms as a starting point, and,
after an analysis phase, we have discovered some aspects
that could be improved. Finally we have derived new
algorithms that showed improved self-aggregating perfor-
mances in most of the situations.

This work has been done in cooperation with Prof. Elis-
abetta Di Nitto and Prof. Raffaela Mirandola in the context
of the CASCADAS European project.

1 Introduction
One of the today issues in software engineering is to find

new effective ways to deal intelligently with the increas-
ing complexity of distributed computing systems. This is
particularly important in a pervasive context where the en-
vironment is instrumented with devices of any kind that are
able to communicate over a network in order to solve sev-
eral types of problems and to offer various kinds of services
to their final users.

Autonomic Computing applied to pervasive architec-
tures is trying to show that adding autonomic reasoning to
each computational element in the system could simplify its
management and reduce costs [18]. In this field, researches
are borrowing some ideas from the biological world [17].
In particular, they study the behavior of colonies of insects
and their capability to self-organize [7]. The main goal
is to apply similar capabilities to software systems of in-
terconnected components that singularly, like ants for their
anthill, have limited information and reasoning power, but,

all together, contribute to the high-level goals for the whole
system. Using this approach, many complex problems can
be solved by executing simple rules locally to each com-
ponent of the system, regardless system size and without
the need of a centralized control [4]. In this context, self-
aggregation algorithms aim at establishing and maintaining
groups of components that cooperate more to reach a com-
mon goal. The applications of these algorithms include all
cases in which there is a need for continuously reconfigur-
ing those groups (think for instance at the case of a network
of message brokers that need to be restructured because of
a failure in one of its portions).

This paper aims at analyzing and understanding the “ma-
gic” that is beyond existing approaches to pervasive self-
aggregation techniques, and at creating new techniques that
are more efficient and effective in specific cases.

The organization of the paper is as follows. Section 2
describes the aggregation problem and presents some dis-
tributed algorithms that address it. Section 3 describes our
improvements to the existing algorithms. Section 4 presents
a performance analysis and highlights the advantages of the
algorithms we have defined. Section 5 presents an overview
of the state of the art. Finally, Section 6 concludes the paper.

2 Self-Aggregation Algorithms
A typical environment in which self-aggregation can

happen is a network of interconnected entities called nodes.
Each node is characterized by a type and by a list of nodes
called neighbors. In this situation self-aggregation is the
capability of each node to modify the connections with its
neighbors in order to reach a more efficient and effective
configuration. In a real network, a node can be any piece of
software that is able to communicate with the others, its type
can be defined in various ways all aiming at allowing a node
to recognize its similarity with respect to a specific applica-
tion. Thus, the type can correspond, in an object-oriented
style, to the set of services the node can provide (i.e., to its
interface), or, in an agent-oriented style, to the goal a node
is able to achieve, or to any combination of them. Con-
nections (links) between neighbor nodes correspond to the
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Algorithm 1 Saffre Clustering Algorithm
initiator = LOCALNODE
for i=1 to NUM_ITERATIONS
do

if ((initiator has neighbor matchmaker) and
(matchmaker has neighbor n1 such that n1
is compatible with initiator)) then

add a link between initiator and n1
remove a link between matchmaker and n1

fi
od

ability of a node to know the others.
The final purpose of a self-aggregation algorithm is

to reduce the number of links from incompatible nodes
and to add new links to compatible nodes, where the no-
tion of compatibility is related to the types of the nodes.
Our analysis of distributed self-aggregation algorithms has
started from those developed by Fabrice Saffre for the CAS-
CADAS project [12], with the objective of improving, if
possible, their effectiveness and performances.

It is important to notice that the compatibility can be de-
fined in such a way to aggregate nodes with similar char-
acteristics (for load-balancing problems) or with different
characteristics (to execute complex tasks that require nodes
with different capabilities).

2.1 Saffre Clustering Algorithm
The definition of Saffre Clustering is presented in Al-

gorithm 1. The following is an explanation of each itera-
tion: (1) a random node elects itself as the initiator node
and elects a matchmaker node among its neighbors; (2) the
matchmaker node chooses one neighbor that is compatible
with the initiator and makes them establish a new link; (3)
the matchmaker removes a link between itself and the cho-
sen neighbor. The author in [12] proposes also a variant of
this algorithm called Passive Saffre Algorithm in which the
matchmaker is self-elected instead of being elected by an
initiator node, however this method has the floowing side
effect: it leads to the creation of super-nodes in the network
that may become points of failures.

3 Proposed Algorithms
The performance of the Saffre algorithm has been eval-

uated in [12] and clearly shows that the system tends to
reach a steady state. Starting from these results we have
tried to understand why such simple and local laws are able
to organize complex networks in order to investigate possi-
ble further optimizations. The most relevant thing we can
note is that the previous algorithm not always perform oper-
ations that increase the number of links between compatible
nodes. In this case it is said that the algorithm introduces
some noise into the system. We will show that by trying to
either limit or increase the level of noise within a network
we can improve some aspects of the overall performances
of the algorithm.

Algorithm 2 Fast Clustering Algorithms
initiator = LOCALNODE
for i=1 to NUM_ITERATIONS
do

if ((initiator has neighbor matchmaker) and
(matchmaker has neighbor n1 such that n1
is compatible with initiator) and

(matchmaker is not compatible with n1)) then
add a link between initiator and n1
remove a link between matchmaker and n1

fi
od

3.1 The Concept of Noise
The algorithm noise or randomness occurs when in the

same algorithm iteration a new link is added between com-
patible nodes and then a link between compatible nodes is
removed. In [8, 14] it is explained that in the biological
world this noise is necessary to obtain an optimal solution,
therefore it is reasonable to investigate the effects of an in-
crease or a decrease of noise in the original self-aggregation
algorithms.

3.2 Noise Reduction: Fast Algorithm
The first investigation we have done was to remove all

the noise from the original algorithms: this resulted in a
new algorithm (see Algorithm 2) that we call Fast Algo-
rithm that is similar to the original one, but with the ad-
ditional constraint that an algorithm iteration can never re-
move a link between compatible nodes. From the prelimi-
nary simulations we have seen that with respect to the origi-
nal algorithm this one has a faster convergence rate because
it avoids “noisy” iterations, another advantage is that it re-
duces the total number of link exchanges because of the
lower number of neighbors that can be chosen. The dis-
advantage of this approach is that the increase in the num-
ber of links between compatible nodes is not as good as the
original clustering. This means that the noise is a key factor
for the accuracy of the algorithm.

3.3 Noise Increase: Accurate Algorithm
The second investigation we have done was to increase

the algorithm noise in the following way (see Algorithm
3): the decision of adding and removing links for each al-
gorithm step is fully unconstrained, except for the fact that
the total number of links must remain the same and that
a link between incompatible nodes can be added only if a
link between incompatible nodes is removed in the same it-
eration. This constraint ensures that the aggregation of the
system in the worst case remains constant and will never
decrease. After the preliminary simulations we have seen a
lower convergence rate and a larger number of exchanged
messages with respect to the original algorithm, however
the number of links between compatible nodes has been in-
creased. This strategy is similar to what happens in genetic
algorithms [11]: in a genetic algorithm each iteration has
a mutation operation that randomly modifies the solutions
that are computed until that moment. This prevents the ge-

2



Algorithm 3 Accurate Clustering Algorithms.
initiator = LOCALNODE
for i=1 to NUM_ITERATIONS
do

if ((initiator has neighbor matchmaker) and
(matchmaker has neighbor n1 such that n1
is not compatible with matchmaker) and
(n1 != initiator)) then

add a link between initiator and n1
remove a link between matchmaker and n1

fi
od

Figure 1. Adaptive Clustering Algorithm FSM.

netic algorithm to get stuck in local optima and therefore
improves the accuracy.

3.4 Adaptive Algorithm
This algorithm is a self-adaptive version of the previous

algorithms with the aim to modify its behavior according
to some local rules. These local rules have been modeled
as a Finite State Machine. The general logic is that the al-
gorithm starts behaving as the most constrained algorithm
(Fast Algorithm) and stays in that state until the constraints
inhibit further iterations (this happens when a node gets
stuck because it does not have neighbors to choose that sat-
isfy the algorithm requirements). In such a case the algo-
rithm switches to a medium constrained algorithm (Saffre
Clustering) first and then to the less constrained algorithm
(Accurate Clustering) if it gets stuck again. Finally, as soon
as a new neighbor is added in a local node, it switches again
to the most constrained algorithm.

The FSM in Figure 1 represents the current algorithms
as states and the events as transitions. Failure transition
is triggered when an algorithm is not able to complete an
iteration because of its constraints: (1) the matchmaker
node does not have neighbors that are compatible to each
other in original clustering; (2) the matchmaker node does
not have neighbors that are compatible to each other and
whose one of them is not compatible with the matchmaker.
Success transition is triggered when an iteration terminates
successfully. New Neighbors transition is triggered when a
new neighbor has been added to the local node.

4 Performance Analysis
In this section we will study the behavior of the proposed

algorithms in different situations in order to identify their
fields of applicability. We first describe the experiments set
up and then present the results we have obtained.

4.1 Setting up the Experiments
This paragraph will discuss all the steps that are needed

to study the performances of the self-aggregation algo-
rithms that have been proposed in the previous section.

Methodology The performances of the algorithms have
been evaluated using a simulation framework for self-
organization algorithms written in Java that has been de-
veloped ad-hoc for this purpose. All the data that will be
presented in this section have been obtained using Monte
Carlo simulations. Each simulation has been repeated at
least 20 times to provide some statistical validity, in addi-
tion, some preliminary simulations have been performed in
order to identify which input parameters and performance
indexes to consider when setting up the definitive thorough
simulations. From the preliminary simulations we have also
seen that the various algorithms do not show different be-
haviors if they run over 100 seconds, therefore we have
chosen this number as the standard fixed duration for all the
experiments. The most relevant parameters are described in
the following paragraphs.

Input Parameters The input parameters are determined
by the environment in which the algorithms are run and by
the algorithm itself. The bound values for these parame-
ters have been chosen by observing the minimum/maximum
values that have produced significant changes in the algo-
rithms results of the preliminary experiments. The follow-
ing is a list of environment-dependent parameters.

Number of nodes of the network: this is the fixed number
of nodes of the network. During the simulations we have
considered networks of 100, 200 and 300 nodes in order to
obtain results comparable to the results that can be found in
[9].

Number of types for all the nodes: all the network nodes
will be differentiated using a uniform distribution of types.
The least mixed network we considered has only 2 types,
that is the minimum. The most mixed one has 15 types,
that, over a population of 300 individuals, represents an av-
erage variety of 20 individuals per type. We also considered
some intermediate number of types (5 and 10) to show what
happens between the two bounds.

Average number of links for each node: the average num-
ber of links is stated at the beginning of the simulation and
remains constant during all the experiment. The values that
have been chosen for this parameter are 3 links, 4 links, and
5 links. Values under 3 links are not interesting because they
produce topologies that tend most of the time to have too
many nodes without links, while with values greater than 5
there is a tendency of creating a few super-nodes that group
in their neighbors all the others.

Initial topology: this is the strategy that states how the
initial links are established. With this parameter we wanted
to create an initial pattern of interconnections that is simi-
lar to what we can find in different types of real networks.
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The topologies we have considered are: Random topology,
where all the links are created in a totally random way;
Torus topology, where all the nodes are connected to each
other using a donut-like pattern; Scale-free topology, where
all the nodes are connected to each other in such a way that
the probability of a generic node to be connected to k nodes
is P (k) = k−γ where γ is a generic constant between 2 and
3 for most real networks [3].

Performance Indexes The performance indexes are the
output parameters of the simulations we have done. Their
purpose is to investigate which goals the algorithm is able
to reach in different situations and how well they can be
reached. The following is a list of performance indexes that
have been calculated and presented after the simulation pro-
cess.

Homogeneity. This performance index, defined in [12],
represents the aggregation of the network. This index is a
number between 0 and 1: lower values indicate a prevalence
of links among nodes of different types, while higher values
mean a prevalence of links among nodes of the same type.
The definition of this index is the following:

H =
∑N
i=1 v(nodei)

L

Where N is the total number of nodes, v(x) is the total
number of nodes of the same type linked to x and L is the
total number of links in the system.

Optimality. This index aims to be algorithm-related and
it is a number between 0 and 1 like homogeneity, with the
difference that its upper bound is always theoretically reach-
able. Reaching a value of 1 for optimality means that a
clustering algorithm reaches the upper bound for the homo-
geneity, given the structure of the network. The formula that
calculates optimality is the following:

optimality =
H

maxH

Where H is the homogeneity, maxH is the upper bound
for homogeneity calculated by the simulator using a cen-
tralized optimal clustering algorithm.

Number of Messages. This index is directly computed by
the simulator and gives an idea about how many messages
are needed by an algorithm in order to achieve a goal. An
example of goal can be the achievement of an 80% optimal-
ity in the case of normal clustering.

4.2 Results
What we are going to present now are the results of the

experiments that have been run. For each experiment we
will compare the various clustering approaches with a theo-
retical interpretation of each result.

Reference Experiment for Clustering In order to see
how the algorithm performances are affected by changes of

the input parameters, we have performed a particular exper-
iment that has been used as reference. In this experiment
we have run all the algorithms using values for the input pa-
rameters with the property of being the mean value between
the bound values that have been chosen in section 4.1. The
results in Figure 2 show how the noise can affect the con-
vergence of the algorithms. In the fast algorithm a local
maximum is reached quickly with less messages, but then
the homogeneity does not improve beyond that value. In the
accurate algorithm local convergence is slow and requires
more messages because of the noisy iterations, but then the
algorithm convergence goes close to the global maximum.
In this situation the adaptive algorithm tries to get advan-
tage of both local and global convergence of the previous
algorithms, therefore it seems a good choice in the aver-
age case if we want to improve homogeneity. In all the
experiments the variance remained very low, giving there-
fore some statistical validity to the averages values that are
presented, however for a matter of space variance charts are
not shown here.

Varying the Number of Types In Table 1 we can see that
if we reduce the number of types all the algorithms perform
better than if increasing it. A first explanation is that the
initial optimality tends to be optinit ≈ 1

Ntypes
whereNtypes

is the number of types, therefore if the initial optimality is
lower, more iterations are needed to reach the global op-
timum. The second explanation is that if Ntypes is lower,
then the probability to find equal neighbors after each iter-
ation is higher because there are less different nodes. The
fact that the algorithm requires a higher number of iterations
to reach convergence when increasing the types results in a
slight increase in the number of messages.

Varying the Number of Nodes This test has been per-
formed to see how much scalable are the algorithms when
changing the number of nodes. From Figure 1 we can see
that this does not affect the optimality with respect to the
experiment of reference in most of the cases. The slight re-
duction in the local convergence (optimality after 2s) is due
to the fact that the network is slowed down by the additional
messages sent by the new nodes.

Varying the Number of Links A modification in the
number of links has the following effect: it makes node
communication easier because it increases the probability
that a given neighbor has a connection to a node of the re-
quired type. Thanks to this effect the highly-constrained
algorithms (Saffre and Fast algorithms) can perform more
link exchanges and increase the optimality. On the other
hand, having more links may generate additional noise for
the other algorithms that can slow down their convergence
rate. This explains why when increasing the number of links
per node the Saffre and the Fast algorithms become better
while Accurate and Adaptive become worse (these results

4



(a) (b)

Figure 2. Reference Experiment.

Table 1. Summary of experiments
Algorithm 2 types 5 types 10 types 15 types

Initial. opt. 50% 20% 9.2% 5.7%

Simul. time 2s/100s 2s/100s 2s/100s 2s/100s

Saffre 66%/85% 38%/57% 23%/35% 17%/25%

Fast 70%/84% 38%/55% 24%/34% 17%/24%

Accurate 67%/98% 26%/94% 14%/84% 8.6%/71%

Adaptive 66% 94% 36%/87% 21%/82% 15%/77%

100 nodes 200 nodes 300 nodes

20% 20% 20%

2s/100s 2s/100s 2s/100s

38%/57% 35%/57% 32%/56%

38%/55% 39%/56% 40%/57%

26%/94% 26%/94% 21%/86%

36%/87% 33%/87% 24%/83%

3 links 4 links 5 links

19% 20% 19%

2s/100s 2s/100s 2s/100s

39%/50% 38%/57% 38%/62%

42%/51% 38%/55% 39%/59%

31%/94% 26%/94% 26%/94%

38%/88% 36%/87% 36%/86%

Random Top. Torus Top. Scale-free Top. Star Top.

20% 4.0% 19% 20%

2s/100s 2s/100s 2s/100s 2s/100s

38%/57% 7.1%/11% 34%/68% 28%/97%

38%/55% 7.4%/8.1% 38%/64% 29%/96%

26%/94% 7.6%/93% 24%/92% 22%/90%

36%/87% 11%/86% 32%/88% 27%/97%

Values in the table are optimalities after 2 and 100 seconds. Columns represent the input parameter that has been changed with respect to
the reference experiments. Rows represent the different algorithms.

can be found in Table 1).

Varying the Initial Topology In this experiment we want
to see if the results we have obtained till now are general-
izable if we change the way in which nodes are connected
at start-up. From Table 1 we can see that the torus topology
makes all algorithms go slower (and therefore with more
messages) because the average distance between two nodes
is larger (expressed in terms of number of links to traverse).
A larger distance between nodes requires therefore more
iterations and links exchanges in order to connect distant
nodes. The opposite of this phenomenon can be seen in
the scale-free experiments, in which the distance between
nodes is small. Apparently strange results can be observed
with the star experiments in which most of the nodes have
only one neighbor and therefore in many situations they are
not able to start an algorithm iteration.

4.3 Summary
In these experiments we have compared four clustering

algorithms executed with different modes. What we have
learned is that, if we need speed, the fast and the adaptive
algorithms are good choices in almost all situations. If we
want to reduce the number of messages, the fast algorithm
is usually the best choice. If homogeneity or optimality
are critical factors, then the accurate and the adaptive algo-
rithms are preferable. In conclusion, the adaptive algorithm,
due to its “adaptive” nature, performs well in most common
situations, however in extreme situations it can be overcome
by the others.

5 Related Work
Self-aggregation techniques are based on the principles

of the cluster analysis that seeks to identify homogeneous
subgroups of cases in a population. This is a widely known
discipline applied in areas like economics, social sciences
and also in software engineering [6]. Cluster analysis
aims at identifying a set of groups which both minimize
within-group variation and maximize between-group vari-
ation. However, these techniques are mainly applied using
a centralized approach, where a dedicated entity is in charge
of establishing the desired global property applying suitable
techniques/algorithms. The paradigm of self-aggregation,
instead, is to distribute the responsibilities among the indi-
vidual entities: no single entity is in charge of the overall
aggregation, but each contributes to a collective behavior.
Following this philosophy, mainly inherited from natural
adaptive systems, the local behavior rules applied in all en-
tities lead (hopefully) to the desired global behavior. Exam-
ples of application of these rules can be found in the area
of communication networks: for example for the control of
topology in wireless multi-hop network [5], or the compu-
tation of a maximal independent set in radio networks [13].
Several kind of application of self-organization techniques
in communication network are reviewed in [15].

Apart from self-aggregation approaches, bio-inspired
techniques have recently be applied in several fields, span-
ning the robot self-organization [19], the behavior of auto-
nomic network [2], the actions of swarms of autonomous
vehicles performing dangerous tasks [20], and to organize
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the sensor network deployment [10]. Different lines of re-
search apply methods based on the use of genetic algorithms
or neural networks to define and to study the problems re-
lated to cluster formation, e.g., [1] or the multi-agent ap-
proach like in [16].

6 Conclusions
In this paper we have proposed some self-aggregation

algorithms that, based on simple local rules, are able to de-
termine some global properties to the whole system with-
out any centralized control nor scaling issues. The study
on these algorithm has been performed by simulating their
execution through a distributed simulator. The results of
this analysis have been used to identify strengths and weak-
nesses of each algorithm, and therefore to produce self-
decision heuristics that can be used to choose the algorithm
that best fits a particular situation.
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