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ABSTRACT
This paper presents a method to control a manipulator sys-

tem grasping a rigid-body payload so that the motion of the com-
bined system in consequence of external applied forces to bethe
same as another free-floating rigid-body (with different inertial
properties). This allows zero-g emulation of a scaled spacecraft
prototype under the test in a 1-g laboratory environment. The
controller consisting of motion feedback and force/momentfeed-
back adjusts the motion of the test spacecraft so as to match that
of the flight spacecraft. The stability of the overall systemis an-
alytically investigated, and the results show that the system re-
mains stable provided that the inertial properties of two space-
craft are different and that an upperbound on the norm of the
inertia ratio of the payload to manipulator is respected. Impor-
tant practical issues such as calibration and sensitivity analysis
to sensor noise and quantization are also presented. Finally, ex-
perimental results are presented.

1 Introduction and Motivation
There are many technologies to address the problem of re-

producing the micro-gravity space environment, such as airbear-
ings, underwater test tanks, free-fall tests, and magneticsuspen-
sion systems. However, of these, only air bearings have proven
useful for testing spacecraft. Achieving weightlessnees by using
natural buoyancy facilities, i.e., water tank, has been used exten-
sively for astronaut training. However, a functional spacecraft
can not be submerged in the water, and in addition viscous damp-
ing does not allow a perfect force-free environment. A free-fall

test through flying parabolas in aircraft can achieve zero-gin a 3-
D environment. But only for brief periods. Magnetic suspension
systems provide only a low force-torque dynamic environment
with a small range of motion. Air-bearing tables (also knownas
planar air-bearings) [1,2] and spherical air-bearings [3]are com-
monly used for ground-based testbeds for testing the translation
and attitude control systems of a spacecraft. An emulation of
zero-g translational motion can be achieved by an air-bearing ta-
ble on which a spacecraft translates on a surface perpendicular
to the gravity vector while being floated on a cushion of com-
pressed air with almost no resistance. This technique has been
used for testing various space systems such as formation fly-
ing [4], free-flying space robots [5], orbital rendezvous and dock-
ing [6], capturing mechanisms of spacecraft [7], and free-flying
inspection vehicles [4]. Although the air-bearing table system
can be utilized to test some physical components of spacecraft
control systems including the sensors and actuators, this system
is limited to a two-dimensional planar environment. Spherical
air-bearings have been used for spacecraft attitude determination
and control hardware/software verification for many years [3]. A
spherical air-bearing yields minimum friction and hence offers a
nearly torque-free environment if the center of mass is coincident
with the bearing’s center of rotation. The main problem with
the air bearing system is the limited range of motion resulting
from equipment being affixed to the bearing [8]. Also, spherical
air-bearings are not useful for simulating spacecraft having flex-
ible appendages, because the location of the center-of-mass of
such spacecraft is not fixed. Although one can envisage combin-
ing the two air-bearing technologies in a testbed for reproducing
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both the rotational and translational motions, complete freedom
in all six rigid degrees-of-freedom is still technically difficult to
achieve [3].

Motion table testing systems allow the incorporation of real
sensors of a satellite such as gyros and star trackers in Hardware-
In-The-Loop (HIL) simulation loops [9]. However, actuators
such as reaction wheels or gas-jet thrusters have been simu-
lated. The main idea in HIL simulation is that of incorporat-
ing a part of real hardware in the simulation loop during the
system development [10]. Rather than testing the control algo-
rithm on a purely mathematical model of the system, one can
use real hardware in the simulation loop [10, 11]. This allows
for detailed measurement for accurate performance assessment
of the system under the test. The concept of the HIL method-
ology has also been utilized for design and implementation of
various laboratory testbeds to study the dynamic coupling be-
tween a space-manipulator and its host spacecraft operating in
free space [1, 12–14]. A system called the Vehicle Emulation
System Model II (VES II) permits the experimental evaluation
of planning and control algorithm for mobile terrestrial and space
robot systems by using the so-called ”admittance control” [13].

The existing impedance-controller based HIL simulators
only compensate for the effect of gravity wrench on the
force/moment measurement, while the effect of the payload’s in-
ertial forces (the test spacecraft in our case) has not been taken
into account. Heavy payloads, however, not only changes the
manipulator dynamics but also, incorporate significant inertial
as well as gravitational force components into the measurement
that can fail a conventional impedance controller to achieve the
desired dynamics.

In this paper, we propose a method to control a manipulator
with a heavy payload, e.g., a test spacecraft, so that the closed-
loop system dynamics with respect to external force be as if the
payload is with inertia properties corresponding to a flightspace-
craft. Fig. 1 schematically illustrates a manipulator carrying a
heavy payload, e.g., a scale model of the flight spacecraft. A
six-axis force-moment sensor is installed at the interfaceof the
payload and the manipulator, for sensing the external forces –
for instance, firing thrusters – superimposed by gravitational and
inertial forces. Upon measurement of the wrist force-moment
and the joint angles and velocities, the signals are used by acon-
trol system that moves the manipulator and the test spacecraft
with it appropriately. Such a setup allows virtually testing the
actual control system, electronics, sensors, and actuators of a
spacecraft in a closed-loop configuration in the laboratoryen-
vironment. The distinct contribution of this work is a control
system which incorporates dynamics models of the test space-
craft (payload), flight spacecraft as well as the manipulator to
accurately replicate the motion dynamics of the flight spacecraft
using a scaled mockup, as presented in Section 2.2. Notably,
the controller can compensate for the inertial forces of thepay-
load without needing any acceleration measurement; this isnot
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Figure 1. A manipulator carrying a heavy payload.

attainable with the conventional admittance controllers.A cal-
ibration procedure to precisely null out the static component of
the F/M sensor in addition to sensitivity analysis are presented in
Section 3. Section 4 is devoted to emulation of spacecraft having
flexible appendages, e.g., solar panels. Finally, experimental re-
sults obtained from a robotic setup for spacecraft emulation with
a milli-g accuracy are presented in Section 5.

2 Control System
2.1 Dynamics Model

The translational and the rotational motion dynamics of a
flight spacecraftcan be conveniently expressed in a body-fixed
frame{Cs} as

Msν̇s+hs(νs) = Fext, (1)

where

Ms = diag{msI , ICs} , hs(νs) =

[

msωs×vs

ωs× ICsωs

]

,

I denotes the identity matrix,ms andICs are the spacecraft mass
and inertia tensor,νT

s = [vT
s ωT

s ] is the generalized velocity in-
cluding the components of the linear velocityvs and angular ve-
locity ωs of the spacecraft CM, andFext is the generalized ex-
ternal forces. It is worth mentioning that estimation of theother
sources of external forces and torques such as gravity gradient,
thin-air drag, and solar pressure can be added to the right-hand
side (RHS) of (1) to achieve a more accurate result.

Fig. 1 illustrates thetest spacecraftheld by a manipulator.
The test spacecraft is of mass and inertiamm and ICm, respec-
tively, that are different from those of the flight spacecraft. The
F/M sensor installed in the mechanical interface of the manipula-
tor and the test spacecraft allows us to measure the force/moment
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interactions between the two systems. The coordinate-frame
{W} is fixed to the manipulator base and, the origin of body-
fixed frame{C} is chosen to be coincident with the CM of the
test spacecraft, and its orientation with respect to frame{W} is
represented by the rotation matrixR. The test spacecraft is ex-
posed to three different forces: the external forceFext, gravita-
tional forceFg, and force interaction between the test spacecraft
and the manipulatorFs that is measured by the F/M sensor. Note
that Fs is expressed in the body-fixed coordinate frame{S} co-
incident with the sensor coordinate and parallel to{C}. Thus

Fg =

[

mmgRTk
0

]

, (2)

where unit vectork is aligned with the gravity vector1 which
is expressed in the manipulator’s base frame{W}, and g =
9.81 m/s2. Similar to (1), the dynamics of the test spacecraft
can be described by

Mmν̇+hm(ν) = −TFs+ Fg+ Fext

= −Fsg+ Fext. (3)

whereT denotes the transformation from frame{S} to {C}, i.e.

T =

[

I 0
−[c×] I

]

, [c×] =





0 −cz cy

cz 0 −cx

−cy cx 0



 ,

vectorc denotes the location of the center-of-mass and

Fsg , TFs−Fg. (4)

2.2 Control Law
We assume that both the test and flight spacecraft experi-

ence the same actuation forceFext, and that their generalized ve-
locities are the same, i.e.,ν = νs. Under these assumptions, we
can say the test spacecraft is dynamically equivalent to theflight
spacecraft if they produce identical accelerations, i.e.,ν̇ = ν̇s.
However, the accelerations are governed by two different equa-
tions of motion, and hence, in general,ν̇ 6= ν̇s. Nevertheless, it
is possible to achieve dynamical similarity if the manipulator is
properly controlled. To this end, we define an estimation of the
acceleratioṅν⋆ that is obtained by subtracting (3) from (1), i.e.,

M∆ν̇⋆ +h∆ = Fsg, (5a)

1If the z-axis of the coordinate frame{W} is perfectly parallel to the earth’s
gravity vector, thenkT = [ 0 0 −1 ].

where

M∆ ,

[

(ms−mm)I 0
0 ICs − ICm

]

, (5b)

h∆ ,

[

(ms−mm)ω×v
ω× (ICs− ICm)ω

]

. (5c)

Assumption 1. In the followings, we assume that M∆ is a non-
singular matrix, i.e.,

ms 6= mm and λi(ICs − ICm) 6= 0 ∀i = 1, · · ·3, (6)

whereλi(·) denotes theith eigenvalue of matrix(·).
Notice thatν̇⋆ does not have any physical meaning, rather

it is just a definition. LetJ =
[

JT
v JT

ω
]T

represent the manip-
ulator Jacobian expressed in the coordinate frame{C}, where
sub-matricesJv andJω denote the translational and rotational Ja-
cobians, respectively. That isv(q, q̇) = Jvq̇ andω(q, q̇) = Jωq̇,
whereq is the vector of joint angles. The time derivative of the
velocity equation leads to

ν̇ = Jq̈+ J̇q̇. (7)

In view of equations (7) and (5a) and Assumption 1, we define
q̈⋆ to be an estimation of the joint accelerations as

q̈⋆ , J−1(ν̇⋆ − J̇q̇) (8a)

= J−1M−1
∆ Fsg−J−1(N+ J̇

)

q̇, (8b)

with M−1
∆ h∆ = Nq̇ and

N(q, q̇) ,

[

[Jωq̇×]Jv

(ICs − ICm)−1[Jωq̇×](ICs − ICm)Jω

]

.

Note that (8b) is obtained assuming that kinematic singularity
does not occur.

Assume that the manipulator dynamics are characterized by
inertia matrix Mr(q) and the nonlinear vectorhr(q, q̇), which
contains Coriolis, centrifugal and gravitational terms. One can
show that the equations of motion of the combined system of the
manipulator and the payload can be written in the standard form
as:

Mt q̈+ht(q, q̇) = τ+JTFext (9a)
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whereτ denotes the joint torques, and

Mt(q) , JTMmJ+Mr(q), (9b)

ht(q, q̇) , hr(q, q̇)+JThm(q̇)+JTMmJ̇q̇−mmgJT
v RTk. (9c)

Now, the objective is to force the manipulator to follow the tra-
jectory dictated by (8b). To achieve this goal, one can use the
inverse-dynamics controller based on the complete model (9a),
i.e.,

τ = Mt(q)q̈⋆ +ht(q, q̇)−JTF ⋆
ext

+Mt(q)
(

Kd
(

∫

q̈⋆dt− q̇
)

+Kp
(

∫ ∫

q̈⋆dt−q
)

)

, (10)

with Kd = kdI andKp = kpI being the controller gains andF ⋆

being an estimation of the external force. In the following anal-
ysis, we will show that the above inverse-dynamics controller in
conjunction with a force estimator lead to exponential stability.
Let ¨̃q , q̈⋆ − q̈ denotes the joint acceleration error, then the cor-
responding Cartesian acceleration error is readily obtained from
definition (8a) as

˙̃ν , ν̇⋆ − ν̇ = J(q) ¨̃q. (11)

Substitution ofν̇⋆ obtained from (5a) into the above equation
yields

ν̇ = M−1
∆ Fsg−Nq̇−J ¨̃q.

Now, upon substitution of the acceleration from the above into
(3), we can write the expression of the external force as:

Fext = F ⋆
ext+ F̃ext,

where

F ⋆
ext =

(

I +MmM−1
∆

)

Fsg+hm−MmNq̇ (12)

is the estimation of the external force and

F̃ext = −MmJ ¨̃q (13)

is the force estimation error. Clearly, the force estimation error
goes to zero only if the acceleration error does so. We will show
that under a mid condition, controller (10) in conjunction with

force estimator (12) results in exponential stabling of themotion
and force errors. To this end, substitution ofF ⋆

ext andq̈⋆ obtained
from (12) and (8b), respectively, into (10) yields the expression
of the control law as:

τ = JT(

MCr(q)M−1
∆ − I

)

Fsg+hr(q, q̇)−Mr(q)J−1(N(q, q̇)+ J̇)q̇

−mmgJT
v RTk+Mt(q)

(

Kd
(

∫

q̈⋆ dt − q̇
)

+Kp
(

∫ ∫

q̈⋆ dt −q
)

)

,

(14)

whereMCr , J−TMrJ−1 is theCartesian inertiaof the manipula-
tor. Stability of closed-loop system remains to be proved. Know-
ing that (14) becomes equivalent to (12) if the force term,Fext,
of the former equation is replaced byF ⋆

ext = Fext− F̃ext, we can
arrive at the equations of the motion and force errors by substi-
tuting (14) into system (9a), i.e.,

Mt
(

¨̃q+Kd ˙̃q+Kpq̃
)

= −JT F̃ext.

Moreover, we know that the force and acceleration errors arere-
lated by (13). Thus

Mr ¨̃q+Mt
(

Kd ˙̃q+Kpq̃
)

= 0,

which can be rewritten as:

¨̃q+Kd ˙̃q+Kpq̃+Q(q)
(

Kd ˙̃q+Kpq̃
)

= 0, (15)

where

Q , M−1
r

(

JMmJT)

. (16)

We will show that system (15) remains stable if the coeffi-
cient matrix of the additive term,Q, is sufficiently small. Let
assume thatxT = [q̃T ˙̃qT ] represent the state vector. Then, (15)
can be written as

ẋ = Ax+ ε(t,x) (17)

where

A =

[

0 I
−Kp −Kd

]

and ε(t,x) = −Q

[

0
Kpq̃+Kd ˙̃q

]

.

Since the perturbation termε satisfies the linear growth bound

‖ε‖ ≤
√

k2
p +k2

d‖Q‖‖x‖,
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system (17) is in the form ofvanishing perturbation[15]. More-
over, sinceA is Hurwitz, there exists Lyapunov function

V(x) = xTPx (18)

with P > 0 satisfying

PA+ATP = −I . (19)

The derivative ofV(x) along trajectories of perturbed system (17)
satisfies

V̇ ≤
(

−1+2
√

k2
p +k2

dλmax(P)‖Q‖
)

‖x‖2 (20)

On the other hand, the solution of the Lyapunov equation (19)is
given by

P =
1

2kpkd

[

kp(kp +1)+k2
d kd

kd kp +1

]

,

which verifies

λmax(P) ≤
(kp +1)2+k2

d

2kpkd
.

Therefore, according to the stability theorem of perturbedsystem
[15, p. 206], the origin of (17) is globally exponentially stable if

‖Q‖ ≤ α(kp,kd) =
kpkd

(

(kp +1)2 +k2
d

)
3
2

. (21)

Using the norm properties in (16), we obtain a conservative con-
dition for the stability as:

λmax(Mm) ≤ α(kp,kd)
λmin(Mr)

λmax(JJT)
. (22)

Now, if (21) is satisfied, then there must exist scalarΩ > 0
such that‖x‖ ≤ ‖x(0)‖e−Ωt . Therefore, it can be inferred from
(15) that

‖ ¨̃q‖ ≤ ae−Ωt
, (23)

wherea = (k2
p +k2

d)(1+‖Q‖)‖x(0)‖.

Now, we are ready to derive the input/output relation of the
closed loop system under the proposed control law. Adding both
sides of (3) and (5a) yields

Msν̇+M∆ν̇⋆ +hs = Fext. (24)

Finally, using (11) in (24), the equations of motion of the test
spacecraft become

Msν̇+hs(ν) = Fext+ δ, (25a)

where

δ(t) = M∆J ¨̃q (25b)

is a non-vanishing perturbation. SinceJ is always a bounded
matrix, we can say

σ = max
q

√

λmax(JTJ),

whereλmax(·) denotes the maximum eigenvalue of a matrix. It
follows from (23) and (25b) that

‖δ‖ ≤ σaλmax(M∆)e−Ωt
, (26)

which means that the perturbation exponentially relaxes tozero
from its initial value. The above development can be summarized
in the following.

Proposition 1. Let a rigid-body object with generalized iner-
tia Mm attached to a manipulator with inertia Mr . Assume that
the force/moment developed at the interface of the object and the
manipulator is sensed and fed back to the manipulator according
to the control law(14). Moreover, assume that(6) and (21) are
satisfied. Then, the motion of the object in response to external
forceFext obeys equation of motion of another rigid-body object
characterized by generalized inertia Ms.

2.3 Force Feedback Gain
Ideally, the controller of the emulating system can change

the inertia of the test spacecraft to any desired value. However,
there are constraints (6) and (22) on the inertia matrices ofthe
test and flight spacecraft as well as the manipulator that must be
considered in the design. Assuming a steady-state mode in which
the control error reaches zero, we can express the torque-control
input by

τ = JT(MCrM
−1
∆ − I)Fsg+ η(q, q̇), (27)
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whereη(q, q̇) represents the motion dependent portion of the
feedback, while the first term in the RHS of equation (27) is force
feedback. In the following we examine two extreme cases of the
force feedback gain.

2.3.1 Zero Gain Equation (27) implies that the force
feedback is disabled ifMCr = M∆ or

MCr(q)+Mm = Ms. (28)

Clearly, to implement the emulation controller without force
feedback requires satisfying (28) for all possible postures. How-
ever, with the exception of Cartesian manipulators, most manipu-
lators are of configuration-dependent inertia matrix, whereas the
spacecraft inertia are constant matrices. This means that the con-
dition (28) can be satisfied only for few isolated postures atbest.
It is worth mentioning that the case ofMs = Mm becomes a fa-
vorable condition ifMCr ≡ 0, i.e., the manipulator inertia is neg-
ligible; see (28). However, a manipulator with zero mass (and
zero joint friction) can be though of as an air-bearing simulator
system, which has its own shortcomings as descried in Section 1.

2.3.2 Infinite Gain It is apparent from (27) that for the
control torque effort to be bounded requires thatM∆ be a non-
singular matrix, i.e., condition (6) is satisfied. At first glance,
this result seems counterintuitive. But, it can be seen from(5a)
that the acceleration and thus the subsequent motion trajectory
can be uniquely estimated only ifM∆ is a full-rank matrix. It is
also apparent from (1) and (3) that the only possibility for the
flight and test spacecraft with the same mass and inertia to pro-
duce similar velocity and acceleration trajectories with respect
to external forceFext is that the interaction forceFsg becomes
zero. Clearly, in such as case, it is not possible to predict the
position and velocity trajectories from the estimated acceleration
and hence the feedback is meaningless.

3 Simulating a Micro-G Environment
3.1 Precise Gravity Compensation

Performing a high-fidelity zero-g emulation critically relies
on a precise force/moment feedback which, in turn, is determined
by: (i) Accuracy of the gravity compensation; (ii) the resolution
of the F/M sensor. These issues are discussed below.

3.1.1 Calibration The static components of the F/M
sensor output include the sensor offset and the payload gravita-
tional force, which are not distinguishable from each other. Nev-
ertheless, if a sequence of sensor readings is recorded by locating
the manipulator in several known poses, it is possible to identify

the sensor offset together with all the gravity parameters that are
required to null out the static components of the sensor.

If the gravity were completely compensated, then for every
position we would haveFsg= 0, i.e.,T(Fs−F0)−Fg = 0, where
F T

0 =
[

f T
0 nT

0

]

denotes the sensor offset. Now, we consider
{F0,mm,c,k} as the set of uncertain parameters that are be iden-
tified. Defining vectorw , mmk and knowing that[c×]RTw =
−[(RTw)×]c, we can break upFs = T−1Fg + F0 into two linear
regressionequations as

fs =
[

I gRT
]

[

f0
w

]

, (29a)

ns =
[

I −gmm[(RTk)×]
]

[

n0

c

]

, (29b)

where F T
s =

[

f T
s nT

s

]

. Now stacking p measurements
yT

1 = [ f T
s1, f T

s2, · · · , f T
sp] and yT

2 = [nT
s1,n

T
s2, · · · ,n

T
sp], that are ob-

tained by configuring the manipulator atp different positions
{q1,q2, · · · ,qp}, we can derive two linear matrix relationy1 =
Ψ1(q)Θ1 andy2 = Ψ2(q,Θ1)Θ2 from (29a-29b), where vectors
Θ1 andΘ2 contain the parameters of interest. Finally, assum-
ing a sufficient number of independent equations, one can obtain
the vectors of estimated parametersΘ̂1 andΘ̂1 consecutively by
using the least squares method from

Θ̂1 = Ψ+
1 y1, and Θ̂2 = Ψ+

2 (Θ̂1)y2,

whereΨ+
i = ΨT

i (ΨiΨT
i )−1 is the pseudo-inverse ofΨi . Note that

the mass and the gravitational vector can be retrieved from

m̂m = ‖ŵ‖ and k̂ =
ŵ
‖ŵ‖

.

3.1.2 Position Errors and Accuracy of the Grav-
ity Compensation Error between the measured joint angles
used by the gravity compensator and the true joint angles will
result in a small residual static force acting on the payload. One
source of this error is measured quantization. In order to min-
imize the residual force induced by the quantization as much
as possible, we need to employ high-resolution encoders at the
joints so that the induced error becomes at least comparableto
the F/M sensor resolution. In the following we relate the errors
in the gravity compensation and the that of joint angles.

Assume that∆q and ∆ fs denote small errors in measured
joint angles and the computed gravity force, respectively.Using
the Taylor series of (29a) leads to

‖∆ fs‖ ≤ gmm

∥

∥

∥

∥

∂
∂q

RT(q)k

∥

∥

∥

∥

‖∆q‖. (30)
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Using the facts that all elements of the rotation matrix are sinu-
soidal functions ofq and thatk is a unit vector, one can show that
a conservative bound on the first norm of the RHS of (30) is 6.
Thus, a bound on the force error can be found as

‖∆ fs‖ ≤ 6gmm‖∆q.‖ (31)

Similar argument shows that a conservative bound on the magni-
tude of moment error∆ns can be found as

‖∆ns‖ ≤ 6gmm‖c‖‖∆q.‖ (32)

3.2 Assessing the Quality of the Micro-Gravity Envi-
ronment

Emulation in a zero-gravity environment requires the static
component of the F/M sensor is perfectly nulled out. However,
in practice, this requirement can not be completely satisfied due
to errors. A natural question rises; what is the quality of the emu-
lator in simulating a weightlessness environment? To answer this
question, let us assume thatδ f̄sg denote the average magnitude
error of the compensated F/M sensor output over several payload
static poses. Then, the average acceleration introduced tothe
emulating system can be simply obtained by dividing the magni-
tude of this force by the inertia of the spacecraft being simulated.
Normalizing the acceleration w.r.t. the Earth gravity constant, we
define the following dimensionless index

γ ,
¯δ fsg

gms
×106 =

‖∑n
i fsi −Ψ1i Θ̂1‖

ngms
×106 (33)

to measure the virtual gravity of the simulated environment. In
other words, the payload (test spacecraft) experiences as though
it moves under a gravitational field with intensity ofγ · g rather
than a zero-g environment. It is worth pointing out thatγ can
be also interpreted as the drift exhibited by the emulation sys-
tem. Similarly, the micro-gravity environment for the rotational
motion can be defined as

‖∑n
i nsi −Ψ2i Θ̂2‖

ng‖c‖mm
×106

.

3.2.1 Resolution of F/M Sensor At best, the force
error δ f̄sg can be reduced down to the resolution of the F/M
sensor. The resolution of a F/M sensor depends on its sensing
range; a sensor with large sensing range tends to have lower res-
olution and vice versa. Since the F/M sensor is located at the
manipulator-payload interface, the sensor should be selected so
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Figure 2. The best achievable micro-g environment, computed from the

resolutions of a series of commercial F/M sensors, for emulation of space-

craft with different masses.

that its sensing range matches the weight of payload, i.e., the
test spacecraft. Therefore, the ratio of the sensor resolution to its
sensing range is the emulation system limitation in achieving the
lowest micro-g.

Fig. 2 illustrates the best achievable micro-g’s versus dif-
ferent spacecraft masses that is calculated from the resolutions
and the sensing ranges of the commercial ATI F/M sensors [16].
Here, we assume that the scaling factor of the emulated space-
craft is two. It is evident from the figure that in the emula-
tion of small to medium size spacecraft with mass of up to
500kg, the sensor resolution is sufficient for achieving accuracy
of 16×10−6g (it almost remains constant in that range). How-
ever, the value of the virtual gravity dramatically increases, when
the spacecraft mass exceeds that critical mass. This is due to the
fact that commercial F/M sensors with large load capacity come
with relatively low resolution. In order to improve theγ fac-
tor, one may use a mechanism to counter the effects of gravity
in rigid-bodies [17–20]. For example, using a passive counter-
weight [17] can substantially reduce the static load on the F/M
sensor, thereby allowing smaller and more precise sensor tobe
selected. The main disadvantage of this method is introduction
of additional inertia. However, this is not an issue here because
the controller can scale the inertia of the payload down or upto
any desired value.

4 Emulation of Flexible Spacecraft
Many spacecraft have flexible appendages, e.g. satellites

with solar panels, that can significantly affect their dynamics.
However, testing a flexible spacecraft in a 1-g environment poses
many difficulties due to large deformation induced by gravity. In-
deed, the structure of a solar panel cannot even hold itself against
gravity when it is fully deployed. Moreover, the location ofthe
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CM of a flexible spacecraft is no longer fixed as it depends on
the flexural coordinates whose direct measurement is not usually
available. In the following, we extend the emulation concept for
the case where the test spacecraft is rigid while the target flight
spacecraft is flexible. It is assumed that the actuators are mounted
to the rigid part of the test spacecraft. The test spacecraftlacks
any flexible hardware, such as solar panels. Yet, motion pertur-
bation caused by the flexible appendages is generated by simula-
tion and then superimposed on the trajectories that subsequently
drive the manipulator.

Let ξ denote the flexural coordinates of a flexible spacecraft.
Then, the equations of motion for the entire system can be written
in the partitioned mass matrix form

[

Ms Ms f

MT
s f M f

][

ν̇
ξ̈

]

+

[

hsr(ν,ξ, ξ̇)

hs f(ν,ξ, ξ̇)

]

=

[

Fext

0

]

, (34)

where M f is the flexural inertia matrix,Ms f is the cross in-
ertia matrix, hsr and hs f are the nonlinear vectors associated
with the rigid and flexural coordinates. Analogous to the case
of rigid spacecraft, subtracting equation (34) from (3) elimi-
natesFext from the the equations of motion. DefininḡM∆ =
M∆ −Ms fM

−1
f MT

s f andh∆ = hsr − hm, we can write the accel-
erations of the rigid and the flexural coordinates by

q̈⋆ = −J−1(N+ J̇)q̇−J−1M̄−1
∆ Ms fM

−1
f hs f + M̄−1

∆ Fsg, (35)

and

ξ̈ = −M−1
f (I +M−1

f MT
s fMs fM

−1
f )hs f −M−1

f MT
s fM̄

−1
∆ (Fsg−h∆).

(36)
Equation (35) can be substituted in (14) to obtain the control
law. However, to calculate the acceleration from (35) requires
the value of the flexural states becausehsr andhs f are functions
of ξ andξ̇. An estimation of the flexural states can be obtained
by simulation. First, the acceleration of the flexural coordinate
can be computed by making use of the acceleration model (36),
and then the flexural states are obtained as a result of numerical
integration.

5 Experiment
5.1 Setup Description

This section describes the implementation of the proposed
spacecraft simulator using a Titan II Schilling industrialmanip-
ulator at the robotics laboratory of the Canadian Space Agency
(CSA), see Fig. 3. A mockup of a satellite, which weights 11 kg,
is mounted on the wrist of the manipulator. The objective is to
control the manipulator so that the motion of the mockup satel-
lite resulting from external forces matches that of a free-floating
object in zero-g environment.

Figure 3. The hydraulic manipulator for the spacecraft simulator.

The force/moment interaction between the manipulator and
the satellite mockup were measured by a six-axis ATI force-
moment sensor (Gamma type). With the resolution 0.05 N in
force and 0.003 Nm in moment. The sensing ranges of the sen-
sor are 130 N and 5 Nm. The robot joint angles were measured
by 16-bit encoders. Therefore, the maximum induced error inthe
gravity compensation is about 0.06 N (according to (31)), that is
comparable to the resolution of the force sensor. Also, every hy-
draulic actuator is equipped with two pressure transducersthat
measure the pressure of its chambers. Also, each joint has its
own torque controller that forces its hydraulic actuator togener-
ate the desired torque requested by the control system. A detailed
description of the joint-torque controller is given in [21].

The controller was developed using Simulink and matrix
manipulation was performed by using the DSP Blockset of Mat-
lab/Simulink [22]. The Real-Time Workshop package [23] gen-
erated portable C code from the Simulink model which was exe-
cuted on a QNX real-time operating system.

5.2 Micro-Gravity Environment
As mentioned in Section 3.2, the effect of gravity may not

be completely compensated for due to errors. Fig. 4 illustrates
the Euclidean norms of the difference between the F/M sensor
outputs and the estimated values when the manipulator is config-
ured at several poses in a quasi-static manner. Therefore, given
the force error, we compute the virtual gravity of the emulation
system from (33) to be as

1.1×10−3g.

This shows the particular setup can emulate a milli-g environ-
ment rather than a micro-g environment.
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Figure 4. The Euclidean norms of the difference between the F/M sensor

outputs and the estimated values.
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Figure 5. The force and moment after gravity compensation.

5.3 Dynamic Response Test

Fig. 5 shows trajectories of the forces and moments (after
gravity compensation) due to external force impulses applied by
hand. The subsequent trajectories of the linear and angularve-
locities of the mockup satellite are illustrated in Fig. 6 (top). The
simulated velocity profiles according to the force/moment inputs
are also depicted in Fig. 6 (bottom), that reassemble the velocity
profiles obtained from HIL simulation. Note that, in the simula-
tion, the baseline noises in the force and moment signal, which
persist between impulses, are removed by a dead-zone filter.In
other words, only responses to the force and moment impulses
are simulated.
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Figure 6. Trajectories of the linear and angular velocities of the mockup

satellite obtained from the HIL simulation (a) versus those of the simula-

tion (b).

6 Conclusions and Discussions
A control system for a manipulator carrying a rigid-body

payload has been developed in order to modify the motion dy-
namics of the combined system in consequence of external ac-
cording to that of a free-floating body which has different iner-
tial properties from the payload. This allowed zero-g emulation
of the scaled prototype of a spacecraft (with non-negligible in-
ertia) in a 1-g laboratory environment. It was shown that the
controller in conjunction with the motion and force estimators
could drive the manipulator so as to achieve dynamical similar-
ity between the test and flight spacecraft. Notably, the controller
can compensate for the inertial forces of the heavy payload (test
spacecraft) without needing any acceleration measurement.

The stability of the closed loop system was analytically in-
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vestigated. The results showed that system remains stable pro-
vided that mass and inertia of the test and flight spacecraft are
not the same and that the norm of the inertia ratio of the payload
to manipulator is upper bounded by a scaler which is a function
of the controller gains. Finally, the methodology was extended
for emulation of spacecraft having flexible appendages, e.g. solar
panels.

A calibration procedure to precisely null out the static com-
ponent of the F/M sensor was developed that tunes the gravity,
kinematic, and sensor parameters all together. A sensitivity anal-
ysis showed that the position and force sensors have to be with
specified resolutions in order to achieve a certain level of micro-
gravity. Finally, the emulation system was underpinned by ex-
perimental results obtained from a robotic setup for emulation of
a satellite mockup.
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