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ABSTRACT
We are proposing a shared-memory communication infras-
tructure that provides a common parallel programming in-
terface for FPGA and CPU components in a heterogeneous
system. Our intent is to ease the integration of reconfig-
urable hardware into parallel programming models like Par-
titioned Global Address Space (PGAS). For this purpose,
we introduce a remote memory access component based on
Active Messages that implements the core API of the Berke-
ley GASNet communication library, and a simple controller
that manages communication and synchronization for cus-
tom FPGA cores. We demonstrate how these components
deliver a simple and easily configurable communication mech-
anism between distributed memories in a multi-FPGA sys-
tem with processors as well as custom hardware nodes.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General—Hard-
ware/Software interfaces; C.1.3 [Computer Systems Or-
ganization]: Processor Architectures—Adaptable Architec-
tures; D.1.3 [Software]: Programming Techniques—Paral-
lel Programming

General Terms
Design Performance Languages

Keywords
Parallel Programming Models; FPGA; PGAS; RDMA

1. MOTIVATION
High-Performance Reconfigurable Computing (HPRC)

systems present two main challenges to application program-
mers: What parallel programming model to use, and how
to incorporate reconfigurable hardware into a software ap-
plication.
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The first problem, inherent to all distributed computing,
is what model of the existing hardware and memory distri-
bution to present to the application programmer. This has
implications for how to distribute and communicate data
across the system, how to synchronize computations, and
for how explicitly the programmer has to consider the phys-
ical makeup of the system. On the one end, Shared Mem-
ory presents a unified address space to the programmer,
similar to the one found on a single host. On the other
end, Distributed Memory only lets the programmer access
the local memory, and all data exchange with other nodes
happens explicitly through communication called Message
Passing. The shared memory model is easy to program,
but often leads to inefficient code, since the compiler can-
not sufficiently reason about data access and communication
patterns. The distributed model can produce very efficient
implementations, but is very cumbersome to program.

The second problem involves the fact that most high-
performance application programmers understand software
and CPU-based systems, but not reconfigurable hardware.
Part of that problem is being attacked by emerging tools
to translate high-level language CPU code into Register-
Transfer Language, with mixed results so far. However, be-
sides an automatic synthesis path, applications also require
an infrastructure for communication between software and
hardware computation nodes, the equivalent of a communi-
cation API between CPU hosts. Preferably, this infrastruc-
ture should be independent from specific FPGA platforms,
given the multitude of concepts and products that connect
FPGAs with CPU-based host systems.

Both problems presented above point to the larger issue of
increasing software and hardware complexity. Performance
and efficiency are still the most common metrics for comput-
ing systems, but productivity, as measured by the required
effort to design, debug and maintain high-performance com-
puting applications, has been recognized as essential to con-
tinued progress towards exascale systems [17].

In our opinion, a unified programming model and API for
all components in a heterogeneous system (see Figure 1) is
crucial to keeping applications maintainable and scalable.
Furthermore, the prototyping of algorithms in software and
the subsequent migration to hardware accelerators is facili-
tated by such a common API.

In this paper, we will present our vision of a C++-based
application design process that is based on the Partitioned
Global Address Space model (PGAS). As our main contribu-
tion, we introduce an FPGA communication infrastructure
compatible to GASNet[12], an existing PGAS communica-
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Figure 1: Example for a multiple-platform system
with unified parallel API: Host CPU, embedded
FPGA processor and custom FPGA component

tion API that maps well to FPGA as well as software com-
ponents. This way, we enable cross-platform communication
as well as easier software-hardware migration. The two main
building blocks of this infrastructure are:

1. GAScore (Global Address Space core), a component
that manages the remote memory communication for
embedded processors and dedicated hardware process-
ing elements. GAScore implements a GASNet-based
API for embedded processors and custom hardware
cores.

2. PAMS (Programmable Active Message Sequencer), a
small communication controller that manages messag-
ing, synchronization and GAScore access for custom
hardware cores.

This paper is organized as follows: In Section 2, we give
a bit of background on parallel programming models and
the GASNet library on which our work is based. Section 3
introduces the hardware cores we developed in detail, and
Section 4 explains the software stack that we plan to build
on top of these components. Section 5 examines current
system performance. Related work is referenced in Section
6. Section 7 elaborates on our next steps, and Section 8
concludes.

2. BACKGROUND
While our presented work is centered on implementation

of a hardware communication core, it is important to under-
stand the larger agenda that justifies this effort. Therefore,
we will briefly introduce the parallel programming model
that our hardware accommodates. We will also give a quick
overview of the GASNet communication API that our design
closely models.

2.1 Partitioned Global Address Space model
The two basic memory models for distributed parallel pro-

gramming are called shared memory and distributed mem-
ory (better known by its practical implementation, message-
passing). Shared memory assumes on the application level
that all memory locations in the distributed system are di-
rectly accessible in a single address space. Accesses to physi-
cally remote memories need to be implemented by a runtime
library. This library also needs to manage memory consis-
tency and coherency. While the opacity of physical mem-

ory distribution eases programming of applications with this
model, it can lead to inefficient data distribution and syn-
chronization overhead. The most popular implementation
of shared-memory parallel programming is the language and
compiler extension OpenMP [5].

In distributed memory models, no direct access to re-
mote memory is possible. Data needs to be communicated
through the passing of messages, which will then be cor-
rectly related to local memory by the local process. Com-
munication is implicitly two-sided, with both sender and re-
ceiver having to call functions for a transfer to be initiated.
Message-passing can be fine-tuned for efficiency, but is more
complex to implement. Furthermore, with the increasing
size of computing clusters, the two-sided communication ap-
proach becomes a bottleneck for scalability. The dominant
standard for message-passing is the Message Passing Inter-
face[4] (MPI).

Partitioned Global Address Space (PGAS) offers a tradeoff
between the two models described above. Every location in
shared memory is directly accessible by any processing node.
However, PGAS languages and libraries offer an explicit dis-
tinction between local and shared memory. Remote memory
accesses are one-sided: When the memory of a remote node
is accessed, no implicit synchronisation with the computa-
tion process on that node is happening. This is different
from message-passing, where communication is always two-
sided1. As a consequence of these attributes, PGAS offers
the following advantages:

• Programmers have better awareness of the cost of a
memory operation.

• The explicit designation of remote memory enables a
relaxed use of consistency and coherency, and therefore
avoids redundant synchronization overhead.

• One-sided access allows better scalability on large sys-
tems.

Languages that implement this programming model include
the dialects Unified Parallel C (UPC)[8], Co-Array Fortran
(CAF)[1] and the Java-based Titanium[7], as well as the
newly designed parallel idioms Chapel[13] and X10[14].
SHMEM[6] and Global Arrays[20] are application libraries
making use of the PGAS model.

2.2 GASNet communication library
GASNet (Global Address Space Networking) has been

specified as a remote communication library for the Berkeley
UPC and Titanium languages. Its API structure acknowl-
edges, but does not require, the capabilities of Remote Direct
Memory Access (RDMA) networking hardware like Infini-
band [3]. GASNet’s Core API is based on the principle of
Active Messages[23]. Active messages are essentially asyn-
chronous remote procedure calls. They are initiated by call-
ing a Request function. The call defines the source address
to copy from, the number of bytes to copy and the target
address on the remote node. Besides payload data, an active
message always includes a handler code and handler argu-
ments. The handler code specifies which function to call on
the remote target when the message arrives, and the argu-
ments are handed to that function. Handler functions can
fulfill synchronization purposes, process the arrived data in
some way or initiate replies. An active message request does

1MPI 2.0 has heavily constrained one-sided Remote Memory
Access support, but this is not part of the message-passing
paradigm. For a detailed critique of its limitations, see [11].



not require an answer. However, if an answer is required, for
example in a remote memory read, a handler function is al-
lowed to initiate exactly one Reply message, which can only
go back to the requesting node. These constraints safeguard
against deadlocks.

Core API Active Messages are limited to packet sizes that
can be easily supported by network hardware. The GAS-
Net Extended API offers transfer functions for unlimited
sizes and several types of barrier synchronization. It can
be implemented entirely through Core API calls. However,
sophisticated RDMA networking hardware can directly sup-
port Extended API functions.

3. SYSTEM OVERVIEW
In general, parallel programming models and APIs can be

accommodated to a variety of infrastructures, so consequent-
ly MPI can be run on top of GASNet as well as GASNet can
be run on top of MPI. Both of them are being able to commu-
nicate over regular TCP/IP-based networking stacks or Re-
mote DMA hardware like Infiniband. However, each of these
translations through software stacks costs performance. We
have therefore concluded that dedicated hardware support
for our chosen API GASNet is essential to maintain low la-
tency, a crucial metric for parallel systems. Consequently,
our main communication component uses a control API very
close to GASNet and directly implements its Active Message
capability for memory-to-memory transfers.

3.1 GAScore structure and use
The GAScore (Global Address Space core) is an imple-

mentation of GASNet functionality in hardware form. Pro-
cessing nodes in FPGA systems that use GAScore are com-
posed as shown in Figure 2. A computing element in the
form of an embedded processor or a hardware processing
engine is connected to one port of a dual-ported local mem-
ory (BlockRAM). The second memory port is connected to
the GAScore. The GAScore is connected to the on-chip net-
work.

The computing element is connected to the GAScore with
four Fast Simplex Links (FSLs), essentially Xilinx-specific
32-bit-wide FIFOs. Figure 3 takes a closer look at the in-
ternal structure of the GAScore and illustrates the purpose
of the four connections in receiving and transmitting Active
Messages.

If an Active Message packet arrives from the on-chip net-
work (see lower right corner of Figure 3), it is processed
by the Receive unit. If the message holds a data payload,
that payload is first written to the intended memory loca-
tion specified in the message parameters. Because of the
previously described deadlock-avoidance constraints, the re-
ceiving processing node never learns the sender’s node ad-
dress. Instead, the source node address is written into a
Token buffer, which returns a token code as a key to the
stored node address. The token and further parameters and
arguments are transmitted over FSL 1 to the computing ele-
ment, thereby calling the intended handler function. When-
ever the handler function completes, it returns the token
through FSL 2 and the Token buffer can free the stored
source node address.

The computing element can request the sending of Active
Messages by writing any message parameters and handler
function arguments over FSL 3. Unless the request is for
a short message without payload, the Transmit unit reads
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data from memory. This data, message parameters and han-
dler function arguments are combined into an Active Mes-
sage to be sent out over the network. A message can either
be a new request, or it can be a handler function’s reply to
a prior request, as in the case of a remote read. In the first
case, the computing node includes a destination node with
the parameters. In the second case, the handler function in-
cludes the priorly received token. The token is used to look
up the destination address in the Token Buffer. When the
message has been sent, the GAScore signals the completion
of the message request over FSL 4. This informs the com-
puting element that the data to be transmitted has been
read, and that the related memory area can now be freely
operated on again.

While the data flow between computing node and GAS-
core could be multiplexed into two links, transmission and
reception have explicitly been kept independent so that no
deadlocks can occur. The only shared components are the
Token Buffer, which needs no locking, and the memory bus,
which is shared round-robin between reads and writes.



Table 1: GAScore synthesis statistics, Xilinx
XC5VLX155T-1

Resource # %

Registers 760 0.78

LUTs 1336 1.37

BRAMs 2 0.47
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Figure 4: GAScore configuration with custom core
and PAMS

Table 1 shows the resource utilization at a maximum clock
speed of 142.6MHz, projected by synthesis for a GAScore
with BRAM interface on a Xilinx XC5VLX155T-1. While
synthesis numbers are not as reliable as final implementation
numbers, we can see that a single GAScore uses a very small
amount of chip resources.

3.2 Programmable Active Message Sequencer
For the Xilinx Microblaze embedded processor, a GAS-

Net Core API library implementation has been developed
that translates to and from the GAScore FSL channels (see
Figure 2). Because the parameter format and GAScore func-
tionality have been so closely modeled on the GASNet spec-
ification, translation is very simple and efficient. We are
convinced that the code can be easily adapted to other em-
bedded processor architectures.

On the other hand, custom hardware cores can implement
their own mechanisms to send Active Message requests to
the GAScore and process Handler function calls. However,
this would be fairly redundant work for different compu-
tation cores, and individual implementations would make
incompatibilites more likely.

Instead, we have developed a small application-specific
controller that executes a limited set of machine code in-
structions, called the Programmable Active Message Sequen-
cer (PAMS), to control the GAScore communication and
synchronize it with core computations. Figure 4 shows a
custom core/GAScore combination with the PAMS. A struc-
tural overview of the PAMS can be seen in Figure 5. The
sequencer has the following features:

• PAMS code can be loaded and re-loaded into the se-
quencer instruction RAM through specialized Active
Messages.

• Message counters (MessageCtrs) can be configured to
count messages of a specific handler code and indicate
when a threshold is reached. This is useful, for exam-
ple, for barriers.

• Transfer counters (TransferCtrs) can be configured to
count the data that messages of a specific handler code
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Figure 5: PAMS overview

have written into memory. They also have a config-
urable threshold. This is useful for soft barriers, where
synchronization is achieved by having received the ex-
pected amount of data from other nodes.

• The sequencer can wait for a specific timer threshold.
This is especially useful for programming benchmarks.

• The timer can be modified by a particular offset, which
is useful when multiple FPGAs did not come out of
reset in the same cycle.

• When a message has arrived, the current timer is copied
into the ArrivalTime register. The value can be polled
by sending a special message whose handler code does
not trigger the copying.

• The sequencer can set control outputs to the custom
hardware and wait on control inputs from the custom
hardware.

• All possible wait conditions can be configured into one
wait instruction, so that execution continues as soon
as all conditions are met.

• Finally, the sequencer can write Active Message re-
quests to GAScore that include attached arguments
from code, from the timer or from the ArrivalTime
register.

Figure 6 shows pseudocode for implementing a simple bar-
rier in a 16-node system, as benchmarked in Section 5.2.
There are two different code versions, one for node 0 and
one for all the other nodes. For benchmarking purposes, all
nodes are primed to start at a predefined time. All nodes ex-
cept 0 send a barrier call message to node 0, and then wait
for a barrier done message. Node 0 waits for 15 barrier call
messages (assuming a 16-node system) and then sends one
barrier done to every node. Each node automatically logs
the arrival time of the last message in their ArrivalTime reg-
ister, so that it can later be read for benchmarking purposes.

All benchmarks in this paper were realized through corre-
sponding configuration of the sequencers in each core. The
PAMS could also be used to implement the GASNet Ex-
tended API mentioned in Section 2.



/* node 0 */

set_timer_threshold(STARTTIME);

wait_for_timer();

set_msg_ctr0(barrier_call,15);

wait_for_msg_ctr0();

send_AM(barrier_done,1);

send_AM(barrier_done,2);

send_AM(barrier_done,3);

[...]

send_AM(barrier_done,13);

send_AM(barrier_done,14);

send_AM(barrier_done,15);

/* node 1-15 */

set_timer_threshold(STARTTIME);

wait_for_timer();

send_AM(barrier_call,0);

set_msg_ctr0(barrier_done,1);

wait_for_msg_ctr0();

Figure 6: Example PAMS code

Table 2: PAMS synthesis statistics, Xilinx
XC5VLX155T-1

Resource # %

Registers 943 0.97

LUTs 1035 1.06

BRAM18s 1 0.24

Table 2 shows the resource utilization at a maximum clock
speed of 136.2MHz, projected by synthesis for a PAMS with
four control inputs and four control outputs on a Xilinx
XC5VLX155T-1. As was the case with the GAScore, we
can see that a single PAMS uses a very small amount of
logic resources.

3.3 On- and Off-chip Networking
A system of several GAScore-equipped computing nodes

on one FPGA is pictured in Figure 7. In this example,
two nodes use an embedded processor and two nodes use a
hardware processing element (PE). Each GAScore connects
to an on-chip network of NetIfs. NetIfs are simple FSL-based
cut-through routers originally introduced for use by an on-
chip MPI system in [21]. The NetIfs are arranged in a fully
connected network. The feasibility of such fully-connected
networks with FPGA routing resources has been examined
in [22]; however, other topologies are under consideration
for larger FPGAs where routing fabric does not increase
proportionately with logic area.

Off-chip connections through other network and periph-
eral interfaces can be implemented through bridge compo-
nents that can connect to NetIfs. In Figure 7, two Off-
Chip Communication Controllers (OCCC) manage exter-
nal data transfer to two different directions. Depending on
the OCCC, communication can, for example, happen over
board-level connections, optical or copper-based networks
or PCI host buses. The choice of external interface does
not influence GAScore functionality since its communica-
tion model is implemented on top of the physical network
layer.
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Figure 7: Four-node system with Off-Chip Commu-
nication Controllers

3.4 Portability
As explained in Section 3.2, GASNet software only needs

a lightweight interface layer to control the GAScore compo-
nent because its Active Message requests and Handler calls
use the same parameters as the corresponding C functions.
For the same reason, FPGA communication with host ar-
chitectures running GASNet will be straightforward. The
challenge is reduced to implementing bridges between host
hardware and FPGA NetIfs, something which has already
been successfully demonstrated in previous work[21].

A further advantage of this compatibility is the possibility
to prototype code on a host architecture and then easily mi-
grate it to an embedded processor. When CPU computation
is translated into a pure hardware implementation at some
point, the patterns of data movement and synchronization
can be easily preserved.

4. SOFTWARE STACK AND
CODE GENERATION PROCESS

Figure 8 illustrates the software stack that we envision on
top of our component infrastructure. GASNet serves as the
basic communication layer between all components. On top
of the GASNet library sits a C++ library currently under
development that unites proven PGAS and heterogeneity
concepts from existing languages and libraries. Its main
features are:

• Complex data classes for multi-dimensional arrays, etc.
• Location and node subset classes that allow modeling

of heterogeneous systems
• Data layout types to control platform-specific data dis-

tribution independently from the data class itself
Applications can be written in C++ to run with the PGAS

library. However, many scientists use Domain-Specific Lan-
guages (DSLs) that enable more productive and efficient
modeling of problems in their specific area. We envision
our C++ library to also be a suitable runtime environment
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for C++ code that was automatically generated from DSL
code.

For debugging purposes, an application should always be
able to execute correctly (though possibly inefficiently) af-
ter compilation to a pure multi-CPU environment running
GASNet. Based on profiling, the application designer can
decide which functions should be migrated to hardware.
Performance-critical functions can then be translated into
FPGA hardware, either manually by a skilled hardware de-
signer or through High-Level Synthesis (HLS/“C-to-gates”)
tools.

The communication and synchronization patterns that the
PAMS needs to run for the new hardware kernel can be
generated automatically by the library, either statically at
compile time or, if required, dynamically at runtime. The
ability to re-program the PAMS through GASNet enables
dynamically changed control patterns at any time.

Since our C++ library is still in a very early design stage,
all evaluations and benchmarks of our hardware components
so far have been done just with the GASNet library and
hand-written PAMS code.

5. PERFORMANCE EVALUATION
For a parallel computation system, it is imperative to keep

the cost of remote data accesses as low as possible, so that
exchange of data with other computation nodes does not
carry an excessive penalty. Therefore, our main concern
in evaluating our component is that remote data can be
read and written with relatively low latency. Furthermore,
we measure the maximum latency of two types of barriers,
since barrier latency is performance-critical for many real-
world applications. Given foreseeable contention for shared
networking resources, a second aspect we investigate is how
much overhead single data transfers incur, and therefore how
efficiently the available network bandwidth can be used.
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Figure 9: BEE3 quad-FPGA system with 16 hard-
ware processing elements (PE) and one MicroBlaze
processor(µB) for configuration and benchmarking
purposes

We have deliberately not included any application bench-
marks in our evaluation. At this stage of development, it is
important to understand the exact performance of this first
implementation of our memory-to-memory transfer core us-
ing the NetIf infrastructure. Any application benchmark
would be defined by the quality of a custom hardware core
implementation, as well as the network bandwidth and con-
gestion that is characteristic to this specific topology and
board hardware (In fact, these characteristics do strongly
affect our barrier benchmarks). We would not be able to
draw definitive conclusions on whether our component or
another influence is the impediment to better performance.

5.1 Test system
As a testbed, a demonstration system is implemented on

a BEE3[16] multi-FPGA board. The BEE3 holds four Xil-
inx XC5VLX155T FPGAs. They are connected in a bi-
directional ring with 32-bit-wide communication at 100MT/s
in each direction. The system is clocked at 100MHz.

A single FPGA holds four hardware computation nodes
and one Microblaze processor, each connected to 64Kbytes
of BlockRAM and one GAScore. All four GAScores, as well
as two off-chip communication controllers for both ring di-
rections, are connected to one NetIf each, resulting in a fully-
connected topology of seven NetIfs as illustrated in Figure 7.
Figure 9 shows the complete system, with the four FPGAs
building a network of 17 computation nodes. Nodes 0-15
are identical hardware processing elements (PE). Node 16
is the Microblaze processor (µB) in the fourth FPGA; the
other three Microblaze processors are not utilized in the sys-
tem. The Microblaze is used to program the PAMS in each
processing element, poll the other nodes for any benchmark
results and output the results through a RS232 UART.

Table 3 shows the implementation results for one chip with
four hardware nodes and one MicroBlaze processor, using
Xilinx Platform Studio 10.1.03.



Table 3: Test system implementation results, Xilinx
XC5VLX155T-1

Resource # %

Registers 11160 11

LUTs 18651 19

Slices 8058 33

BRAMs 98 46

Table 4: Short message latencies between nodes

Ring distance 1-way (us) 2-way (us)

0 0.17 0.35

1 0.24 0.49

2 0.31 0.63

Table 5: Single-word memory transfer latencies

Ring distance 1-way (us) 2-way (us)

remote write remote read

0 0.29 0.47

1 0.36 0.61

2 0.43 0.75

The system could be run at up to 138MHz with the same
resource use. Clearly a decidedly larger system could be
implemented on each FPGA. However, because of the fully
connected topology, routing resources are expected to run
out before logic does.

5.2 Latency results
Initially, we tested how long a single short message be-

tween two nodes takes from sending to receive completion.
Because nodes inside an FPGA are fully connected and we
tested without any congestion, results do not differ depend-
ing on which node inside the same FPGA was used for a
measurement. This applies to all congestion-free measure-
ments. Consequently, latency only differs with varying off-
chip distances, which is why for a 4-chip ring we get values
for 0, 1 and 2 FPGA hops. The latency for a short message
varies between 170ns for an on-chip message to 310ns for a 2-
hop message, equivalent to 17 and 31 clock cycles. A 2-way
or “ping-pong” message takes only slightly more than double
the time, since our PAMS allows very quick turnaround.

Next, we determined how long the smallest possible trans-
fer from memory to memory takes, equivalent to remotely
writing a datum. Latency increases by 12 cycles or 120us.
This is only partially due to memory access latency: To en-
sure correctness, the GAScore only sends the handler call
to the computing element when the memory has been com-
pletely written. This is in contrast to short messages, where
parameters are transmitted onwards in cut-through style be-
fore the network packet has completely arrived. The latency
for the equivalent of a remote read can be easily predicted
since this is a combination of a short request and a long re-
ply, and therefore only adds the previous 12-cycle delay to
one side of the original 2-way latency.

For barrier latency, we first evaluated a straightforward
implementation where all nodes send a barrier request to
node 0; after receiving all 15 requests, node 0 sends bar-

Table 6: Simple barrier latency (us)

Latency to node 0 0.87 us

Latency for all 1.96 us

Table 7: “Staggered” barrier latency (us)

Latency to node 0 0.62 us

Latency for all 1.48 us

rier done signals back to all other nodes. Table 6 shows
how long it takes for all messages to reach node 0 (which is
when the first node is done with the barrier) and how long
it takes for all nodes to be notified about the completed
barrier.

Contrary to the previous measurements, for the barrier
the off-chip connections become a bottleneck where several
messages contend for the same channel that can only trans-
mit one message at a time.

To alleviate the bottleneck, our second measurement uses
a staggered or tree-based barrier: Every node sends their
barrier request to an on-chip node that functions as a hub.
Only those hub nodes connect off-chip to node 0. Node 0
sends the barrier done message back to the hub nodes, who
distribute it to their on-chip neighbors. As all presented
benchmarks, this change is implemented just through re-
programming the PAMS in each node, no hardware changes
are necessary.

Table 7 shows the results. They are not dramatically bet-
ter for two reasons: First, the three hub requests to node 0
from off-chip contend with the three local requests on the
first chip, for which node 0 is the hub. Node 0 therefore
still receives six of the previous 15 requests. Secondly, the
off-chip non-hub nodes now have a longer communication la-
tency for each single request, since they have to go through
two nodes instead of one.

5.3 Bandwidth results
We further examined the transfer times for memory-to-

memory operations of different sizes to determine how big
the impact of latency is on effective bandwidth. Figure 10
shows that we reach about half of the optimum bandwidth at
transfer sizes between 64 and 256 bytes, but that bandwidth
for smaller transfer sizes suffers decidedly. These results are
problematic, since PGAS enables user applications to com-
monly read and write single words of remote data, something
that is heavily penalized here in terms of throughput. Al-
most any network infrastructure allows network saturation
on large data packets, however ours clearly needs improve-
ment on small amounts of data.

5.4 Discussion
It is clear from our latency numbers that a custom im-

plementation of a memory-to-memory transfer could do in a
few cycles what our communication infrastructure does in 17
or more cycles. Part of this disadvantage is a trade-off for a
programming model that is easier to manage. This becomes
clear as soon as the remote memory access happens across
the board to another chip: Considerable effort is necessary
to integrate a chip-to-chip interface into the communication.
To the GAScore user, communication to an on-chip neigh-
bor or any off-chip location is completely identical and does
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Figure 10: Effective bandwidth depending on trans-
fer size

not introduce additional complexity. Furthermore, systems
of dozens or hundreds of nodes stay easily manageable.

However, there is certainly room for improvement in the
GAScore performance. A major bottleneck is introduced
by serializing Active Message requests and Handler calls
through the 32-bit FSLs. This is unavoidable when using
a MicroBlaze processor, however a custom hardware core
could quite well transmit all the parameters in parallel. In
fact, we are considering moving the complete PAMS into the
GAScore to minimize the delay in receiving, processing and
sending Active Messages. The GAScore would in that case
only connect through control bits to custom hardware cores.
We will examine if this approach would introduce other dis-
advantages. Similarly, latency as well as bandwidth on the
NetIf side could be improved significantly by extending from
a 32-bit to a 128-bit network, something that TMD-MPI has
already done.

A positive side effect of our benchmarks has been to demon-
strate how the introduction of the Programmable Active
Message Sequencer has helped testing productivity. In our
early attempts at evaluation, every benchmark had to be
hardcoded into custom logic and resulted in another place-
and-route run. With the PAMS, small modifications and ex-
periments with different sequences (e.g. the second barrier
benchmark) can be implemented with a simple bitstream
update. We are planning to further ease development of
communication patterns by writing a PAMS/GASNet emu-
lator.

6. RELATED WORK
Substantive prior work has been done to connect on-chip

memory resources more smoothly with each other and with
off-chip resources. CoRAM as introduced by Chung et al.[15]
is an on-FPGA infrastructure to abstract external mem-
ory interfaces from hardware processing cores. CoRAMs
are instances of on-chip memory that can be directly ac-
cessed by the processing unit on one port. A second port
is connected to finite state machines that execute so-called
control threads, which manage transfer of data to and from
off-chip RAM. The processing core is therefore completely
abstracted from the external memory interface. The use of

different control threads enables the on-chip RAM to func-
tion as scratchpad memories, caches or FIFOs. CoRAM
does not focus on communication with remote memories,
and does not take distributed programming models into con-
sideration. It is principally intended to provide an abstrac-
tion to external memory.

The approach of having a similar, migration-conducive
API for software and hardware components has been suc-
cessfully used by Saldana et al.[21]. TMD-MPI is a library
that implements a subset of the MPI standard to enable mes-
sage passing between FPGA and CPU components. It has
successfully demonstrated a common communication model
for the simulation of molecular dynamics. Its downsides are
the ones incumbent to any message-passing system: The
need for low-level transfer management, two-sided communi-
cation and its scalability limits, the inefficiencies of indirect
communication to remote memories and, finally, the imped-
iments to dynamic memory accesses and the use of linked
data structures.

Hthreads [10] is a hybrid shared-memory programming
model that focuses on implementing FPGA hardware in
the form of real-time operating system threads, with most
of the properties of software, but adding real concurrency.
Hthreads focuses on components sharing buses with each
other in single-chip processor systems, and lacks a scalable
programming model for multi-node systems.

VForce [19] extends VSIPL++, an established C++ high-
performance computing and signal processing library, to use
reconfigurable hardware for select library functions. VForce
supports runtime binding so that the same application code
can run on systems with and without supporting reconfig-
urable hardware. We expect our heterogeneous PGAS C++
library to behave in a similar fashion, however with a focus
on PGAS coding concepts and (optionally) more explicit
awareness of heterogeneity for the application programmer.
Furthermore, VForce seems to focus on heterogeneity in a
single node, while scalability across larger systems and net-
works is integral to our architecture.

On the PGAS side, SHMEM+ [9] is an extended version
of the established SHMEM library that uses the concept of
multilevel PGAS as defined by its authors: Every processing
node has multiple levels of main memory, e.g. CPU main
memory as well as an FPGA accelerator’s main memory,
which are accessed differently by SHMEM+. For node-to-
node transfers GASNet is used, for transfers to a local or
remote FPGA a vendor-specific interface has to be accessed
by the local CPU. The SHMEM+ authors exclude on-chip
memory from being remotely accessible, concluding that it
is only useful for caching purposes. We think that there are
classes of applications with small, latency-critical datasets,
and therefore provide this access, especially since the ex-
changable memory component in our GAScore means there
is no added cost to it.

El-Ghazawi et al.[18] examine two different approaches to
use FPGAs with Unified Parallel C: In the library approach,
a core library of FPGA bitstreams for specific functionali-
ties exists. Function cores can be explicitly loaded into the
FPGA. An asynchronous function call transfers data for pro-
cessing into the FPGA, a later completion wait transfers the
processed data back into CPU-accessible memory. The sec-
ond approach uses a C-to-RTL synthesis of selected portions
of the UPC code: A parser identifies upc forall-statements
that can be well parallelized in hardware and splits their



compilation off to Impulse-C[2]; corresponding data trans-
fers to and from the FPGA are inserted into the CPU code.

The common concern with the two PGAS solutions is that
they leave the CPU(s) in charge of all communication man-
agement, while the FPGA remains in a classic, passive ac-
celerator role. Truly efficient one-sided communication as
embraced by PGAS is therefore not available, and FPGA
capabilities are underutilized.

7. FUTURE WORK
Our most urgent work lies in improving latency as dis-

cussed in section 5.4. We are optimistic that we can improve
performance significantly with the suggested changes.

In the short term, we plan to extend the GAScore memory
interface to off-chip DRAM to open the system to a larger
set of applications and data set sizes. A common multi-
ported memory controller supports eight ports, so that four
processing nodes with one processing element and one GAS-
core each could access a DRAM module.

For many applications on distributed arrays, built-in stri-
ded and scatter-gather accesses would be beneficial and could
minimize the workload portion that a processing element
needs to spent on initiating data transfers.

Our long term intentions are focused on the software stack
described in Section 4. GAScore and the Programmable
Active Message Sequencer are laying the groundwork for this
by creating a common interface for processors and hardware
cores. We plan to examine how to best model heterogeneity
in a high-level language PGAS implementation and how to
best migrate performance-critical kernels into logic.

8. CONCLUSION
We introduced a remote memory communication engine,

GAScore, which can be easily interfaced by embedded pro-
cessors as well as hardware engines on FPGAs. Furthermore,
we introduced PAMS, a communication controller that sim-
plifies using custom hardware cores with GASNet. Com-
patibility to a popular shared memory networking library,
GASNet, assures easy integration with host-based parallel
programming solutions and enables development of hetero-
geneous computing applications. We discussed how these
low-level components fit into a larger approach for comput-
ing application development.

Our evaluation and results have shown us two things:
First, there is room for improvement in the achieved la-
tency for messages and data transfers. We have several
ideas on how to optimize performance and improve those
results. Secondly, we succeeded in providing an easy-to-use
set of components for remote memory access. Especially the
flexibility added through the Programmable Active Message
Sequencer facilitates easier integration of custom hardware
into a shared-memory-based parallel processing system. The
ability to change communication and control patterns with-
out a complete implementation run boosts design produc-
tivity. Like GAScore, PAMS delivers its functionality on a
very low area budget.

At this point, our components provide the envisioned low-
level functionality, but for a competitive system we need
to markedly improve performance. Furthermore, we need
to add the necessary software and hardware components to
extend the existing infrastructure into a truly productive,
heterogeneous, parallel programming environment.
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