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Massive multiple-input multiple-output (MIMO) systems and small cell networks are both regarded as promising candidates to
meet the exponential growth of mobile data traffic for the next generation (5G) wireless communications. Hence, a new kind
of multitier networks which combine massive MIMO macro cells with a secondary tier of small cells is proposed to resolve the
contradiction of large network coverage and high data rate. In such multitier networks, it is inevitable to allocate nonorthogonal
uplink pilot sequences to user equipment (UE) due to the large number of users. We propose a pilot reuse scheme by exploiting the
unique architecture of this networks and analyse the specialmixed channel state information (CSI) yielded by the pilot reuse scheme.
Based on the mixed CSI, we formulate a downlink transmit beamforming problem of minimizing the total power consumption
while satisfying the quality of service (QoS) requirements with outage constraints. After decomposing the original problem into
simpler subproblems, we provide an efficient algorithm to combine these subproblems and solve them iteratively for generating the
beamforming vectors. Monte Carlo simulations show that the average power consumption of the proposed pilot reuse scheme and
its associated beamforming algorithm is close to that of the perfect CSI case.

1. Introduction

With the advent of the fifth generation (5G) cellular wireless
communications, an ever-increasing demand of substantially
higher throughput is a quite pressing task laid in front of us
and drives the researchers to find new technology for wireless
communications. Massive MIMO is a potential technology
for meeting this demand and also taken as an attractive
solution for 5G systems [1]. By implementing a large number
of antennas at the BS, massive MIMO systems offer a high
spatial and multiplexing resolution which can drastically
improve the communication systems’ performance in terms
of data rate and reliability [2]. However, a critical issue for
such massive MIMO systems is the excessive energy cost for
their large number of antennas. How to provide higher data
rateswith lower energy consumption for suchmassiveMIMO
systems is a critical problem in front of us.

An innovative solution to this problem is a densified
network with amultitier network architecture as stated in [3].
Sometimes, such multilayer and multiarchitecture networks

are also called heterogeneous networks (HetNets). In [4],
the authors have made further discussions about two-tier
massive MIMO networks. The fundamental architecture of
such networks is based on a deployment of a macro cell with
very large antenna arrays in combination with a secondary
tier of small cells (SCs) with a few antennas each. Macro cells
are deployed for the coverage of large areas and capable of
handling low data traffic or the users with a relative high
mobility, and SCs with a reduced coverage range of tens of
meters are designed for providing localized higher data rate
communications.

However, there still exist some implicit obstacles to
put such two-tier massive MIMO networks into practice.
One problem is how to fulfill the channel estimation. In
time division duplexing (TDD) cellular systems, channel
estimation is obtained via the uplink training based on the
channel reciprocity property. In other words, each user in
the cell would be assigned a specific pilot sequence and these
pilot sequences would be transmitted to the base station (BS)
via the uplink. Acquiring perfect CSI inherently asks for
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sufficient numbers of orthogonal pilot sequences, which may
not be possible for massive MIMO cellular systems. Hence,
the pilot reuse is inevitable in massive MIMO systems, and
the imperfect uplink training due to reusing the same pilot
sequences tends to be a critical problem (referred to as “pilot
contamination” problem [5]).

It is critical to design an appropriate pilot reuse scheme
formitigating the interference due to the pilot contamination.
In [6–8], a time-shifted pilot reuse scheme was proposed
to combat pilot contamination by symmetrically rearrang-
ing the uplink pilot transmission order for different cells
and the system performance for such scheme with zero-
forcing beamforming and a large number of BS antennas
is also studied. Reference [9] studied the optimal pilot
reuse factor for sum-rate maximization in massive MIMO
systems. In [10], the authors proposed a pilot reuse scheme in
homogenous multicell networks based on the degree of the
spatial orthogonality in greedy fashion. In [11], the authors
partitioned each cell into 3 sectors and assigned the reused
pilot sequences in a symmetrical way in order to perform
pilot contamination precoding (PCP). Recently, a novel
pilot reuse scheme is proposed in [12] which exploits the
channel spatial localization property to reduce the number
of orthogonal pilots for uplink channel estimation in single
cell massiveMIMO systems. However, the pilot reuse scheme
in [12] requires restrictive assumptions such as high channel
spatial correlation and uniform linear array at the BS. In
summary, all the works mentioned above focused on either
homogenous multicell networks or single cell systems. As a
result, they cannot be directly applied to (or are not optimized
for) HetNets with asymmetrical system architecture.

Another problem is how to tackle the intercell interfer-
ence. With limited spectral resources, a cochannel deploy-
ment of macro cell and secondary tier SCs is the only
viable solution, and this in turn requires a sophisticated
interference management scheme across the tiers. The cross-
tier interference is even thought to be one of the bottlenecks
for designing high-performance HetNets [13].

Now, a tough problem of proposing a high-performance
and low-complexity interference management scheme to
guarantee the system’s QoS requirements with limited uplink
pilot resources is in front of us.

For this problem, robust transmit beamforming methods
which take the CSI errors into consideration are in need for
the reason that “pilot contamination” causes imperfect CSI. In
[14, 15], a sum-ratemaximization problemwith imperfect CSI
was investigated. However, these methods mainly focused
on the worst case approach under the assumption of norm-
bounded uncertainty which is not suitable for the considered
system. Furthermore, a more efficient conservative formu-
lation is presented which involves solving a semidefinite
programming (SDP) in [16]. By using the Bernstein-type
inequality, a chance constrained beamforming problem in
cognitive radio networks is also provided in [17]. The kernel
of these methods is to transform the original problem
to a tractable SDP problem conservatively. However, the
huge computation complexity of SDP, 𝑂(𝑛6.5), makes these
methods unattractive in massive MIMO systems [18].

Figure 1: One typical architecture of a two-tier network. A macro
cell tier is overlaidwith a secondary tier of small cells.The interfering
signals are marked by dotted lines and the intended signals are
marked by solid lines.

Compared with the previous works, we propose a pilot
reuse scheme by exploiting the unique architecture of this
HetNet. A “mixed CSI” is achieved at the BS due to our pilot
reuse scheme. Based on the mixed CSI, we formulate the
energy-efficient beamforming problem as a chance constraint
programming and decompose it into simpler subproblems.
Then, an efficient iterative algorithm is provided to combine
these subproblems and solve them iteratively for obtaining
the beamforming vectors.

The rest of this paper is organized as follows. In Section 2,
the system model is provided. How to compress the number
of the uplink pilot sequences and how to design the energy-
efficient beamformer with the mixed CSI are presented and
solved in Section 3. Section 4 presents the numerical results
and Section 5 concludes this paper.

2. System Model

We consider the downlink of a TDD orthogonal frequency
division multiplexing (OFDM) system. Different from the
traditional systems with single base station, one macro base
station (MBS) and 𝑆 low range small cell base stations (SBSs)
separately serve their intended single antenna users in the
same frequency band shown as in Figure 1. The MBS has
𝑁BS antennas and each SBS has 𝑁SC antennas, where 𝑁BS is
assumed to be a large number which is known as massive
MIMO.We consider that the total number of the served users
is𝐾; since the total number of transmit antennas is𝑁 = 𝑁BS+
𝑆𝑁SC, the downlink channel propagation matrix between the
𝑁 antennas and𝐾 users can be described by a𝐾×𝑁matrix,
H. The base stations can exploit channel reciprocity to obtain
channel state information at the transmitter (CSIT) based
on uplink training. Here we denote the macro cell as cell 0
and the 𝑗th SC is denoted as cell 𝑗. The channel of the 𝑘th
user is represented as h

𝑘
= [h
0,𝑘

h
1,𝑘

⋅ ⋅ ⋅ h
𝑆,𝑘
] ∈ C1×𝑁,

where h
0,𝑘

∈ C1×𝑁BS and h
𝑗,𝑘

∈ C1×𝑁SC , 𝑗 = 1, . . . , 𝑆. Let
ℎ
𝑗,𝑛,𝑘

∈ C, ∀𝑗, 𝑛, 𝑘, denote the entries of h
𝑗,𝑘
, ∀𝑗, 𝑘, and
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ℎ
𝑗,𝑛,𝑘

describes the channel between the 𝑛th antenna in cell
𝑗 and the 𝑘th user. We consider a composite fading channel;
that is, ℎ

𝑗,𝑛,𝑘
= √𝑑𝑗,𝑛,𝑘𝑧𝑗,𝑛,𝑘, where 𝑑𝑗,𝑛,𝑘 is the path gain

between antenna 𝑛 in cell 𝑗 and user 𝑘, and 𝑧
𝑗,𝑛,𝑘

∈ C is
the small scale fading with i.i.d. ∼ CN(0, 1) entry. Here, we
assume a time block fading model. Thus path fading vectors
𝑑
𝑗,𝑛,𝑘

, ∀𝑗, 𝑛, 𝑘, stay constant during each coherence interval
and these vectors are assumed to be independent in different
coherence blocks. Since all the transmit antennas of MBS
are considered to be center collected, h

0,𝑘
∼ CN(0, 𝑑

0,𝑘
I) is

satisfied, where 𝑑
0,𝑘
, ∀𝑘 = 1, . . . , 𝐾, are independent random

variables describing the path loss fading.
We divide the 𝐾 users into two groups represented

by small-cell user equipment (SUE) and macro cell user
equipment (MUE). If user 𝑘 is located in the coverage of
the 𝑗th SC and register at the 𝑗th SBS for a certain high
quality communication service, then user 𝑘 is a SUE of SBS
𝑗. The other group is the MUE who do not register at any
SC and communicate with the MBS for a common quality
communication service. To specify which cell it belongs to,
the SUE 𝑘 located in the 𝑗th SBS can also be denoted as user
𝑘
𝑗
. If user 𝑘 is a MUE, then it can be also denoted as 𝑘

0

similarly. For convenience, we suppose that each SC has 𝑁
𝑠

registered SUE. Thus, there are 𝑁
𝑠
𝑆 ≤ 𝐾 users registered at

all the SCs totally.
We assume that the MBS and SBSs are connected to

a backhaul network with limited capacity which enables
interference coordination. When the backhaul is capacity
limited, the coordination strategy with no data and only
limited CSI sharing is preferred via the backhaul [19]. Note
that each user is considered to be served only by its associated
BS in our system; that is, MUE are served by MBS and each
SUE is served by its associated SBS.The information symbols
for user 𝑘

𝑗
from its associated 𝑗th BS can be denoted as 𝑥

𝑘𝑗
(or

𝑥
𝑘
). These information symbols are independently precoded

by the beamforming vectors, w
0,𝑘

∈ C𝑁BS or w
𝑗,𝑘

∈ C𝑁SC ,
wherew

𝑗,𝑘
is the beamforming vector at the 𝑗th BS for the 𝑘th

user. Then the received signal at user 𝑘 is (note that w
𝑗,𝑘

= 0
satisfies when BS 𝑗 does not serve the 𝑘th user)

𝑦
𝑘𝑗
= h
𝑗,𝑘𝑗

w
𝑗,𝑘𝑗

𝑥
𝑘𝑗
+

𝐾

∑

𝑖=1,𝑖 ̸=𝑘𝑗

(

𝑆

∑

𝑠=0

h
𝑠,𝑘𝑗

w
𝑠,𝑖
𝑥
𝑖
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

interference

+ 𝑛
𝑘𝑗
, (1)

where the term 𝑛
𝑘
(or 𝑛
𝑘𝑗
) is the circularly symmetric complex

Gaussian receiver noise which is an i.i.d. CN(0, 𝜎
2

𝑘
) ran-

dom variable. The signal 𝑥
𝑘
is originated from independent

Gaussian codebooks and constrained to have a total expected
power of one; that is, E{|𝑥

𝑘
|
2
} = 1, ∀𝑘.

For a given set of optimized beamforming vectors
w
𝑗,𝑘
, ∀𝑗, 𝑘, the signal-to-interference and noise ratio (SINR)

of the 𝑘th user can be expressed as

Γ
𝑘𝑗
=


h
𝑗,𝑘𝑗

w
𝑗,𝑘𝑗



2

∑
𝐾

𝑖=1,𝑖 ̸=𝑘𝑗
(∑
𝑆

𝑠=0


h
𝑠,𝑘𝑗

w
𝑠,𝑖



2

) + 𝜎
2

𝑘𝑗

. (2)

Consequently, the information rate of user 𝑘 is calculated by

R
𝑘
= log
2
(1 + Γ

𝑘
) . (3)

We model the power consumption of the system as an
addition of the transmit power and the circuit power like that
in [20] as follows:

𝑃tot = 𝑃
𝑡
+ 𝑃
𝑠
, (4)

where 𝑃tot denotes the total energy consumption of the
system. 𝑃

𝑡
is the dynamic power consumption known as

the aggregation of the emitted power and 𝑃
𝑠
is modeled as

the static power consumption cost by the BS components
attached to each antenna, for example, A/D (D/A) converters,
filters, and mixers, where 𝑃

𝑡
and 𝑃

𝑠
can be calculated by

𝑃
𝑡
=

𝑆

∑

𝑗=0

𝜂
−1

𝑗

𝐾

∑

𝑘=1


w
𝑗,𝑘



2

𝐹
,

𝑃
𝑠
= 𝜌
0
𝑁BS +

𝑆

∑

𝑗=1

𝜌
𝑗
𝑁SC,

(5)

where 𝜂
𝑗
∈ (0, 1] represents the efficiency of transmitter

power amplifiers in the 𝑗th cell, 𝜌
𝑗
is the power consumption

in the circuits of each antenna in the 𝑗th cell, and ‖ ⋅ ‖
𝐹
stands

for the Frobenius norm.

3. Pilot Reuse and Outage-Constrained
Beamforming

In this section, we will introduce our pilot reuse scheme
and analyze the special mixed CSI yielded by this scheme. A
low complexity algorithm for downlink beamforming is also
provided based on the mixed CSI.

3.1. Pilot Reuse and System Operating. In such two-tier
HetNet, at least 𝐾 orthogonal uplink pilot sequences are
needed to achieve the global perfect CSI [21] (in this paper,
we ignore the issues related to channel estimation and simply
assume that the perfect CSI between one UE and certain
BS is available at the BS if the UE’s allocated pilot sequence
is orthogonal to that of the other UEs’. Since pilot power
and data power could be assigned individually [22, 23],
this is an appropriate assumption even when the users’
SINR is varying). In practice, the short channel coherence
intervals do not allow for such long training sequences [24].
Hence, in such multi-BS networks, nonorthogonal training
sequences must be utilized.The pilot contamination problem
was studied in [5] which found that pilot contamination
would result in corruption of precoding matrices and cause
significant intercell interference (ICI). The ICI brings about
the saturation effect; that is, the system throughput does not
grow with the increasing of the number of BS antennas.

Compressing the number of pilot sequences to a precise
value and allocating these pilots in an appropriate way is a
hard problem. To the best of the authors’ knowledge, there has
been no systematic method for this task currently. While, by
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UL Pilot G DL
· · · · · · · · ·

· · ·

(b)

Figure 2: A kind of TDD-based frame structure. The pilot reuse
scheme for the two-tier HetNet is presented in (a).The pilot scheme
for achieving global perfect CSI is presented in (b).

exploiting the special architecture of the considered HetNet,
a simplified scheme for this pilot allocation problem can be
obtained. In suchHetNet, the SCs are geometrically separated
with each other and the coverage regions of different SCs
are often nonoverlapped. As a result, the users in a SC
hardly receive signal from other SBSs, which means that the
interference among the SCs can be ignored. Thus, the cross-
tier interference is the bottleneck to improve the throughput
of such HetNet.

Now, we consider how to compress the number of pilot
sequences and allocate these pilots to different users in
such HetNet. On one hand, the MUE may walk around
the macro cell with a relative high mobility; instantaneous
CSI is crucial for the MBS to serve these MUE; on the
other hand, each SC would have strong channel gain to its
associated SUE, instantaneous CSI is also in need for this SBS
and its associated SUE. Hence, we allocate orthogonal pilot
sequence to each MUE and all the SCs share the same 𝑁

𝑠

pilot sequences for their𝑁
𝑠
active users. Considering a TDD

frame structure similar to that in [24], we propose the frame
structure of this HetNet in Figure 2(a).

For comparison, the frame structure for achieving the
global perfect CSI is presented in Figure 2(b). When global
perfect CSI is preferred, at least𝐾 orthogonal pilot sequences
are in need in one TDD frame. This would be intolerable for
the considered macro cell massive MIMO systems in which
the number of users would be large.

Now, we pay attention to the special kind of CSI achieved
by our proposed pilot reuse scheme. For any MUE, it will
transmit its nonreused pilots to the BSs in the uplink training
phase. Both theMBS and the SBSs can receive the pilot signal
and then estimate the channels between this MUE and the
BSs. Since all the pilot sequences ofMUE are nonreused, both
the MBS and the SBSs could have the perfect CSI while, for
a SUE 𝑘

𝑗
, it will transmit its reused pilots to the BSs in the

· · ·

.

.

.

K

NSC NSCNBS

K − SNs

Ns

Ns

N

Figure 3: The rearrangedH for the two-tier network.

uplink training phase. Since the coverage regions of different
SCs are nonoverlapped and the receive antenna gain of MBS
is usually much larger than the SBS, it means that the minor
channel coefficients between SUE 𝑘

𝑗
and other SCs can be

ignored, and only the 𝑗th SBS and the MBS can receive the
pilot signal. Then the 𝑗th SBS and the MBS can estimate the
channels between SUE 𝑘

𝑗
and them. Note that SBS 𝑗 cannot

receive this pilot sequence from the SUE of other SCs, while
theMBS receive this pilot sequence from all the SCs. It means
that the 𝑗th SBS will achieve the perfect CSI of SUE 𝑘

𝑗
, and

the MBS (M) could just obtain the statistical knowledge of
this SUE, for example, its path loss fading.

For simplicity, we rearrange the original channelmatrixH
as in Figure 3, where the first𝑁BS columns correspond to the
channel matrix of the MBS antennas and the following 𝑁SC
columns correspond to the channel matrix of the antennas
belonging to the 1st SBS and so on. It is similar that the first
𝐾 − 𝑆𝑁

𝑠
rows correspond to channel matrix of the MUE and

the next𝑁
𝑠
rows correspond to the channelmatrix of the SUE

in the 1st SC and so on.
Besides, we use different colours to distinguish the dif-

ferent kinds of CSI. The perfectly known CSI is marked
in green and the contaminated CSI is marked in red. The
statistical knowledge of these contaminated CSI is assumed
to be known at the BS, for example, the path loss fading of
these users. The other space of the channel matrix is marked
in white and stands for the minor channel coefficients which
can be ignored. We call such kind of CSI as the “mixed CSI”
for containing different kinds of CSI.

3.2. Outage-Constrained Beamforming with Mixed CSI. The
obtained mixed CSI, that is, some entries of H are perfect
known at the BS while the others are statistically known or
0, brings a new technical challenge for the system downlink
beamforming. Since some CSI is unknown, the QoS outage is
inevitable. To guarantee the QoS and its outage, we impose a
probabilistic QoS constraint as follows:

Pr (Γ
𝑘
> 𝛾
𝑘
) ≥ 1 − 𝛿

𝑘
, ∀𝑘, (6)

where 0 < 𝛿
𝑘
< 1 indicates that the system should guarantee

the QoS requirements for the 𝑘th users with probability of
at least 1 − 𝛿

𝑘
. Then, we can formulate the energy-efficient

beamforming problem as a problem of minimizing the total
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transmit power while satisfying the system chance constraint
as

P
0
: minw𝑗,𝑘

𝑃tot

s.t. Pr (Γ
𝑘
> 𝛾
𝑘
) ≥ 1 − 𝛿

𝑘
, ∀𝑘.

(7)

Recall that there are two different groups of users, that is,
MUE and SUE. Hence, we can denoteM ≜ {1, . . . , 𝐾 − 𝑆𝑁

𝑠
}

as the set of the MUE and let S ≜ {𝐾 − 𝑆𝑁
𝑠
+ 1, . . . , 𝐾}

stand for the set of all the SUE for convenience. Moreover,
there are also two types of QoS constraints for such two
types of users. As for the MUE, both the MBS and SBSs
can obtain their perfect CSI. It means that the type of QoS
for the MUE should be determinate; that is, 𝛿

𝑘
= 0, ∀𝑘 ∈

M. However, for the SUE, there is uncertainty in their CSI
causing occasional QoS outage. Thus, the type of QoS for
the SUE should be probabilistic; that is, it should involve
outage probability constraint. Hence, the chance constrained
beamforming with the achievable mixed CSI is formulated as
P
1
:

P
1
: minw𝑗,𝑘

𝑃tot

s.t. Pr (Γ
𝑘
≥ 𝛾
𝑘
) > 1 − 𝛿

𝑘
, ∀𝑘 ∈ S,

Γ
𝑘
≥ 𝛾
𝑘
, ∀𝑘 ∈ M.

(8)

P
1
is to optimize the beamforming vectors {w

𝑗,𝑘
, ∀𝑘}

for a total transmit power minimization. It aims to ensure
that each MUE 𝑘 is served with a minimal information rate
of log

2
(1 + 𝛾

𝑘
) and each SUE 𝑘 is served with a minimal

information rate of log
2
(1 + 𝛾

𝑘
) with an outage probability

no greater than 𝛿
𝑘
.

Usually, by using semidefinite relaxation (SDR), P
1

can be conservative transformed to a SDP. However, time
complexity of standard interior-point SDP solvers could be as
high as𝑂(𝑛6.5). Such intensive computation costmay prohibit
SDR applicable to massive MIMO systems. Moreover, the
conservatism of such SDR method is also hard to control.

In order to overcome this difficulty, we first decompose
the complex problemP

1
into simpler subproblems and then

propose an efficient iterative algorithm to combine these
subproblems and solveP

1
iteratively.

As for the MUE, only the MBS transmits information
symbols to them, and their beamforming vectors are gener-
ated by solving the following convex problem:

P
𝑠0
:

minw0,𝑘
w0,𝑘



2

s.t.
h0,𝑘w0,𝑘



2

∑
𝑖∈M,𝑖 ̸=𝑘

h0,𝑘w0,𝑖


2
+ ∑
𝑖∈S (∑

𝑆

𝑠=1


h
𝑠,𝑘
w
𝑠,𝑖𝑠



2

) + 𝜎
2

𝑘

> 𝛾
𝑘
, ∀𝑘 ∈ M.

(9)

As for the SUE, since one SUE in a SC hardly receives
signal from other SBSs, the problem of optimizing their
beamforming vectors could be simplified as follows:

P
𝑠1
: minw𝑗,𝑘𝑗


w
𝑗,𝑘𝑗



2

s.t.


h
𝑗,𝑘𝑗

w
𝑗,𝑘𝑗



2

∑
𝑖∈M


h
0,𝑘𝑗

w
0,𝑖



2

+ ∑
𝑖∈S,𝑖 ̸=𝑘𝑗


h
𝑗,𝑘𝑗

w
𝑗,𝑖



2

+ 𝜎
2

𝑘𝑗

> 𝛾
𝑘𝑗
, ∀𝑘

𝑗
∈ S.

(10)

FromP
𝑠0
andP

𝑠1
, we find that the cross-tier interference

of SUE andMUE is in relationwith each other; that is, it needs
the knowledge of the MUE beamforming vectors to calculate
the interference power of SUE, and vice versa.

Now we are ready to combine P
𝑠0

with P
𝑠1

and use
them to solve P

1
iteratively. For convenience, the cross-tier

interference of the 𝑘th user caused by SBSs orMBS is denoted
as 𝐼
𝑠𝑘
and 𝐼
𝑚𝑘
, respectively, where

𝐼
𝑠𝑘
= ∑

𝑖∈S

(

𝑆

∑

𝑠=1

h𝑠,𝑘w𝑠,𝑖


2
) , 𝑘 ∈ M,

𝐼
𝑚𝑘

= ∑

𝑖∈M

h0,𝑘w0,𝑖


2
, 𝑘 ∈ S.

(11)

Considering the initial interference caused by the SBS
and MBS as 0, then the optimization problem P

𝑠1
can be

independently solved by each SBS and the beamforming
vectors of w

𝑗,𝑘𝑗
, ∀𝑗 ̸= 0, can be obtained. Since the CSI

between MUE and all SBSs is perfectly known, MBS can
broadcast h

𝑠,𝑘
, ∀𝑠 ̸= 0, 𝑘 ∈ M, to each associated SBS

beforehand. Hence, the 𝑗th SBS could compute the cross-tier
interference it causes by calculating by

𝐼
𝑠𝑗,𝑘

= ∑

𝑖∈S

(

h
𝑗,𝑘
w
𝑗,𝑖



2

) , 𝑘 ∈ M, (12)

and transfer it to the MBS.
After getting the total cross-tier interference 𝐼

𝑠𝑘
=

∑
𝑆

𝑗=1
𝐼
𝑠𝑗,𝑘
, the MBS can generate its beamforming vectors

by solving P
𝑠0
. Since the CSI between MBS and SUE is

statistically known, with the knowledge of {w
0,𝑘
, 𝑘 ∈ M}, the

cross-tier interference caused by the MBS to the 𝑘th SUE can
be calculated as

𝐼
𝑘
= 𝑑
0,𝑘
𝐹
−1

𝑌
(1 − 𝛿

𝑘
) , (13)

where

𝐹
𝑌
(𝑦) = 1 −

𝑚

∑

1

𝜆
𝑚−1

𝑖

∏
𝑙 ̸=𝑖
(𝜆
𝑖
− 𝜆
𝑙
)
𝑒
−𝑦/𝜆𝑖 , (14)

with 𝜆
𝑖
, 𝑖 = 1, . . . , 𝑚 being the nonzero eigenvalues of

(∑
𝑖∈M w

0,𝑖
w𝐻
0,𝑖
) in descending order (a detailed derivation of

(13) and (14) can be found in the appendix).
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(1) Set 𝑡 = 0, Δ0 = +∞, Δ−1 = Δ
0
+ 1, w0

𝑗,𝑘
= 0, 𝜇 = 0.01

and 𝐼
𝑚𝑘

= 𝐼
𝑠𝑗
= 0, ∀𝑗, 𝑘.

(2) while Δ𝑡 ≥ 𝜇∑
𝐾

𝑘𝑗=1
‖w𝑡
𝑗,𝑘𝑗

‖
2

𝐹
and Δ

𝑡
< Δ
𝑡−1 do

(3) SolveP
𝑠1
at each SBS, and transfer 𝐼

𝑠𝑗,𝑘
to MBS,

(4) SolveP
𝑠0
at MBS, calculate 𝐹

𝑌
(𝑦) and 𝐼

𝑘
,

(5) Transfer 𝐼
𝑘
to SBSs and let 𝐼

𝑚𝑘
= 𝐼
𝑘
,

(6) Update 𝑡 = 𝑡 + 1, w𝑡
𝑗,𝑘

and Δ𝑡 = ∑
𝐾

𝑘𝑗=1
‖w𝑡
𝑗,𝑘𝑗

− w𝑡−1
𝑗,𝑘𝑗

‖
2

𝐹
,

(7) end while

Algorithm 1

Equation (13) means that Pr(𝐼
𝑘
≥ 𝐼
𝑚𝑘
) ≥ 1 − 𝛿

𝑘
; that is,

the cross-tier interference caused by the MBS to the 𝑘th SUE
will be larger than 𝐼

𝑘
with a probability no greater than 𝛿

𝑘
.

After the MBS broadcasting {𝐼
𝑘𝑗
, 𝑘
𝑗
∈ S} to the 𝑗th SBSs

to update their local 𝐼
𝑚𝑘
, SBSs repeat the process of solving

the problemP
𝑠1
mentioned abovewith the updated 𝐼

𝑚𝑘
. Such

iterative process will stop until the predefined stop criterion
is met.

Summarizing the above steps, we thus obtain the dis-
tributed algorithm as in Algorithm 1, where Δ𝑡 denotes the
difference between the beamforming matrices in two succes-
sive iterations and 𝜇 is utilized to constrain the maximum
of this difference. The stop criterion means that the iterative
process is permissible onlywhen the following two conditions
are satisfied simultaneously:

(i) Δ𝑡 is not smaller than a ratio of the total transmit
power;

(ii) Δ𝑡 is shrinking.

Since P
𝑠0

and P
𝑠1

are both second-order cone pro-
gramming problems (SOCPs) [25], they can be efficiently
handled by standard solvers, for example, SeDuMi [26], and
the computation complexity is about 𝑂(𝑁3.5BS ) and 𝑂(𝑁

3.5

SC ),
respectively [18].

Remark 1. In Algorithm 1, it requires exchanging the knowl-
edge of cross-tier interference between MBS and SBSs. Note
that, in the process of exchanging interference knowledge,
only one real value is transferred via the backhaul each time,
which results in a total signaling of 𝑆𝑁

𝑆
+ 𝑆(𝐾 − 𝑆𝑁

𝑆
)

real values per iteration. Some other operations would also
affect this total signaling. For example, if SUE broadcast their
{w
𝑗,𝑖
, ∀𝑗 ̸= 0, 𝑖 ∈ S} to MBS instead of transferring 𝐼

𝑠𝑗,𝑘
,

the total signaling would be 𝑆𝑁
𝑠
+ 2𝑆𝑁

𝑠
𝑁
𝑆𝐶
. Hence, mobile

operators should choose an appropriate kind knowledge to
exchange so as to yield a minimum backhaul signaling based
on the architecture of the HetNet.

Remark 2. It is difficult to bound the exact number of
iterations required by the proposed algorithm.However, sim-
ulations show that the proposed algorithm always converges
within a few number of iterations. For example, in all of
our Monte Carlo simulations (over 200,000 random channel

realizations), the maximum number of iterations is 25. Most
of the time, the proposed algorithm will converge within 5
times of iterations (see Section 4 for details).

4. Simulation Results

Monte Carlo simulations are performed to verify the conclu-
sions and testify the performance of the proposed pilot reuse
scheme and its associated downlink beamforming algorithm.
The system performance is evaluated in terms of average
total power consumption.When keeping the QoS constraints
constant, the energy efficiency of the system is inversely
proportional to its average total power consumption.

4.1. Simulation Settings. The simulation parameters are set
as follows. We consider a circular cell with one MBS and
𝑆 = 4 small cells.The radii of the macro cell and small cell are
𝑅 = 0.5 km and 𝑟 = 40m, respectively. Since the user assign-
ment problem is independent of the beamforming problem
considered in this paper, the users in the whole systems are
scheduled in a round robin fashion for fairness consideration
(please refer to [27–29] and the references therein for more
about the user assignment problem). The goal of fairness
user scheduling in this paper is to make the system operate
at some point of its ergodic achievable rate region so as to
provide useful insights into the impact of model parameters
(e.g., number of antennas and outage probability constraint).
We set the following: there are 𝐾 = 10 active users in the
whole system, where 6 users are uniformly distributed in the
macro cell and each SC has one user uniformly distributed
within its small cell coverage. We evaluate the average power
consumption performance over user locations and channel
realizations. The position of the MBS is set as (0, 0) and
the overlaid SBSs are located at (0.5𝑅, 0.5𝑅), (−0.5𝑅, 0.5𝑅),
(0.5𝑅, −0.5𝑅), and (−0.5𝑅, −0.5𝑅), respectively.Though there
is no definite standard of the future 5G network, it is
commonly thought that the future 5Gnetwork is an evolution
of the current communication network (3G/4G network)
[30]. Hence, we take some system parameters of the current
communication network for simulation, and the channel
model is assumed as follows: (i) there are 600 subcarriers in
the 10MHz total system bandwidth, where the bandwidth
of each subcarrier is 15 KHz; (ii) the channel between the
MBS and UEs is using the 3GPP LTE pathloss mode: PL =

148.1 + 37.6 log
10
(𝑑) (in dB) with 𝑑 (in km) being the MBS-

UE distance; (iii) within each SC, the channel is modeled as
PL = 127 + 30 log

10
(𝑑) (in dB) with 𝑑 (in km) being the SBS-

UE distance; (iv) the energy consumption parameters are set
according to [31], that is, 𝜂

0
= 0.388, 𝜂

𝑗
= 0.052, ∀𝑗 ̸= 0,

𝜌
0
= 189mW, and 𝜌

𝑗
= 5.6mW, ∀𝑗 ̸= 0; and (v) the noise

covariance of receivers is set as −127 dBm.

4.2. Comparison with the Perfect CSI Case. It would be inter-
esting to simulate the performance gap between the proposed
low complexity algorithm and the optimal beamforming
method with chance constraint. However, to the best of the
authors’ knowledge, there has not been such optimalmethods
in existing work. Thus, we propose to compare Algorithm 1
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Figure 4:The average power consumption of the whole systemwith
different numbers of𝑁 and𝑁SC.
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Figure 5: The average power consumption of the whole cell for
different QoS constraints. The QoS constraints are measured in
bps/Hz per user.

with the following baseline which is labeled as “full CSI” in
Figures 4 and 5. In this baseline, we assume that the fully
coordinated MBS and SBSs are able to share both the data
and channel information. Then CoMP-JP can be used to
convert the intercell interference into useful signal [32]. In
other words, this information is available at all BSs, who
share their antennas together to serve the users jointly. If the
beamforming method in CoMP-JP is optimal, this baseline
provides a strictly upper bound for the maximum sum-rate.
Since there existsQoS outage constraint inAlgorithm 1which
may be helpful to save some transmit power, this baseline is
likely to be the upper bound of Algorithm 1 especially when
𝛿
𝑘
is tiny.
Now, we introduce the beamforming method for CoMP-

JP. In this condition, the problem of minimizing the total

power consumption while satisfying the QoS constraints is
formulated as follows:

minw𝑘
𝑃tot

s.t. Γ
𝑘
≥ 𝛾
𝑘
, ∀𝑘,

(15)

where Γ
𝑘
is shown as

Γ
𝑘
=

h𝑘w𝑘


2

∑
𝑖 ̸=𝑘

h𝑘w𝑖


2
+ 𝜎
2

𝑘

, (16)

with h
𝑘

= [h
0,𝑘

h
1,𝑘

⋅ ⋅ ⋅ h
𝑆,𝑘
] ∈ C1×𝑁 and w

𝑘
=

[w𝐻
0,𝑘

w𝐻
1,𝑘

⋅ ⋅ ⋅ w𝐻
𝑆,𝑘
]
𝐻
∈ C𝑁.

After applying SDR by dropping the rank constraints,
we can relax (15) to a semidefinite optimization problem on
standard form (see details in [33, Chapter 18])

min
W𝑘

𝑃tot

s.t. h
𝑘
((1 + 𝛾

−1

𝑘
)W
𝑘
−

𝐾

∑

𝑖=1

W
𝑖
) h𝐻
𝑘
≥ 𝜎
2

𝑘
, ∀𝑘,

W
𝑘
⪰ 0, ∀𝑘,

(17)

whereW
𝑘
is positive semidefinite withW

𝑘
= w
𝑘
w𝐻
𝑘
.

It can be proved that these rank constraints can be relaxed
without losing optimality [33, Chapter 18]. It means that the
original problem (15) can be solved as a convex optimization
problem (17).

4.3. Performance of the Proposed Algorithm. In this part, we
will present the performance of the proposed algorithm and
compare it with the optimal COMP-JP method mentioned
above.

First of all, we focus on the impact of the different
numbers of antennas at the MBS and SBS. Figure 4 compares
the power consumption of the full CSI scenario (or perfect
CSI scenario) and the pilot reuse scenario with different
numbers of antennas. The solid lines show the case when the
full downlink CSI is available at the BSs, while the dotted
lines depict the one when mixed CSI is available at BSs. The
given QoS requirement of each user is set as {𝛾

𝑘
= 3, ∀𝑘}

and the QoS outage probability requirement for the mixed
CSI scenario is set to be 𝛿

𝑘
= 0.1, ∀𝑘 ∈ S.

In the mixed CSI scenario, when 𝑁SC is fixed, it will
be more energy efficient when 𝑁 is not too large or small.
This is because that when 𝑁 is not too large, the transmit
power is much larger than the circuit power consumption,
and the consumed power is mainly provided for the data
transmission. However, with the increasing of 𝑁, when
the circuit power consumption is comparable to or even
dominates the transmit power, too much additional circuit
power is consumed by the large number of active antennas
and therefore decrease the energy efficiency. In other words,
appropriate number of active antennas could improve the
energy efficiency of the system. It has the same phenomenon
in the full CSI scenario.
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Then, we focus on the impact of the number of antennas
at each SBS,𝑁SC.When𝑁 is not so large, the energy efficiency
decreases with the increasing of𝑁SC, while a larger𝑁SC will
yield a higher energy efficiency when 𝑁 is large enough. It
tells us that, when 𝑁 is not large enough, it is not favorable
to extract antennas from the macro cell and settle them in
the SCs which will leave not enough macro cell antennas to
handle the MUE.When𝑁 is large enough which is sufficient
for the MUE, appropriate extraction antennas from the MBS
to the SCs will not only improve the throughput performance
of SBSs but also decrease circuit power consumption of the
MBS.

Besides, we find that the power consumed by the pro-
posed algorithm is larger than that the full CSI scenario when
the number of 𝑁 is small. With the increasing of 𝑁, the
proposed algorithm is likely to consume less power than the
full CSI scenario.This interesting phenomenon is mainly due
to the fact the full CSI scenario and the proposed scheme have
differentQoS requirements. In the full CSI scenario, the SINR
constraint in (15)must be satisfied for all channel realizations.
On the other hand, in the proposed scheme, SINR outage is
allowed; that is, the SINR constraint in (8) is satisfied with
probability at least 1−𝛿

𝑘
. Hence, the QoS requirement for the

full CSI scenario is more stringent, which may lead to larger
transmit power than that of the proposed scheme.

Moreover, we find that, when choosing the most energy
efficient 𝑁 (about 35), the average energy consumption of
the proposed pilot reuse scheme is larger than that of the
full CSI scenario, and the energy consumption gap of them is
no larger than 0.3 dB. Though consuming some extra energy
than the full CSI scenario, our scheme will greatly compress
the number of pilot sequences especially for those highly
densified network with large number of small cells.

Hence, we summarize that choosing a suitable number
of the total antennas and allocating an appropriate portion
of them to the SCs would intensively enhance the energy
efficiency of the whole system and the proposed algorithm
is especially fit for the massive MIMO systems.

Figure 5 compares the average power consumption for
different QoS constraints in the full CSI scenario and the
mixed CSI scenario when 𝑁 = 40 and 𝛿

𝑘
= 0.1, ∀𝑘 ∈ S.

We observe that, when the required QoS constraints are not
large, the systems with larger 𝑁SC consume less power even
than the full CSI cases.This is for the reason that 𝛿

𝑘
will relax

the QoS requirements to some extent and save some energy
consequently while, with the increasing of the required QoS
constraints, the gap of the power consumption between the
full CSI scenario and the mixed CSI scenario tends to be
static, which ensures that the proposed algorithm is widely
adaptive to different QoS requirements.

Figure 6 shows the impact of the QoS outage probability
constraints on the power consumption when 𝑁 = 40 and
𝛾
𝑘
= 3, ∀𝑘. We find that when decreasing 𝛿

𝑘
from 0.2 to

0.01 it consumes more power. However, when 𝑁SC is fixed,
the difference of power consumption is not evident. Hence,
we conclude that, over a reasonable range of QoS outage
probability, the consumed power of our scheme is likely to
be static.
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Figure 6: The average power consumption of the whole cell for
different outage probability constraints.
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Figure 7 describes the feasible rate of the actual SINR sat-
isfaction probabilities and the presented results are achieved
from 40, 000 random channel realizations. When 𝛿

𝑘
= 0.05

and the given SINR constraint for each user is 𝛾
𝑘
= 3, we

obtain the actual SINR satisfaction probabilities of one SUE
in Figure 7. We find that Pr{Γ

𝑘
> 𝛾
𝑘
} is 0.9498 ≈ 1 − 𝛿

𝑘
which

meets our QoS outage probability constraints strictly.
Figure 8 shows the total number of iterations of the

proposed algorithmwith different𝑁. In the presented results,
each point is obtained from 10, 000 random channel real-
izations. We find that the total number of iterations tends
to be static with large number of 𝑁, for example, 3.5 times
for 𝑁SC = 1 and 3 times for 𝑁SC = 2 or 3. In all of our
simulations, the maximum number of iterations is 25 when
{𝑁,𝑁SC} = {16, 1}.With the increasing of𝑁, it will take fewer
iterations to meet the stop criterion.When𝑁SC = 1, it always
costs more iterations to meet the stop criterion. Hence, it is
favorable to allocatemore antennas at SCs in viewof spending
fewer times of iterations.

In summary, the above simulations show that the care-
fully chosen {𝑁,𝑁SC} is acquired to maximize the energy
efficiency of such two-tierHetNet.When {𝑁,𝑁SC} is carefully
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Figure 8: The number of iterations of the proposed algorithm with
different numbers of𝑁 and𝑁SC.

chosen, the average energy consumption of the proposed
pilot reuse scheme is larger than that of the full CSI scenario,
and the gap between them is about 0.3 dB. Over a tolerable
range of the QoS outage probability, the power consumption
of our scheme will stay nearly static. Specifically, when 𝑁

and 𝑁SC are sufficient large or 𝛾
𝑘
is not too large, the

proposed algorithm consumes less power than the perfect
CSI scenario. Hence, the pilot reuse scheme and its associated
beamforming algorithm are quite suitable formassiveMIMO
systems.

5. Conclusion

In this paper, we focus on a kind of two-tier networks,
where massive MIMO is deployed in combination with
small cell networks. However, it is not permissible to assign
orthogonal pilot sequences for all the supported users due
to the large number. We propose a pilot reuse scheme based
on the unique architecture of this networks and find that a
special kind of mixed CSI is yielded when using our pilot
reuse scheme. Since mixed CSI may cause QoS outage the
UEs, we formulate the downlink beamforming problem as
a chance constraint programming. Then we decompose the
original problem into simpler subproblems and provide an
algorithm to combine these subproblems and solve them
iteratively in a distributed fashion. The numerical results
show that the average energy consumption of the proposed
pilot reuse scheme and its associated beamforming algorithm
is close to that of the perfect CSI scenario and the energy
consumption is nearly static over a wide range of the QoS
outage probabilities. The QoS requirements and QoS outage
probability are also strictly controlled in our algorithm.
Our scheme will not only greatly compress the number of
pilot sequences, but also owns a high performance with low
complexity, which is especially suitable for massive MIMO
systems and will be crucially useful to put such multitier
massive MIMO systems into practice.

Appendix

The power of the interference received by the 𝑘th SUE can be
written as follows:

𝐼
𝑘
= h
0,𝑘
(∑

𝑖∈M

W
0,𝑖
) h𝐻
0,𝑘
, ∀𝑘 ∈ S, (A.1)

whereW
0,𝑖
= w
0,𝑖
w𝐻
0,𝑖
.

Since all the transmit antennas of MBS are considered to
be center collected, h

0,𝑘
can be rewritten as

h
0,𝑘

= √𝑑
0,𝑘
z
0,𝑘
, (A.2)

where z
0,𝑘

∈ C𝑁BS×1 and the entries of z
0,𝑘

are the small scale
fading factors of the 𝑘th user with i.i.d. ∼ CN(0, 1) variables.
Then 𝐼

𝑘
can be reformulated as follows:

𝐼
𝑘
= 𝑑
0,𝑘

× z
0,𝑘
(∑

𝑖∈M

W
0,𝑖
) z𝐻
0,𝑘
, ∀𝑘 ∈ S. (A.3)

Now we focus on a problem of calculating the CDF of
an Hermitian quadratic form (𝑌 = z

0,𝑘
(∑
𝑖∈M W

0,𝑖
)z𝐻
0,𝑘
) in a

Gaussian random vector z
0,𝑘
. For a Gaussian random vector

z
0,𝑘

∼ CN(0, 1), the CDF of 𝑌 = z
0,𝑘
Az𝐻
0,𝑘

for some given A
is given by [34]

𝐹
𝑌 (𝜏) = Pr {z

0,𝑘
Az𝐻
0,𝑘

⩽ 𝜏}

=
1

2𝜋
∫

∞

−∞

𝑒
𝜏(𝛽+𝑗𝜔)

𝛽 + 𝑗𝜔

1

det (I + (𝛽 + 𝑗𝜔)A)
𝑑𝜔

(A.4)

for some 𝛽 > 0 such that I + 𝛽A is positive definite. Here,
A = ∑

𝑖∈M W
0,𝑖
. SinceW

𝑖
, ∀𝑖 ∈ M, are positive semidefinite,

A will also be positive semidefinite and the rank of A will be
no larger than 𝑚 = |M|, where |M| means the cardinality
of the set M. It means that the matrix A has at most 𝑚
positive eigenvalues and the others are 0. In most cases
of communication systems, the rank of A is 𝑚 and the 𝑚
eigenvalues will be different with each other (as for the case
where there exist the same eigenvalues, readers can refer to
the procedure detailed in [34] and see the references therein).

Then, we the CDF of 𝑌 can be reformulated as

𝐹
𝑌 (𝜏) =

1

2𝜋
∫

∞

−∞

𝑒
𝜏(𝛽+𝑗𝜔)

𝛽 + 𝑗𝜔

𝑚

∏

𝑖=1

1

1 + 𝜆
𝑖
(𝛽 + 𝑗𝜔)

𝑑𝜔, (A.5)

where 𝜆
𝑖
, 𝑖 = 1, . . . , 𝑚, are the nonzero eigenvalues of A in

descending order.
By rewriting (A.5) as follows:

𝑒
𝜏(𝛽+𝑗𝜔)

𝛽 + 𝑗𝜔

𝑚

∏

𝑖=1

1

1 + 𝜆
𝑖
(𝛽 + 𝑗𝜔)

= 𝑒
𝜏(𝛽+𝑗𝜔)

(
1

𝛽 + 𝑗𝜔
+

𝑚

∑

𝑖=1

𝛼
𝑖

1 + 𝜆
𝑖
(𝛽 + 𝑗𝜔)

) ,

(A.6)



10 International Journal of Antennas and Propagation

where 𝛼
𝑖
= −𝜆
𝑚

𝑖
/∏
𝑙 ̸=𝑖
(𝜆
𝑖
− 𝜆
𝑙
), and using the property that

1

2𝜋
∫

∞

−∞

𝑒
𝑗𝜔𝜏

𝑎 + 𝑗𝜔
𝑑𝜔 = 𝑒

−𝑎𝜏
, ∀𝑎 > 0, (A.7)

we can express (A.5) as

𝐹
𝑌
(𝑦) = 1 −

𝑚

∑

1

𝜆
𝑚−1

𝑖

∏
𝑙 ̸=𝑖
(𝜆
𝑖
− 𝜆
𝑙
)
𝑒
−𝑦/𝜆𝑖 . (A.8)

Hence, the power of the interference received by the 𝑘th
SUE can be rewritten as

𝐼
𝑘
= 𝑑
0,𝑘
𝐹
−1

𝑌
(1 − 𝛿

𝑘
) , (A.9)

where 𝐹−1
𝑌
(⋅) stand for the inverse function of (A.8).
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