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FITTING POPULATION DYNAMIC MODELS TO TIME-SERIES DATA 
BY GRADIENT MATCHING 
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Abstract. We describe and test a method for fitting noisy differential equation models 
to a time series of population counts, motivated by stage-structured models of insect and 
zooplankton populations. We consider semimechanistic models, in which the model struc- 
ture is derived from knowledge of the life cycle, but the rate equations are estimated 
nonparametrically from the time-series data. The method involves smoothing the population 
time series x(t) in order to estimate the gradient dx/dt, and then fitting rate equations using 
penalized regression splines. Computer-intensive methods are used to estimate and remove 
the biases that result from the data being discrete time samples with sampling errors from 
a continuous time process. Semimechanistic modeling makes it possible to test assumptions 
about the mechanisms behind population fluctuations without the results being confounded 
by possibly arbitrary choices of parametric forms for process-rate equations. To illustrate 
this application, we analyze time-series data on laboratory populations of blowflies Lucilia 
cuprina and Lucilia sericata. The models assume that the populations are limited by com- 
petition among adults affecting their current birth and death rates. The results correspond 
to the actual experimental conditions. For L. cuprina (where the model's structure is ap- 
propriate) a good fit can be obtained, while for L. sericata (where the model is inappropriate), 
the fitted model does not reproduce some major features of the observed cycles. A docu- 
mented set of R functions for all steps in the model-fitting process is provided as a sup- 
plement to this article. 

Key words: blowflies; gradient matching; Lucilia cuprina; Lucilia sericata; modelfitting; partially 
specified models; population dynamics; semimechanistic models; semiparametric models; stage struc- 
tured models. 

INTRODUCTION 

Quantitative dynamic modeling of population dy- 
namics is an important adjunct to experimental study 
of the mechanisms underlying population fluctuations. 
Manipulative experiments are invaluable for identify- 
ing the processes operating in a population that may 
be responsible for observed patterns of population fluc- 
tuations. However, it has only rarely been possible to 
test experimentally the various hypotheses about which 
particular process is, for example, the underlying cause 
of a population cycle (Hudson et al. 1998 and Korpi- 
maki and Norrdahl 1998 are two recent exceptions), 
and such experiments always involve considerable ef- 
fort. Quantitative dynamic modeling thus can make an 
important contribution by helping to determining 
which processes (under which conditions) are capable 
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of producing population fluctuations that are consistent 
with the data. Constructing alternative models, and 
comparing the ability of each to account for the ob- 
served fluctuations, can be a powerful tool for iden- 
tifying likely causal mechanisms, which can then be 
the focus of empirical tests (e.g., Hilborn and Mangel 
1997, Kendall et al. 1999, Turchin and Ellner 2000a, 
b). 

Empirically derived mechanistic models also play an 
important role in applied ecology, including the man- 
agement of fisheries, forests, and other natural resourc- 
es. In community ecology, fitting multispecies dynamic 
models to data on community dynamics can be an ef- 
fective way of estimating the strengths of within- and 
between-species interactions (Pfister 1995, Laska and 
Wooton 1998, Ives et al. 1999). The alternative models 
that would be compared in this case correspond to dif- 
ferent assumptions about which interspecific interac- 
tion coefficients are small enough to be ignored. 

Before alternative hypotheses can be tested in this 
way, each hypothesis has to be translated into a model. 
A rate equation is written for each process affecting 
the variables of interest, and these are combined into 
a state variable model such as a system of differential 
or difference equations (e.g., Haefn6r 1996, Hastings 
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1997, Gurney and Nisbet 1998). Rate equations are 
almost always built up from simple (and conventional) 
parametric functional forms. Familiar functional forms 
include 

1) the Holling type-II equation for a saturating func- 
tional response, F = Axl(B + x), where F = feeding 
rate, x = prey abundance, and A and B are positive 
parameters; 

2) the Nicholson-Bailey parasitism rate equation, 1 
- e-aP, where P = number of parasitoids and a is a 
positive parameter; and 

3) the bilinear interaction terms in many micropar- 
asite host-pathogen models (infection rate = PSI, 
where S = number of susceptible hosts, I = number 
of infective hosts, and 13 is a positive parameter) and 
in Lotka-Volterra competition and predation models. 

Many of these conventional equations were initially 
derived from mechanistic assumptions, but in appli- 
cations those assumptions are rarely verified empiri- 
cally. A particular functional form is often used be- 
cause it appears to fit the data at hand or data on a 
similar system, or because it was used in a previous 
model, without testing whether another form would fit 
better, or whether the data are sufficient for selecting 
reliably between competing functional forms. 

Relying on conventional functional forms is appro- 
priate for strategic models, whose purpose is to capture 
the main qualitative features of a system and increase 
our conceptual understanding of how the system may 
be operating. But when models are compared with data 
in order to evaluate competing hypotheses about causal 
processes, the choice of functional forms for each pro- 
cess-rate equation is an undesirable confounding factor. 
Model 1 may fit better than Model 2 because Model 1 
makes the right mechanistic assumptions and Model 2 
doesn't. But it is also possible that Model 2 simply 
suffers from a poor choice of functional form for a 
process rate that is not a part of Model 1 (type-Il instead 
of type-III functional response, etc.). Seemingly in- 
nocuous choices between alternative functional forms 
can have drastic effects on model predictions (Wood 
and Thomas 1999). Similarly, an estimated interaction 
coefficient may not reflect the actual strength of an 
interspecific interaction, if the corresponding rate equa- 
tion is not a good description of the interaction over 
the range of densities encountered. 

Our emphasis in this paper is therefore on fitting 
dynamic models in which some or all of the rate equa- 
tions are estimated nonparametrically. This means that 
parametric functional forms are replaced by a flexible 
family of possible functions, such as a spline, neural 
network, or local regression. Models of this type have 
been called semimechanistic (Ellner et al. 1998, Smith 
et al. 2000), semiparametric (Wood 1999), and partially 
specified (Wood 2001). 

If the model is deterministic, nonparametric rate 
equations can be fitted by trajectory matching; Wood 
(1999, 2001) describes a very general method using 

spline rate equations. In trajectory matching, differ- 
ences between model output and the data are assumed 
to be entirely due to measurement errors in the data. 
Model parameters are chosen to minimize a weighted 
mean-square difference between model output and the 
data. However, if the population dynamics are noisy 
(i.e., perturbed by unpredictable exogenous factors), 
different methods may be required (though not always: 
see Discussion). 

The method presented here is suitable for noisy pop- 
ulation dynamics, under two conditions. The first is 
that all state variables of the model are measured or 
estimated. The second is that measurements are taken 
frequently and accurately enough that good estimates 
of the instantaneous rate of change (the gradient) can 
be obtained for each state variable. Under these con- 
ditions, estimating a rate equation 

dxildt = Fi(x1, x2, -, x,,) 

becomes a problem in nonparametric regression, with 
(usually inexact) observations of both the independent 
and dependent variables. The fitting method is then 
efficient enough to allow resampling-based inference 
methods such as bootstrapping, and simulation-based 
methods for estimating and reducing the bias due to 
random sampling errors. Other fitting methods can be 
used on noisy dynamics if these two conditions are not 
satisfied, but they are computationally demanding and 
currently can only be used to estimate a small number 
of parameters (see Discussion). 

The paper is organized as follows. In Methods: 
Single-species model and fitting procedures, we de- 
scribe the fitting method in the context of a stage- 
structured population model, and in Results: Simu- 
lated data, we study the method's accuracy using 
simulated data. In the case studies below (Results: 
Nicholson's blowflies, Lucilia cuprina, and Results: 
Lucilia sericata control populations), we apply our 
procedure to data from two experiments on the dy- 
namics of laboratory populations of blowflies, Lu- 
cilia cuprina (Nicholson 1957) and Lucilia sericata 
(Smith et al. 2000). In order to mimic a typical ap- 
plication to field data, we use only the time series of 
adult counts from these experiments. Finally, we 
draw conclusions and discuss how our method relates 
to other methods for fitting population dynamic mod- 
els to time series data. A set of R (Ihaka and Gen- 
tlemen 1996) functions for all steps in the model- 
fitting process, with documentation and examples, is 
provided as a Supplement. 

METHODS: SINGLE-SPECIES MODEL AND 

FITTING PROCEDURES 

For specificity and looking ahead to our case studies, 
we present the method in the context of a simple stage 
structured population model: 

dxldt = B(x(t - T)) - D(x(t)). (1) 
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Here x(t) typically represents the number of reproduc- 
tively mature adults, D(x[t]) is adult mortality, and 
B(x(t - T)) is recruitment into the adult class at age T 

of individuals born T time units previously. Models of 
this type have been developed for a variety of animal 
species with discrete life stages, including insects and 
zooplankton, with success at capturing both qualitative 
and quantitative aspects of the population dynamics 
(e.g., Gurney et al. 1980, McCauley et al. 1996). Mod- 
els such as Eq. 1 are also coming into use for applied 
purposes such as biological control (Murdoch 1994, 
Murdoch and Briggs 1996, Briggs et al. 1999), so pro- 
cedures for fitting this type of model may have some 
practical value. In Eq. 1, there is a strict separation in 
time between density effects on births (time-lagged) 
and deaths (instantaneous), which makes it possible to 
estimate B and D separately. Without a time separation, 
e.g., if dxldt = B(x(t)) - D(x(t)), it would only be 
possible to estimate the net effect B - D. 

Our goal is to estimate the rate functions B and D, 
and possibly the delay time T, from a time series of 
observations {x(ti), i = 1, 2,, n}. Even laboratory 
populations are not perfectly deterministic in their dy- 
namics, so we need to consider stochastic models for 
which Eq. 1 represents the "average dynamics" in the 
sense that 

E[dxldt] = B(x(t- T)) - D(x(t)). (2) 

One such model would be a differential equation with 
multiplicative variability in vital rates due to fluctua- 
tions in environmental conditions 

dxldt = p(t)B(x(t- T)) - q(t)D(x(t)). (3) 

In Eq. 3, 9(t) and +(t) represent random variation in 
vital rates due to environmental variables that are 
assumed to change smoothly over time, but with a 
random component to their pattern of change. For 
example, they could represent the net effects of am- 
bient temperature, soil moisture, etc., on birth and 
death rates. For consistency with Eq. 2, 9(t) and +(t) 
are standardized to E[k(t)] = E[t (t)] = 1, and for 
the statistical analysis we assume that 9(t) and +(t) 
are stationary (i.e., that they do not have any trends 
over the period of data collection). Eq. 3 can then 
be interpreted as a nonautonomous differential equa- 
tion (conditional on the values of 9(t) and +i(t)), 
whose solutions will satisfy Eq. 2; note that this is 
not true of "stochastic differential equations" in the 
classical sense (e.g., Oksendal 1998), which have 
nondifferentiable solution paths because their ran- 
dom term is a white-noise process. 

As discussed in Introduction, we are interested in 
nonparametric estimates of B and D. The methods pre- 
sented here are conceptually similar to those in Ellner 
et al. (1997). However, those methods were statistically 
inefficient and relied on ad hoc visual criteria for se- 
lecting the complexity of the fitted rate equations. The 
methods here are more efficient, exploit statistical the- 

ory for objectively selecting the complexity of a non- 
parametric model, and produce simpler models (many 
fewer degrees of freedom) for the same data sets with- 
out any loss of accuracy. In outline, the proposed meth- 
od runs as follows: 

1) Fit a smooth curve to the data x(ti) by local poly- 
nomial regression, which gives estimated values of the 
gradient dx(ti)ld(t). 

2) Fit Eq. 2 with B and D estimated by penalized 
regression splines, with automatic selection of model 
complexity. 

3) In both fitting steps, simulation-based methods 
are used to estimate and correct for biases that result 
from the data being discrete-time samples with mea- 
surement errors. 

For simplicity we assume that the value of the time 
delay, T, is known. In the case studies here on insect 
populations, T corresponds to the egg-to-adult devel- 
opment time, which can be estimated with a small-scale 
experiment. If T is not known, the fitting process can 
be repeated for a set of v values covering the plausible 
range, and a best-fitting value of T can be selected by 
the criterion used to select model complexity. Our ap- 
proach can also be used if a time delay is absent, but 
the birth and death rates cannot be separated. For ex- 
ample, if dNldt = N(b(N) - d(N)) with b(N) = bo - 
bN and d(N) = do, the gradient is (bo - do)N - b N2 
so bo - do can be estimated but not bo or do. 

We now describe the fitting procedures in more de- 
tail, followed by a simulation study to assess the ac- 
curacy of the estimates. 

Estimating the gradient 

The first step is smoothing the data to obtain an 
estimate of the gradient dxldt(ti). We used local poly- 
nomial regression (Fan and Gijbels 1996), for two rea- 
sons: (1) estimates of dxldt at sufficiently distant times 
are independent because they are derived from disjoint 
sets of data, which is useful for fitting the model and 
selecting model complexity (see the Appendix) and (2) 
the fitted curve automatically yields a gradient esti- 
mate. 

In local polynomial regression with data {x(ti), i = 

1, 2,.-, n}, the value of the fitted curve at any time t 
is obtained by fitting a low-order polynomial by 
weighted least-squares regression of x on t, with 
weights wi(t) that are large for ti near t and small for 
ti far from t. The linear term in the fitted polynomial 
is then the gradient estimate at time t. Large-sample 
properties favor polynomials of even order for esti- 
mating derivatives (Fan and Gijbels 1996). We used 
fourth-order polynomials, which outperformed qua- 
dratics in simulation tests because they gave better ap- 
proximations to the asymmetries between increase and 
decrease phases at peaks and troughs. 

The weights are defined as follows: 

wi(t) = K(ti - tl/h) (4) 



August 2002 FITTING MODELS BY GRADIENT MATCHING 2259 

where K(d) is some function (called the kernel) that 
falls off with increasing distance d. We used the Gauss- 
ian kernel K(d) = e-d2; to accelerate computation we 
set K(d) = 0 for d > 5, which has no effect on nu- 
merical results. When the bandwidth h is very large, 
the weights are nearly constant (wi(t) - K(O) for all i,t) 
so the fitted curve is almost identical to a least-squares 
polynomial regression of x on t. As h decreases the 
regression becomes genuinely local (distant times are 
ignored because the weights are small), and the fitted 
curve comes closer to interpolating the data. 

As we discuss in the Appendix, for our purposes a 
very small value of h is best, generally one to two times 
the sampling interval, in order to minimize bias in the 
gradient estimates. Even with h small, there is some 
bias towards zero at the extremes (very high gradients 
are underestimated, and vice versa). However, it is pos- 
sible to estimate this bias and correct for it (see the 
Appendix). The bias corrections are fairly small (at 
most 20% on the simulated and real data series con- 
sidered here, and typically smaller), but they do pro- 
duce a noticeable improvement in the results reported 
below on simulated data. 

To test this gradient-estimation method, we gener- 
ated simulated data for which the exact gradient values 
are known and can be compared to estimates recovered 
from the population time series. The simulation model 
had birth rate B(x) = 1 Oxe x50, mortality rate D(x) = 

0.3x, and maturation time T = 18. The death rate was 
deterministic (f-- 1), but there was environmental sto- 
chasticity in the birth rate, with 9(t) being Gaussian 
distributed with mean = 1, standard deviation = 0.1, 
and autocorrelation = 0.75 at lag t = 1. The simulation 
model was actually more realistic than the fitted model 
in Eq. 2. Eq. 2 omits demographic stochasticity and 
treats population size as a continuous variable. The 
simulation model had discrete individuals, and incor- 
porated demographic stochasticity by using a finite 
time step dt = 0.1 and setting the number of births in 
each time interval as a Poisson random variable with 
mean equal to the expected number of births 

number of births in 

(t,t + dt) - Poisson (p(t)B(x(t))dt). (5) 

This mismatch between the (discrete) simulated data 
and the (continuous) fitted model was deliberate. A 
continuous-state model is always an approximation to 
the discrete population changes resulting from indi- 
vidual births and deaths, so our fitting method needs 
to be robust against the unavoidable discrepancy be- 
tween a continuous-state model and discrete population 
counts. Although mean population size is high in both 
models, the troughs drop to roughly 20 and 40 adults, 
respectively, which are more extreme than the data we 
will be analyzing. Thus, these models provide a legit- 
imate test of our method in the presence of demograph- 
ic stochasticity. 

In the absence of measurement errors (Fig. la), the 
fitted smooth curve is nearly an interpolation of the 
data. There is close correspondence between the esti- 
mated and true gradient values, with the estimates ac- 
counting for -96% of the variance in the true gradient 
values, varying slightly from one run of the model to 
another ("true" gradient values being the actual finite 
rate of change, [x(t + 0.1) - x(t - 0.1)]/0.2, computed 
from the simulation output). In the presence of sam- 
pling errors (derived from a Poisson random sampling 
model depending on a capture probability p, see the 
Appendix) the gradient estimates are slightly less ac- 
curate, accounting for -86% of the variance in the true 
values. The scatter plots also indicate that there is no 
systematic tendency to over- or underestimate the gra- 
dient, except very slightly at the extremes. The coef- 
ficient of variation (cv) for sampling errors in the Pois- 
son sampling model is proportional to 1/(square root 
of population size); very similar results obtain for sim- 
ulated sampling errors with constant cv, up to about 
cv = 0.2. 

The simulated time series in Fig. 1 is finely sampled, 
having -40 data points per cycle. Many real data sets 
are sparser; for example the Nicholson (1957) data an- 
alyzed in the next section has -20 points per cycle. 
Sampling the simulated time series every second day 
(instead of daily) hardly decreases the overall accuracy 
of gradient estimation: about 78% of the variance in 
true gradient values is explained by the estimate, in the 
presence of sampling errors. Eventually, however, too 
much detail is lost by sparser subsampling, and with 
samples taken every 6 d (7 points per cycle) the esti- 
mates account for <50% of the variance. 

Estimating the rate equations 

Once values of the gradient Zi = dxldt(ti) have been 
estimated, the problem of fitting the model in Eq. 2 is 
reduced to fitting the nonparametric additive model: 

Z, = B(X,) - D(Y,) + si 

& = x(ti - T) Yi = x(ti). (6) 

A variety of nonparametric model families could be 
used to estimate B and D. We used cubic penalized- 
regression splines (Eilers and Marx 1996, Ruppert and 
Carroll 1997, 2000), because of their computational 
advantages. The model has the form of linear regression 
onto a set of nonlinear basis functions (see the Ap- 
pendix). As a result, many useful constraints on the 
fitted functions can be imposed as linear constraints on 
the parameters, and the constrained model can still be 
fitted quickly using quadratic programming (as ex- 
plained by Wood 1997 for a different family of splines, 
and in the Appendix). Both of those features are es- 
sential here. Quick fitting made it possible to hone and 
validate our methods (including the computationally 
intensive bias-reduction procedure described at the end 
of this section) by testing them on a large number of 
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FIG. 1. Typical results from the gradient estimation step. (a) A time series generated by the model described in Eq. 3 
with demographic and environmental stochasticity, and the smooth curve fitted to the data by local polynomial regression 
with bandwidth h = 1 d. The time series consisted of 250 daily counts of the number of adults x(t), without any measurement 
error, for Eq. 3 with B(x) = I1Oxe '5, D(x) = O.3x, x = 1, andT~ = 18, and environmental stochasticity given by Eq. 5. (b) 
The same population time series with sampling errors generated by the Poisson sampling model (see the Appendix) with 
capture probability p = 0.02. (c) Scatterplot of true vs. estimated gradient values for the time series in (a). (d) Scatter plot 
of true vs. estimated gradient values for the time series in (b). 

simulated data sets. Constraining B and D to be non- 
negative greatly improved the accuracy of the fits, be- 
cause otherwise the birth and death rates can become 
confounded; in the case studies described in Results: 
Nicholson's blowflies Lucilia cuprina and Results: Lu- 
cilia sericata control populations, the unconstrained es- 
timates had lower death rates and birth rates and the 
birth rate became negative at high densities. The ex- 
amples file in the software provided with this paper 
(see Supplement) includes a comparison of constrained 
and unconstrained fits to the Nicholson data. 

The complexity of the fitted B and D functions de- 
pends on a pair of smoothing parameters (ax, cay) (Rup- 
pert and Carroll 1997). As either of the ots approach 
infinity, the fitted function in that variable reduces to 
a cubic polynomial. As ax approaches zero, all available 
degrees of freedom are used without constraint, and 
the fitted curve becomes very wiggly. Following Rup- 
pert and Carroll (1997), we selected the values of the 
smoothing parameters by minimizing the GCV (gen- 
eralized cross validation) score for the fitted model 
(Wahba 1990). GCV is the nonparametric analog of 

adjusting a regression model's sum of squared errors 
to correct for the model's degrees of freedom. For 
splines and similar models this is done using the 
model's effective number of parameters (as defined by 
Wahba 1990). Minimizing GCV as a function of (xq 

cay) is an objective and automatic way to select model 
complexity that approximates optimization of the mod- 
el's ability to make predictions at (X, Y) values outside 
the data set used to fit the model (Wahba 1990). We 
used a modified GCV score, GCV2, in which the re- 
sidual sum of squares is slightly overcorrected for mod- 
el degrees of freedom. GCV2 creates a small bias to- 
wards simpler models but greatly reduces the chances 
of spuriously selecting an overly complex model 
(Nychka et al. 1992). 

Because the rate equations are estimated by regres- 
sion with adult density as the independent variable, 
sampling error in the population counts produces bias 
in the regression coefficients. For the model in Fig. 1, 
both the mean mortality rate and the peak birth rate 
are underestimated (Fig. 2a). The downward curvature 
in the fitted morality rate is also an artifact of mea- 
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surement-error bias, the corresponding distortion at low 
population density being ruled out by the lack of an 
intercept term. These biases can be greatly reduced 
(Fig. 2b) using the SIMEX procedure (Cook and Ste- 
fanski 1994, Carroll et al. 1995, Stefanski and Cook 
1995, 1999). SIMEX is a simulation-based method (de- 
scribed in the Appendix) in which the independent var- 
iables are made progressively less accurate by adding 
additional simulated measurement errors. The effect of 
the increased measurement error on parameter esti- 
mates is then extrapolated back to zero error. SIMEX 
reduces systematic errors but it does not have any effect 
on the variability of estimates. In other runs of the 
fitting process (e.g., different runs of the model with 
sampling error), the post-SIMEX estimated rate equa- 
tions are wrong in different ways, as illustrated in the 
following section. 

RESULTS 

Simulated data 

Fig. 3 summarizes a simulation study of the accuracy 
of our proposed methods, for two models having the 
form of Eq. 3. The first model was the same as that in 
Fig. 1, with linear death rate D, i.e., a constant per 
capita death rate. The second had a quadratic death rate 
D, the per capita death rate increasing linearly with 
population density (from 0.21 d-1 at zero adults, to 0.39 
d- I at 10 000 adults). The birthrate for the second model 
was B(x) = 12xe-xl?, and the maturation time delay 
was T = 25 d. Environmental and demographic sto- 
chasticity were incorporated as in Fig. 1 and the first 
model, so again we are deliberately fitting a continuous 
model to "data" with discrete individuals. The stan- 
dard deviation of the birthrate multiplier (p(t) was again 
0. 1, but the autocorrelation was increased so as to have 
autocorrelation 0.5 at a time lag of 5 d. This autocor- 
relation was motivated by interpreting (p as random 
variation in the "quality" of adults maturing on a given 
day, having effects lasting over the lifetime of those 
adults and their offspring. 

We generated long simulations of each model, and 
extracted from each 10 successive segments of 400 
daily values. Rate functions were estimated for data 
consisting of either the first 200 daily counts from each 
segment, or 200 every-other-day counts. The latter case 
is closer to the case studies reported below (Results: 
Nicholson's blowflies Lucilia Cuprina, Results: Lucilia 
Sericata control populations), both of which involve 
every-other-day counts and a similar mean cycle pe- 
riod. In both cases, we applied the Poisson sampling 
model (with capture probability p = 5%) to generate 
the time series of adult counts that were used to esti- 
mate the rate equation, and used SIMEX bias reduction 
with quadratic extrapolation (see the Appendix for de- 
tails). 

In general, the estimated rate functions (dashed lines 
in Fig. 3) recover the shape of the true functions. Some 

of the estimated birth rate functions exhibit spurious 
small wiggles, especially for the data sets of 200 daily 
counts (Fig. 3b, e). The series with alternate-day sam- 
pling cover twice as many complete cycles (roughly 
eight, vs. roughly four with daily sampling) and this 
additional information appears to outweigh the small 
loss in the accuracy of gradient estimates due to sparser 
sampling. There is also a small bias towards under- 
estimating the peak birth rate and the death rate (the 
mean per capita death rate, averaged over all estimates, 
is low by -10% for each model). These biases are 
probably due to the small remaining bias in the gradient 
estimates at the highest and lowest gradient values. 
Because the bias correction applied to gradient esti- 
mates is based on a curve that is smoother than the 
(unknown) true population trajectory, the bias correc- 
tion tends to be an undercorrection. 

Nicholson's blowflies Lucilia cuprina 

We analyzed the series labeled "I" in Nicholson 
(1957), which has been the target for several previous 
modeling efforts. This population was regulated by 
adult competition for food, which was observed to 
strongly limit fecundity. The single-species delay dif- 
ferential equation model in Eq. 1 therefore corresponds 
to the correct regulating mechanism, using a simplified 
description in which the egg-production rate reacts in- 
stantaneously to the current level of crowding. The full 
series consists of 350 adult counts taken every -other 
day. Owing to the change in dynamics observed in the 
course of the experiment (Stokes et al. 1988), we used 
only the first 180 data points (Fig. 4a). The period of 
the cycles is roughly 38 d, giving -19 data points per 
cycle. 

The gradient was estimated using bandwidth h = 2, 
and the rate functions fitted by penalized regression 
splines as described in Methods. We used a time delay 
of v = 14 d based on Gurney's (1980) estimate that 
the value of v for this experiment was in the interval 
v = 14.8 ? 0.4 d. Changing v to 12 d or 16 d had only 
minor effects on the fitted rate functions, and essen- 
tially no effect on the dynamics of the fitted model. It 
is possible to use delays other than multiples of the 
sampling interval by interpolating the time series (Ell- 
ner et al. 1997), but in this case the insensitivity to the 
precise value of v argues for simply rounding 14.8 d 
to 14 d. 

The fitted birth and death rate functions are plotted 
as the solid lines in Fig. 4b. The resulting fit has a per- 
capita death rate that decreases with adult density. This 
form of density-dependent mortality suggests that (as 
in the simulation studies) the downward curvature may 
be due to measurement error bias. In order to apply 
SIMEX bias reduction, we need a model of the mea- 
surement error process. Nicholson described the data 
as "a careful day-to-day record of the numbers of in- 
dividuals" (Nicholson 1957:155), which suggests low- 
to-nonexistent sampling errors. However, even under 
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FIG. 2. An example of rate equation estimates from a time 
series generated by the model in Fig. 1. The data were 200 
daily adult counts with simulated Poisson sampling errors 
and capture probability p = 0.02. The birth and death rate 
functions were fitted as penalized cubic regression splines, 
constrained to be positive at a grid of values covering the 
range of the data. We used 20 evenly spaced knots covering 
the range of the data for both the birth rate function B and 
the death rate function D. The one-hump curve falling to zero 
at high population density is the total birth rate B(N), and 
the monotonically increasing curve is the total death rate 
D(N). The top panel (a) and bottom panel (b), respectively, 
show the fits before and after SIMEX bias reduction with 
quadratic extrapolation. Both rate functions are plotted in 
units of thousands of individuals per day. 

extreme assumptions about the sampling process, the 
curvature persists after SIMEX bias reduction. The 
dashed lines in Fig. 4b are the result of SIMEX bias 
reduction on the assumption that errors are due to sam- 
pling with capture probability p = 0.1; estimates as- 
suming p = 0.05 are nearly identical. Very similar fits 
were also obtained on the assumption of lognormal 
sampling errors, with coefficient of variation up to 
-15%. 

When the fitted model is simulated with noise, it 
generates dynamics very similar to those in the data. 
The simulation in Fig. 4c included both environmental 
and demographic stochasticity, as in Eq. 5. Without 
any noise, the model converges rapidly to a limit cycle 
at lower amplitude than the data, very close to the 
transition between single-peaked and double-peaked 
cycles (Fig. 4d). With increasing environmental noise 
(i.e., the variance of the birth rate multiplier ep(t); see 
Eq. 5), the cycle amplitude can be increased to match 
that observed in the data. A secondary effect of en- 
vironmental noise is to produce a mix of single-peak- 

ed and double-peaked cycles in model trajectories, 
such as are observed in the data. The period of the 
fitted model with noise is -5% longer than that of 
the data, producing on average -8.5 cycles in the time 
period over which the experimental population had 9 
cycles. We emphasize that the model-fitting criteria 
do not involve any attempt to impose a match between 
model trajectories and the data series, so the com- 
parison between Fig. 4a and 4c is a demanding test 
of the fitted model. 

It is also reassuring that the estimated rates are sim- 
ilar to those derived in independent analyses. Based 
on Nicholson's data, Kendall et al. (1999) estimated 
the adult mortality rate to lie between 0.08 d-l and 
0.14 d-'; the estimated per capita mortality rate in this 
paper's model, averaged over the experimental time 
series, is 0.13 d-l. Fecundity was estimated by Read- 
shaw and Cuff (1980), using experimental data col- 
lected by Nicholson, to fall to 0 at 0.14 g-adult-'-d-1 
of protein food. For the experiment analyzed here, 
that rate of per-capita food supply occurs at a density 
of -2850 adults, which is roughly where the estimated 
fecundity rate B drops to 0. The density at which the 
total egg-laying rate is maximized is less certain, with 
estimates (all based on Nicholson's data) ranging from 
171 (Readshaw and Cuff 1980) to 600 (Gurney at al. 
1980). The estimated birth rate function in Fig. 4 is 
maximized at an adult density of -750. 

The nonparametric rate functions are not quanti- 
tatively very different from the parametric forms used 
by Gurney et al. (1980), when fitted to the same data 
(Fig. 4b, dot-dash curves). However, the nonpara- 
metric birth rate function has a more precipitous de- 
crease in egg production as density increases, which 
is more in line with Readshaw and Cuff's estimate of 
the minimum food density for egg production. The 
curvature in the nonparametric death rate function 
may be a result of systematic variation in the age 
structure of the adult population. Fecundity and mor- 
tality in L. cuprina were both found to be age-depen- 
dent in subsequent experiments (Readshaw and van 
Gerwen 1983). The estimated rate functions therefore 
could be affected by a systematic relationship between 
the density and age structure of the adult class, and 
such a relationship is likely. Nicholson (1954:21, leg- 
end to Fig. 3) observed that "adults are mostly senile 
as the adult minima are approached." More generally, 
suppose (for the sake of calculation) that the adult 
mortality rate is constant at some value [L. Then it can 
be derived (by the methods in Gurney and Nisbet 
1985) that the mean age of living adults (time since 
the end of the pupal stage) is 

rt 
a(t) = f eels N(t - s) dslN(t) (7) 

where N(t) is the adult population at time t. This 
formula applies for t large enough that no founding 
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FIG. 3. Simulation study of rate equation estimation for the model described in Eq. 1 with SIMEX bias reduction. The 
linear death rate model (left panels) is the model in Fig. 1. The quadratic death rate model has B(x) = 12xe-x"000, and per 
capita death rate D(x)lx increasing linearly from 0.21 d-' at zero adults to 0.39 d-' at 10000 adults. Both models were 
simulated with demographic and environmental stochasticity, as described in the legend of Fig. 1. Top panels (a, d) show 
a typical time series, consisting of 200 daily counts of adult density, from each of the models. The middle panels (b, e) 
show the estimated rate equations from 10 replicate stretches of 200 daily counts (i.e., sampling time T= 1 d). The 
bottom panels (c, f ) show the estimated rate equations from 10 replicate stretches of 200 every-other-day counts (sampling 
time T, = 2 d). 

adults are still alive. In the present case, this yields 
a close inverse relationship between population den- 
sity and mean age of adults: the adult population is 
young at peaks, and old at troughs. For example, 
computing Eq. 7 with p. = 0.10 at all sampling times 
t > 40 d after the start of Nicholson's experiment, 
we obtain ln(a) = 8.4 - 0.781n(N) (r2 = 0.85, P < 

0.001). Thus the downward curvature in the esti- 

mated mortality rate may be an accurate reflection 
of the fact that adults at low density are mostly older 
flies whose mortality rate is higher (Readshaw and 
van Gerwen 1983). 

Lucilia sericata control populations 

These experiments, described by Smith et al. (2000), 
involved a different blowfly species and a different 
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FIG. 4. Model described in Eq. 1 fitted to alternate-day L. cuprina adult population counts from Nicholson (1957), series 
"I": (a) the time series analyzed, consisting of the first 180 adult counts (360 d); (b) the estimated rate equations. The solid 
and dashed curves are, respectively, the nonparametric regression spline estimates before and after SIMEX bias reduction 
assuming the Poisson sampling model with p = 0.1. The dot-dash curves are the parametric model of Gurney et al. (1980) 
B(x) = Rxe-A, D(x) = dx, fitted by least squares to the same estimated gradients as the regression splines. (c) Simulation 
of the fitted regression spline model with demographic and environmental stochasticity. The environmental stochasticity was 
a random birthrate multiplier as in Eq. 3, lognormally distributed with u = 0.35. The level of environmental stochasticity 
was chosen to match roughly the amplitude of cycles seen in the data. Because of the large population sizes, demographic 
stochasticity alone has very little effect on the dynamics. (d) Simulation of the fitted regression spline model with demographic 
stochasticity removed, and no environmental stochasticity. 

mechanism of population regulation: limited food sup- 
ply for larvae. The data are alternate-day counts of 
larvae, pupae, and adults. The adult population was 
tracked by adding up the number of empty pupal cases 
and subtracting the number of dead or escaped flies. 
However, complete counts taken approximately every 
3 mo when flies were transferred to clean cages showed 
that these indirect adult population counts were off by 
at most 5% (Smith et al. 2000). The data were therefore 
analyzed on the assumption that population counts are 
exact. 

With larval competition as the regulating mecha- 
nism, Eq. 1 can only be justified mechanistically if 
larval competition is "within cohort," meaning that 
the egg-to-adult survival of an egg laid at time t is 
affected only by the density of eggs laid in a narrow 
time window (t - A, t + e), where e is "small." The 
meaning of "small" here is that larval density must 
remain effectively constant over the time period when 
a given larva is affected by larval density. In L. sericata 
the -2-d duration of larval feeding implies e = 2 d, 
the time between successive counts. In these experi- 
ments larval density often changed markedly between 

successive counts: the ratio between the larger and 
smaller of successive larval counts (when both were 
nonzero) was 1.5 or higher 51% of the time, and 2.0 
or higher 29% of the time. An assumption of within- 
cohort larval competition would be "close but not 
quite," so our expectation is that an attempt to fit the 
model described in Eq. 1 to these experiments should 
not be totally successful. 

For all analyses, we pooled the data from six control 
cages that differed only in initial densities (six other 
cages, not analyzed here, had a mildly toxic diet). All 
six populations settled into a similar pattern of fluc- 
tuations (see Fig. 5a), with apparent cycles of period 
-70 d (Smith et al. 2000). As in Nicholson's popula- 
tions, there may have been some life history evolution 
during the experiments (Lingjarde et al. 2001), with 
some replicates appearing to change . dynamics at 
roughly 400 d (Smith et al. 2000). We therefore used 
only the first 200 samples from each cage, and we again 
only used the adult counts to mimic the typical situation 
with field data where only one life stage is counted. 
Because the populations were established from a small 
number of pupae and adults, the first 20 samples (40 
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d) were discarded as possibly representing an initial 
transient. 

The rate equations obtained from fitting the model 
described in Eq. 1 to the L. sericata data are shown in 
Fig. 5b. In simulating the model (Fig. 5c), we incor- 
porated Forrest's (1996) observation that on 55% of 
days there was no egg laying whatsoever. Following 
Forrest (1996), we therefore modeled recruitment as 
randomly being "on" or "off" each day. On days oc- 
cur with probability 0.45, and the birthrate for those 
days was set at (1/0.45) times the fitted birth rate func- 
tion; on off days the birth rate was set to 0. This high 
level of demographic stochasticity caused the fitted 
model to exhibit periods of oscillatory dynamics (Fig. 
Sc), whereas in the absence of any demographic or 
environmental stochasticity it converges rapidly to a 
stable equilibrium density (Fig. 5d). The dynamics with 
demographic stochasticity (Fig. Sc) bear some resem- 
blance to the data, but the model is less prone to exhibit 
oscillations with amplitude comparable to those in the 
data. When larger amplitude cycles occur (e.g., the sol- 
id curve in Fig. Sc), their shape is visibly different 
from the data and their duration is too long. Larger 

amplitude oscillations can be made more prevalent by 
adding some environmental stochasticity as in Eq. 3, 
but even then the period of oscillations remains too 
long by -20%. 

Another sign of trouble is the estimated mortality 
rate function. The adult longevity of 67 flies sampled 
between days 244 and 316 of the time series averaged 
18.2 d (Daniels 1994), corresponding to a death rate 
of 0.055 d-l, whereas the mean adult death rate in the 
fitted model is lower by -20% (0.044 d-l). In addition, 
an analysis of the full data set (including all life stages 
and age structure within stages) concluded that adult 
survival was density independent (Lingjaxrde et al. 
2001), whereas the estimate here has mortality rate 
decreasing with density. 

DISCUSSION 

The option of fitting rate equations nonparametri- 
cally allows a modeler to incorporate reliably known 
aspects of the system (including parametric rate equa- 
tions when these are justified), but to let the data "speak 
for themselves" about aspects that are less well known. 
These models have been called "semimechanistic" 
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(Ellner et al. 1998, Kendall et al. 1999, Smith et al. 
2000) because they are intermediate between conven- 
tional mechanistic models with parametric rate equa- 
tions, and phenomenological statistical models. Wood 
(1999) calls these "partially specified" models, and 
from a statistical perspective they could be described 
as "semiparametric" models (Wood 1997). As Perry 
(2000) notes, the goal of modelers has always been to 
exploit all available information while making up as 
little as possible. The semimechanistic approach carries 
this philosophy one step further, by embedding modern 
statistical tools for nonparametric function estimation 
into state-variable models for ecological system dy- 
namics. This paper provides a method for fitting sem- 
imechanistic models to time-series data under certain 
assumptions, and has illustrated one important appli- 
cation: deciding whether a model structure is appro- 
priate for a given data set, rather than testing a partic- 
ular fully specified model. 

A number of recent case studies illustrate the poten- 
tial effectiveness of semimechanistic modeling. Wood 
(1994; see also Ohman and Wood 1996) used this ap- 
proach to obtain more reliable estimates of time-de- 
pendent recruitment and mortality rates in structured 
populations. Ellner et al. (1998) showed that a semi- 
mechanistic model for measles epidemics had better 
forecasting accuracy than either a fully specified epi- 
demic model or a phenomenological time-series model 
fitted to the same data, and produced a characterization 
of the dynamics as weakly stable but near the "edge 
of chaos." Smith et al. (2000) conducted a similar com- 
parison for laboratory populations of blowflies Lucilia 
sericata. The semimechanistic model was stage struc- 
tured, with the stages and their durations assumed a 
priori based on the known fly biology, but all density 
dependence was fitted nonparametrically. This model 
was far more accurate than phenomenological time- 
series models, which failed to replicate the observed 
population cycles. It also yielded the same qualitative 
conclusions about the dynamics as the mechanistic 
model, without the numerous additional experiments 
that had been necessary to derive rate equations for the 
mechanistic model. Lingjaxrde et al. (2001) extended 
the Smith et al. (2000) analyses to incorporate age 
structure within stages, using nonparametric general- 
ized additive models for the rate equations. Using this 
approach they were able to identify stage-specific de- 
mographic changes that occurred over the course of the 
experiments, and to pinpoint the specific demographic 
differences between the control populations and those 
fed a diet contaminated with cadmium. 

The main obstacle to semimechanistic modeling is 
a lack of accessible and general fitting methods. Fitting 
is straightforward only in the exceptional circumstance 
of data being available directly on each process (e.g., 
direct counts of births and deaths over time rather than 
of changes in total population size); each individual 
process-rate equation can then be estimated separately 

by nonparametric regression using commercial soft- 
ware. Otherwise, three other general approaches are 
currently available: gradient matching (described in 
this paper), trajectory matching, and moment matching 
(a method using the Kalman filter to approximate the 
likelihood has recently been proposed [de Valpine and 
Hastings 2002] but so far it has only been tested on 
simple one-parameter models). Trajectory matching 
(sometimes called total least squares, Ives et al. 1999) 
fits the model by minimizing a measure of total dif- 
ference (such as mean-square error) between the data 
and a deterministic simulation of the model (e.g., Wood 
1999, 2001). Moment matching refers to methods in 
which stochastic simulations of the model are com- 
pared with the data using either a set of "moments" 
(statistical measures such as the coefficients of a fitted 
autoregressive model) or a single summary measure 
such as a quasilikelihood (Gourieroux and Montfort 
1996). 

Gradient matching is the most direct method, but 
it requires data on all state variables for which a rate 
function is being estimated and the quality and fre- 
quency of the data must be adequate for estimating 
time derivatives. When these assumptions hold, gra- 
dient matching offers the advantages of computa- 
tional efficiency and relatively simple implementa- 
tion (as in the software provided in the Supplement 
for the methods in this paper). One never really has 
data on each and every relevant variable, but the ones 
in hand may nonetheless be sufficient to represent 
the main processes driving system dynamics. For ex- 
ample, pretending that a few key variables (or even 
one) can capture all variation between individuals 
often yields informative population dynamic models 
from limited data (Caswell 2000). Although it has 
been popular recently to use time-delay embeddings 
as a substitute for unobserved state variables, time- 
delay variables have no mechanistic interpretation, 
and increasing the dimension of the state space also 
increases the amount of data needed for model fitting 
and selection. Thus, if a gradient-matching approach 
based on a candidate set of state variables fails, it 
would be more productive to switch to a method that 
can cope with unobserved variables. 

Trajectory matching also offers computational effi- 
ciency, but under different assumptions. The key as- 
sumption for trajectory matching is that there are no 
important differences between deterministic and sto- 
chastic simulations of the model. In some cases this 
will be true, for example, if the deterministic dynamics 
are a limit cycle and random perturbations do not cause 
the cycles to drift in phase. The Nicholson experiment 
considered above appears to be one such case (Kendall 
et al. 1999, Wood 2001). In other cases there may be 
important differences, such as the L. sericata popula- 
tions considered here. The more successful models for 
these experiments (the stage-structured mechanistic 
and semimechanistic models in Smith et al. 2000) have 



August 2002 FITTING MODELS BY GRADIENT MATCHING 2267 

the property that deterministic simulations exhibit 
damped oscillations to a steady state, while stochastic 
simulations have persistent quasicycles with a well- 
defined dominant period. In order to fit those data with 
a deterministic model, parameter estimates would have 
to be distorted to make the deterministic model have 
limit cycles. Similarly, fits of deterministic epidemic 
models to measles data favor parameters in the chaotic 
regime (Olsen and Schaffer 1990, Tidd et al. 1993) 
because these allow the model to mimic the highly 
variable severity of disease outbreaks, but nonchaotic 
models incorporating exogenous random variability in 
birth rates fitted the data better and had better fore- 
casting accuracy (Ellner et al. 1998). Thus trajectory- 
matching methods should be used with caution when 
system dynamics are potentially affected by environ- 
mental stochasticity. However, when its assumptions 
are satisfied, trajectory matching is efficient enough 
that rate equations can be estimated nonparametrically 
even for complex models with unmeasured state var- 
iables (Wood 1997, 1999, 2001). 

Thus, both gradient matching and trajectory match- 
ing achieve computational efficiency at the price of 
substantive assumptions about the data and the system 
being modeled. Moment-matching approaches offer 
statistically sound procedures for estimating parame- 
ters of any model, deterministic or stochastic, that can 
be simulated on the computer. Observations can be 
widely separated in time and subject to measurement 
errors, and it is not necessary for all state variables to 
be observed. However, statistically efficient moment- 
matching methods are computationally very demand- 
ing, because each evaluation of the fitting criterion in- 
volves computing the moments from a long simulation 
of the model. For example Turchin and Ellner (2000b) 
used a moment-matching approach to estimate param- 
eters for a model of Fennoscandian vole oscillations. 
For their simple predator-prey model with six param- 
eters to estimate, fitting to a single short time series 
(81 observations) took several hours on a then-current 
UNIX workstation, and bootstrapping to obtain con- 
fidence intervals took several days. Moment matching 
is therefore limited to parametric models with few 
enough parameters that iterative optimization of the 
fitting criterion is feasible. 

Nicholson's (1957) experiment data have been an- 
alyzed extensively in order to understand quantitatively 
the cause of the steady, large amplitude oscillations. 
In 1980, two different parametric versions of the model 
described in Eq. 1 were proposed independently for 
these data (Gurney et al. 1980, Readshaw and Cuff 
1980). Subsequently, one of these was used as the basis 
for examining the hypotheses that evolution of life his- 
tory traits produced the changes in dynamics between 
the first and second half of the data series (Stokes et 
al. 1988). Elaborations of this basic model are now 
coming into regular use for stage-structured insects and 

other animal populations (Tuljapurkar and Caswell 
1997, Gurney and Nisbet 1998). 

For Nicholson's (1957) experiment "I" on Lucilia 
cuprina, our results support the validity of the model 
described in Eq. 1 for the mean dynamics. The esti- 
mated rate functions are qualitatively similar to the 
parametric model of Gurney et al. (1980). In contrast, 
Eq. 1 is far less successful for the L. sericata experi- 
ments (Daniels 1994, Forrest 1996, Smith et al. 2000). 
The best-fit model produces cycle periods not too dis- 
similar to those observed (20% too long), but it did 
not match well the shape or range of the cycles in adult 
density. These contrasting findings are consistent with 
the expectations described above based on the mech- 
anisms of population regulation in the two experiments: 
competition between adults in L. cuprina, and com- 
petition between feeding larvae in L. sericata. 

Of course, even for Nicholson's experiments, the 
model described in Eq. 1 is an oversimplification. In 
particular, it neglects the age dependence of vital rates 
within the adult class, which is known to occur (Read- 
shaw and van Gerwen 1983). Our successful fit to the 
data supports the hypothesis that the adult competition 
mechanism embodied in the model is the primary factor 
in the observed oscillations. Apparently, it is not too 
much of an error either to ignore age dependence in 
adults or (as the fitted model may be doing) to account 
for age dependence implicitly via rate equations that 
reflect the average relationship between adult density 
and age structure. 

Our topic in this paper has been fitting models to 
data, and issues of model testing were mostly treated 
informally using qualitative comparisons with the data. 
Given that all models require simplifying assumptions 
and cannot be exactly valid, "testing" a model's mech- 
anistic validity typically means comparing it against 
alternatives based on different mechanistic assump- 
tions (Hilborn and Mangel 1997). One aspect of testing 
is to quantify the prediction error variance of the fitted 
model, and our procedures are quick enough that this 
can be done by cross-validation. However, goodness- 
of-fit comparisons of this sort are often less informative 
than simulating the model and comparing model output 
with the data. Considered strictly as regression models 
for predicting the expected rate of population change, 
the models for L. cuprina and L. sericata are more or 
less equally successful: the correlation coefficients be- 
tween observed and predicted gradients are not too 
different (p = 0.55 for L. cuprina, 0.37 for L. sericata), 
and there are no systematic patterns in the residuals 
between observed and predicted rates of change in ei- 
ther case (Fig. 6a, b). But simulating both models and 
comparing predicted trajectories (Figs. 4c and Sc) and 
autocorrelation functions (Fig. 6c, d) with the corre- 
sponding data, the L. sericata model is clearly less 
successful. Other methods for comparing population 
dynamics models are available (see Tidd et al. 1993, 
Dennis and Taper 1994, Kendall et al. 1999, and Tur- 
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a) L. cuprina: residual plot b) L. sericata: residual plot 
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FIG. 6. Graphical tests of the fitted models. (a, b) Residual plots for the L. cuprina and L. sericata models, respectively, 
showing the differences between estimated gradients dx(ti)Idt and the predicted values from the models, B(x(t, - T)) - 

D(x(ti)), where B and D are the fitted birth and death rate functions. (c, d) Autocorrelation functions (ACF's) for the fitted 
models, compared with those of the data. Each ACF is plotted out to approximately twice the estimated cycle period. 
Solid circles are the mean ACF from 10 replicate model simulations (corresponding to Figs. 4c and 5c) equal in length 
to the actual data series, with dashed lines showing ?-' 2 SE over the 10 replicates. The solid squares are the ACF of the 
data. For L. sericata the ACF of the data is the mean ACF over the six replicates analyzed, with dashed lines showing + 
2 pointwise standard errors over the replicates. Nicholson's experiment did not include replication, so no standard errors 
are shown. 

chin and Ellner 2000b for applications), which make 
it possible to test quantitatively which of two mecha- 
nistic models is better able to account for observed 
population trajectories. 
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APPENDIX 

Details of the methods used to estimate models are available in ESA's Electronic Data Archive: Ecological Archives E083- 
042-A 1. 

SUPPLEMENT 

A documented set of R functions for all steps in the model-fitting process is available in ESA's Electronic Data Archive: 
Ecological Archives E083-042-S 1. 
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