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Abstract

This report describes the theoretical foundations andvate background
in the domain of automatic ontology matching. It aims to shiesvrange
of ontology matching, matching strategies, and an ovenaéantology
matching systems. The measures for evaluating ontologghingt are
discussed. This report also summarizes interesting rebeguestions in
the field.
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1 Introduction

This report describes the theoretical foundations andaetebackground in the do-
main of automatic ontology matching. It aims to show the eaafjontology match-
ing, matching strategies, and an overview of ontology miatctools. The measures
for evaluating ontology matching are discussed. This teglsp summarizes inter-
esting research questions in the field.

1.1 Background

When people or machines must communicate between therasd¢h&y need a
shared understanding of the same concepts. An ontologyeasdd to solve this
problem. Gruber [28] defined an ontology as:

An ontology is a formal, explicit specification of a sharedoeptualization.

Due to an increased awareness of potential ontology apipinsain industry,
public administration and academia, a growing number oblogies is created by
different organizations and individuals. Although theséotogies are developed for
various application purposes and areas, they often coat@rapping information,
but these different ontologies cannot easily be used tegetha new application.
Furthermore, ontology users or engineers do not only usedh& ontologies, but
also want to integrate or adapt other ontologies, or eveityappltiple ontologies
to solve a problem. In this context, it is necessary to findsmayintegrate various
ontologies and enable cooperation between them.

1.2 Method

This report is based on a literature study of research paperdooks in different
topics in the context of ontologies. The report brings ugl@ckground information
as found in most textbook literature as well as recent finglargd research.

1.3 Delimitations

As already mentioned, this report is delimited in selectnty parts of the general
topics discussed for detailed excursion. The selectioraseth on what is deemed
as relevant for the topic of the research. In particulas teport contributes to a
Ph.D. project focusing on improvement to ontology matclstrgtegies and evalu-
ation. Ontology matching involves a large number of fieldg,,enachine learning,
database schema, linguistics, etc. In this report, we dceewaluate the ontology
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matching frameworks, but instead compare them and treat #seontology match-
ing. The available measures for evaluating ontology matghre discussed.

1.4 Disposition

This report is organized as follows. In Chapter 2, we dis¢bssscope of ontol-
ogy matching, what ontology matching is, its input and otitpgage categories of
ontology matching and applications . In Chapter 3, the ejiat used in ontology
matching are presented. Chapter 4 describes the currestingxsystems and their
comparison. Chapter 5 discusses the evaluation methausly-wve summarize and
list interesting research questions in the field.
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2 Range of Ontology Matching

In this chapter, first we will describe our scope of ontologgtching. Secondly, we
define what ontology matching is. Then we will look into drifat ways of using
ontology matching and applications.

2.1 Ontology Matching Scope

Ontologies are considered as an important contributiod taesolving the data het-
erogeneity problem. However, ontologies themselves e heterogeneous [20],
e.g., the ontology can be expressed in different languaggs OWL, RDFS, OKBC,
KIF, etc. Different languages use different syntax, défgrlogical representation,
different semantics of primitives, and language expréssiEven using the same
ontology language does not solve heterogeneity problenmsordology on motor-
vehicles, for example, may include the concept "motor-hikdnereas another ontol-
ogy on the same subject may ignore it. Klein [32] categorpzeskible mismatches
of the ontologies heterogeneity by two levels:

e Language level

— Syntax. Different languages have different syntax. For example, in
RDFS the definition of clasShair is < rdfs : ClassID =7 Chair” >.
In LOOM, (de fconcept Chair) is expressing the same class.

— Logical representation. Differences in logical representation occur
when syntactically different, but the statement are ldgicaquiva-
lent. For example, the way present disjointness in OWL L#e i
Class(owl : Nothing complete A B), but also valid in OWL DL as
DisjiontClasses(A B).

— Semantics of primitives. The same syntactically construct can have dif-
ferent meanings (semantics) in different language. Famgka, there are
several interpretations of equalT o B.

— Language expressivitySome language can express things that the other
language can not. For example, negation can be expressetilaio-
guage but not in another.

e Ontology level

— Conceptualization. Using the same linguistic terms describe different
concepts (e.g., the concept "employee” can have differeatmmg in the
ontologies). Using different modeling conventions ancels\wof granu-
larity describe concepts (e.g., one ontology model "cat’rimi "truck”,
the other ontology model "car” that includes "truck”.).



School of Engineering

AR - . State of the Art
Jonkbping university

— Terminological. Using different terms to describe the same concepts
(e.g., one ontology uses concept "car”, while the other logtpuse "au-
tomobile”), homonym term (e.g., "conductor” has a differereaning in
music than in electric engineering).

— Style of modeling. Using different modeling paradigms to present con-
cepts (e.g., one model uses temporal presentations basaeimal logic
while another uses a representation based on points).

— Encoding. Values in the ontologies can be encoded in different formats
(e.g., a date represented as dd/mm/yyyy or mm-dd-yy).

As the translation between ontology languages can be cemesichs an indepen-
dent issue [19], it is recommendable to translate diffetsmiblogies into the same
language before comparing them on ontology level. Culyemibst ontology match-
ing systems are focusing on the ontology level.

2.2 Terminology

The terms mapping, matching and alignment are frequendg irswork about com-
bining ontologies. Keet summarizes different definitiom®w these terms [31].
Based on recent studies about combining ontologies, tinestesed in this report
are defined as follows [31] [51]:

Ontology merging: combine two ontologies from the same subject area into a
new ontology.

Ontology integration: combine two ontologies from different subject areas into
a new ontology.

Ontology alignment identify correspondences between the source ontologies.
Ontology mapping: find equal parts in different source ontologies.

Ontology matching: find similar parts in the source ontologies or finding trans-
lation rules between ontologies.

2.3 Usage Categories of Ontology Matching and Applica-
tions

Choi categories the usage of ontology matching into thrésgoaies [9]:

1. Matching between an integrated global ontology and loo#blogies. In this
category, the global ontology provides a shared vocabritaeymatching maps
a concept found in one ontology into a view, or query over ptrgologies.



School of Engineering State of the Art
Jonkbping university

The main advantage is that it is easier to define mapping addnfispping
rules because of the shared vocabulary in the global ontolégwever, in this
matching, the global ontology is needed which is very diffibm maintain in
a highly dynamic environment. The traditional applicaida.g., information
integration or schema integration) require determininglagy matching be-
fore running the system. For information integration systeontology match-
ing interprets the relationship between the mediated salaad local schemas

(e.g., [38], [12]).

2. Matching between local ontologies. In this category, tfaching is trans-
forming the source ontology entities into the target orgglentities based on
semantic relations. This approach is more relevant forlpidiinamic envi-
ronments. However, comparing global ontology and locablmgty matching,
it is not easier to find mapping because of the lack of commaalolaries.
The dynamic applications (e.g., agents, peer-to-peerseelces) require run-
ning time ontology matching. For example, [6] allows agentpeer-to-peer
networks to communicate to other agents based on dynamitoggt map-
ping. [25] and [52] are web services application examplaglogy matching
is used for finding new services to complete a request.

3. Matching in ontology merging. In this category, matchimgsed to try to find
similarities and conflicts entities between the ontologpdse merged. Manag-
ing and maintaining the different versions of ontologies aso be the appli-
cations of ontology matching. Some application examplabése categories
are Prompt [48] suit for Protege editor and Chimera [8] tool®ntolingua.

2.4 Ontology Matching Input and Output

Shvaiko and Euzenat define the matching process is as fivenptees [57] (see in
Figure 1).

T

|

A —___‘:h Matching p——— A’

r

Figure 1: The matching process

The processing is generating a new alignm&nfrom the input consisting of
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the ontologyo ando”. However, other parameters can be involved in the matching
process, like the use of input alignmeXtwhich is to be completed by the process-
ing, the matching parameteps(e.g., weight, thresholds), and the resources (e.g.,
lexicons).

Currently, the matching systems consider the matching tdlogies expressed
in the same languages. Different elements of ontologiesmst iwill be analysed
in the different approaches, for example, GLUE uses taxoe®and instances [13],
OLA uses many elements (e.g., classes, properties, comnstri@xonomy, instances)
[22], ASCO uses as much available information in the ont@egs possible [63]
(e.g., concepts, relations, structure, even apply TF-i€alculate similarity value
between descriptions of the concepts or relations). Somstess are schema-based
which can be viewed as a special ontology restrained relstip. In these cases, the
input is a data model. For example, MOMIS (Mediator Envireminfor Multiple
Information Sources) [5] uses local schemas.

Shvaiko and Euzenat separate different output types ofayyonatching [57]:

e One-to-one or one-to-many correspondence between ogteldgies.

e Expression of correspondence between ontology entitie®ean the range 0
to 1.

e The relationship between entities in most systems is egpteas equivalence
(=). Some systems (e.g., [26]) can provide more expresssdt; like equiv-
alence(=), more generalD), less generalC), disjointnesq_L)), while the
specialidk (I do not know) expresses none of the relations.
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3 Ontology Matching Strategies

In the following we consider an ontology to be a 4-tupleC, R, I, A >, whereC'

is a set of concepts (also called class, entity type, cohcé&pis a set of relations
(also called property, attribute, feature, slat)s a set of instances (also called in-
dividual) andA is a set of axioms. Ontology entities mean 4-tuple (e.g.ceph
relation, instance, axiom) in the ontology. To find the cep@dence between on-
tology entities, the similarity between entities need tahkeulated. In this chapter,
we first describe different strategies (e.g., string sintyfasynonyms, structure sim-
ilarity and based on instances) for getting similarity betw entities used in current
ontology matching systems. In addition, we introduce sone¢hods to integrate
similarities in section 3.5.

3.1 String Similarity

String similarity calculates the string distance metrwsiétermine the matching of
entity names. String Distance is a non-negative integdrrtieasures the distance
between two strings. Before actually comparing stringasise, some linguistic
technologies (e.g., removing stop-word, stemming) aréopmed. Linguistic tech-
nologies transform each term to a standard form that candly eacognised. Stop-
word [4] means that some appear frequently words in the téktlack of indexing
consequence. Indexing is the process of associating onererkaywords with each
document in the information retrieval. For example, woils the, thisandof in
English, they appear often in the sentence but less valuadeking. Stemming is
trying to remove certain surface marking words to root forffor example, words
like fishesoriginal form isfish

Cohen et al. provide a good survey of the different methodsatoulate string
distance from edit-distance like functions (e.g., Leveimstlistance, Monger-Elkan
distance, Jaro-Winkler distance) to token-based distumeztions (e.g., Jaccard sim-
ilarity, TF-IDF or cosine similarity) and hybird methods.de Level2JaroWinkle,
SIimMTFIDF, JaroWinklerTFIDF) [10]. These methods followbay range of ap-
proaches and have been designed according to differentiardnd perspectives,
such as statistics, artificial intelligence, informatietrieval, and databases. Cohen
et al. introduce the most used methods in [10].

3.1.1 Edit-distance

In order to transform two compared strings to the same, aeseguof edit operations
(e.g., character insertion, deletion and substitutioa)marformed. Edit-distance is
the minimum cost of edit operations to convert strgwp t. Each operation will be
assigned a cost. One example is Levenstein distance whsoinasall edit opera-
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tions to 1. Monger-Elkan distance assigns lower cost toriimses or deletions than
Levenstein distance, scaling to inter{@l1].

Jaro metric has similar metric but it is not based on editgiice. Jaro metric is
based on the number and order of the common characters betwestrings.

Given strings:s = ay,...ax, andt = by,...by, a characten; in s is said
to be common with if there is ab; = a@; int suchthat — H < j < i+ H,
whereH = ™ML ) et 5" = 4} ... )., be the characters inwhich are common

with ¢ (in the same order they appearspand lett' = b, ...b,,, be analogous. A
transposition fors', ¢ is a positioni thata; # b;. Let T, be half the number of
transpositions fog’ andt’. The Jaro similarity metric fog andt is

Lol s =T t/\)
Jaro(s,t) = = - <—+—+7’ 1)
3 \lsl  [t] '
Jaro-Winkler is a variant of Jaro. The lendths the longest common prefix efand
t. Letting P’ = max(P,4),
P/
Jaro — Winkler(s,t) = Jaro(s,t) + 0 (1 — Jaro(s,t)) 2

The Jaro and Jaro-Winkler metrics are suitable for shariggr(e.g., personal first
or last names).

3.1.2 Token-based Distance
The strings are compared as multisets of tokens. Jaccaehdescomputes the sim-

ilarity between the sets of wordsand7" as

ST
ISUTI

(3)

Jaccard =

TF-IDF (Term Frequency - Inverse Document Frequency) [54Yidely used in
information community and it is defined as

TF—IDF(S.T)= Y V(w,5) V(w,7T) 4)
wesSNT

WhereT'F, s is the frequency of word in S, N is the size of the corpus add F,,
is the inverse of the fraction of names in the corpus thatainsat,

V' (w,S)=1log(TF,s+1)-log(IDF,) (5)
Viw,§) = &5 ©)
> V'(w,9)
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3.1.3 Hybrid Distance

Level2JaroWinkler, Level2Levenstein, SIimTFIDF, and o)&mklerTFIDF are
hybrid-distance functions. Firgstandt¢ are broken into substrings= a4, ...ag,
andt = by,...b,. Second a secondary distance function (e.g., Monge-Elao,
Jaro-Winkler) operates over the= a4, ...ax, andt = by,...b;. These are called
level two distance functions. If we replace the exact tokexames and use TF-IDF
with approximate tokens based on the level two distancetifums it is called Soft-
TFIDF (e.g., SimTFIDF, JaroWinklerTFIDF).

3.1.4 Tool for String Similarity
A comparison of string distances methods available in foalst(SecondString [56],

Simetrics [58], the Alignment API [64] and SimPack [59]) dand in [21] and is
summerized in table 1:

Table 1: String distances methods available in four tootsi{€e: [21], Chapter 4)

Simetrics SecondString AlignAPI SimPack
n-grams n-grams
Levenshtein Levenshtein Levenshtein Levenshtein
Jaro Jaro Jaro
Jaro-Winkler Jaro-Winkler Jaro-Winkler
Neddleman-Wunch| Neddleman-Wunch Neddleman-Wunch
Smoa
Smith-Waterman
Monge-Elkan Monge-Elkan
Gotoh
Matching coefficient
Jaccard Jaccard Jaccard
Dice coefficient Dice coefficient
TF-IDF TF-IDF
Cityblocks Cityblocks
Euclidean Euclidean
Cosine Cosine
Overlap Overlap
Soundex Soundex
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3.2 Synonyms

Synonyms (with the help of dictionary or thesaurus) can teefplve the problem of
using different terms in the ontologies for the same condept example, an ontol-
ogy might use “diagram”, the other could use “graph’refggrio the same concern.

The WordNet [70] thesauri can support improving the sintjyjaneasure. Word-
Net is a large lexical database of English. It is based onhpdygyuistic theories
to define word meaning and model not only word meaning assoegbut also
meaning-meaning associations [23]. WordNet tries to farushe word meanings
instead of word forms, though inflection morphology is alsosidered. WordNet
consists of three databases, one for nouns, one for verlzstand for adjectives and
adverbs. WordNet consists of a set of synonyms “synsetsiis&yg provide differ-
ent inter relationships such as synonymy and antonymy,rhypgy and hyponymy
(superconcept and subconcept), meronymy and holonymi+(#and Has-a). Fig-
ure 2 [27] shows part of noun hierarchy about term conceraipgrson, his (her)
components, his (her) substances, and his (her) familynargtion. Since it is a
very reduced view of the noun hierarchy, we can only see s@a¢ions such as
meronymy, antonymy and hyponymy.

e - — -

hyponymy antonymy meronymy

Figure 2: A partial view of the category of nouns of WordN&oqrce: [27], Chapter
2)

Su summarizes synsets’ relations associated with noumiss,vadjectives and
adverbs [61]. Table 2, 4 and 3 show synsets’ relation withief lblefinition and an
example.

Rodriguez presents an approach to determine similarenbtsed on WordNet.
For example, it considers hypernym/hyponym, holonym/msnes relations [53].
The similarity measure based on the normaliztion of Tvesskyodel and set theory

10
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Table 2: Noun relations in WordNet. (Source: [61], Chapler 3

Relation | Definition Example

Hypernym | synset which is the more general clads-cak fast — meal
of another synset
Hyponym | synset which is a particular kind ofmeal — lunch
another synset
Holonym | synsets which is the whole of whighflower — plant
another synset is part
Meronyms| synsets which the parts of anothebumper — car
synset
Antonyms | synsets which are opposite in meannan < woman

ing

Table 3: Verb relations in WordNet. (Source: [61], Chapter 3

Relation | Definition Example

A-value-of | adjective synset which represents slow — speed
value for a nominal target synset
Antonyms | synsets which are opposite in meanyuickly < slowly

ing

functions of intersectiopA N b| and difference A/ B| as follows.

B |ANDb|
S0 = TXAM T a(@ B [A/B] + 1 — ala 0) [B/A] )

Where a and b are entity classes, A and B are the descriptisrose andb (i.e.,
synonym sets, is-a or part-whole relations)is a function that defines the relative
importance of the non-common characteristics. For is-aahs@y,« is expressed in
term of the depth of the entity classes.

3.3 Structure Similarity

Structure similarity is usually based on different intoitiof ontologies structures,
such as is-a hierarchy, sibling concepts, relation andgnagples.

3.3.1 lIs-a Hierarchy

It is based ons-a (taxonomy)hierarchy of the ontology. The hypothesis is that if
the direct super-concepts and/or the direct sub-concéptgaoncepts are similar,

11
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Table 4: Adjective and adverb relations in WordNet. (Soujgg], Chapter 3)

Relation | Definition Example

Hypernym| synset which is the more general clasgly — travel
of another synset
Troponym | synset which is one particular way tavalk — stroll
perform another synset

Entails synset which is entailed by anothesnore — sleep
synset

Antonyms | synsets which are opposite in meanncrease < decrease
ing

the two compared concepts may be also similar, for exampl€l[l] and [39]. Here
comes concepts similarity definition in [1]:

Definition For i € {1,2}, let¢; be a concept in the hierarchy of concefit;.
Let Pred(c;), Succ(c;) be respectively the set of direct super-concepts of Hc;,
the set of direct sub-concepts®fin He;. SameSet(S;,.5,) is the set of elements
in S; which are similar with any element i$,. UnionSet(S;,.53) is the set of all
of elements in5; combining with elements ¢, that are not similar with any ele-
ment iSSs. Ppreas Psuce 1S the proportions of the concepts in the sised, Succ,

respectively, then
SamePred(c;, c;
Ppyea(ci,cj) = | ( j))“ (8)

 |UnionPred(c;, c

_ |SameSucc(c;, ¢;)|

9)

P, ucc\ti, by) — .
sucelCir €3) |UnionSucce(c;, ¢;)|
The directis-a (taxonomyhierarchy can be extended to the path of an ontology
[1]. Now the intuition is that if the path from the root cont¢gpo the concept in
the first ontology contains similar concepts with the patinfithe root concept to the
conceptA in the second ontology, concepts A and B may be similar.

Definition Let Path(c;) be the path from the root to the clagsin the hierarchy
of conceptH¢;. Path(c;) is a set of classes along the path. The similar proportion
between two paths of andc; is

|SamePath(c;, c;)|
P a i, C5) — ) 10
Path(Cis Cf) \UnionPath(c;,c;)| o

Maedche and Staab [39] try to compare two taxonomies. Tlontaxic overlap
is determined by concepts semantic cotopy (i.e., all it®sapd sub concepts).

12
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3.3.2 Sibling Concepts

The hypothesis is that if slibling concepts of two concepéssamilar, the two com-
pared concepts may be also similar [1].

Definition For i € {1,2}, let¢; be a concept in the hierarchy of concefit;.
Let Sibl(c;), be the set of sibling concepts@fin He;. SameSet(S;, S, is the set of
elements irt; which are similar with any element 1&,. UnionSet (S, S, is the set
of all of elements irb; combining with elements ¢k, that are not similar with any
element isSy. Pp,.q IS the proportions of the concepts in the sBts:d, then

_ |SameSibl(c;, ¢;)|
~ |UnionSibl(c;, c )|

Psin(ci, cj) (11)

3.3.3 Relation

The hypothesis is that if the relations and related classesimilar, the two com-
pared concepts may be also similar. Maedche and Staab gropogutation entities
similarity based on their relations’ overlap (how similaeir domain and range con-
cepts are) [39]. For example, in ontology 1, relatitocated at”is specifying the
domain and range correspondingtbotel”, “area”). In ontology 2, relatiorflocated
at” is specifying the domain and range correspondinghotel”, “city”) . If relation
“located at”and “hotel” are considered similar, it infers thédrea” and “city” is
similar. This approach can be extended to a set of classea aatlof relations. If
a set of relations in the first ontology which is similar witretother set of relations
in the second ontology, it is possible that two classes (dlosnar range of relations
in the two sets) are similar. The relation overlap is detaadiby concepts upwards
cotopy (i.e., all its super concepts).

3.3.4 Graph Nodes

The intuition is that two nodes are similar if their neighbare also similar. The
similarity flooding [42] matching algorithm uses graphs talfcorresponding nodes
in the graphs based on a fix-point computation. The algorithkes two graphs

(schemas, catalogs, or other data structures are convwetteldbeled graphs) as in-
put. These graphs are used in an iterative fix-point comjoutéd find out the map-

ping between corresponding nodes of the graphs, it reli¢almis of arcs. Figure 3
illustrates the similarity flooding algorithm as follows:

1. Construct the pairwise connectivity graph (the dashedané& in Figure

3). Pairwise connectivity graph (PCG) definition i(z,y),p,(,y)) €
PCG(A,B) < (z,p,x') € Aand(y,p,y') € B.

13
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Fixpoint values
for mapping
Model A Model B Pairwise connectivity graph Induced propagation graph between Aand B
f e gy |
a b | ab CECR ab alb 10 Cab)
\ M\ | F R 1 B Nas # e
\ A \ oo o 0.91 (a2,
/N LGN ‘1/ \_|1 L a5/ 1O\ 1010 (a2,b1
\ - o il i g 20 5 o (TR
\ [\ CD| a1t appt (a2b2 IE} aibi apt s2b2 || 0.0 &1
L % o g ¢ 5
al @|| bl b2 i \12 | 1oy 0 0.38
J F : a1 b2 | alb2 0.33
12 12 : | 0.33
= B S |

Figure 3: Example illustrating the Similarity Flooding Algthm (Source: [42])

2. Assign propagation coefficients in PCG, see the induceggwation graph
frame in Figure 3. The coefficient ig'n andn is the out of edge in PCG.

3. Assigno' to each node and calculatevalue using the formula below:

o' (x,y) =o' (z,y)+

Z Ji(&u,bu) -w((au,bu),(l',y))+

(au,p,:c)EA,(bu,p,y)eB (12)

Z Ji(&u,bu) -w((au,bu),(l',y))

(x,p,au)GA,(y,p,bu)EB

4. lteratively calculate until the change betweert ando" ! is less than thresh-
old e. For example, after iterations we can get fix-point valuestasvn in
Figure 3.

The other fix-point algorithm example is OLA (OWL Lite Aligng22]. It con-
siders the entities and structure of ontology (i.e., clags property ), property
instance Q), property restriction labelsZy), taxonomy (e.g., subclass))). The
distances of the input structures are expressed in a setiafieqgs:

Sime(c, c/) :WgSimL()\(C), )\(C/))

+2Csimo(1(0), ()

S 13
4 1Csime(A(e), 5'(¢)) 13
4 1Csimp(A(0), A(C))

To find the minimum distance between the concepts in the ogied, it iterates
the fix-point algorithm until the results are closer.

Noy and Musen use fix-point to combine matchers in approadDNPRTDIFF
[46]. Based on results of set of heuristic matchers, the dixdpnvokes the matchers
repeatedly, feeding the results of one matcher into therstlwatil they produce no
more changes in the diff.
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3.4 Based on Instances

When two ontologies have the same or similar instances (@Hed individuals),
we can find corresponding concepts. It can be performed bgkatge similarities
between instances. If the similarity level of two instanessches the threshold, then
the two instances can be regarded as matched. For exangpergon numbewill
not change even if people maybe play different roles in dbffié ontologies. The
matching can be performed based on instances comparisons.

To identify the similarity level of two instances, stringrsiarity methods (see
3.1) and cosine similarity based on TF-IDF [54] are commoasneements. Formal
concept analysis (FCA) is the other technique to identifyoapts and instances. For
example, FCA-Merge [60] is a method for comparing ontoledleat have a set of
shared instances or a shared set of documents annotatedonitbpts from source
ontologies. Based on this information, FCA-Merge uses pratitical techniques
from FCA to produce a lattice of concepts which relates cptec&om the source
ontologies.

Machine learning (e.g., [13], [68]) or clustering-basedtmod [41] approaches
integrate these different similarity measurements faiaimse matching.

Machine learning can be based on (i) shared attributes @&ctddjecords, (ii)
profile-based object matching and can correlate disjofribates to improve match-
ing accuracy [13]. Wang et al. propose machine learningdas@ntology hierarchy
and object properties [68]. For example, if two instancesifdifferent ontologies
are identified as instances of conc&prdentand Graduate Studenmespectively, then
they are more likely to be the same than two instances withdedified asStudent
and another aBrofessobased on string similarity methods or TF-IDF. If we take a
look ontology hierarchyStudentand ProfessoKboth are sub concept &ferson are
defined as disjoint concepts, a student instance could teveratched with a pro-
fessor instance, even if they have very high string-basadasity. Object properties
allow users to connect relations between instances. Fangea a propertywrit-
tenBy is used by a publisher to relate publications to their authstances, while
inverse propertyvrite is used by a professor to link his own instance with his publi-
cations.

Machine learning can be separated in two phases [21]. Thepfiase is the
learning or training phase. In this phase, the training dataeated, for example,
manually matching two ontologies and the system learns ahmafrom this data.
Learning phase can be processed online, so the system ctinueolearning, or
offline in the case of that speed is not relevant but its acyusa To be adaptive for
dynamic situations, a stochastic model and SVM classifietesapplied (e.g., [68],
[7]). In The second phase, the learnt matcher is used formmaimew ontologies.

There are several well-known machine learning methodsinsaitology match-
ing illustrated in [21] such as:
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¢ Naive Bayesian learning “A naive Bayes classifier is a simple probabilistic
classifier based on applying Bayes theorem with strong épandependence
assumptions” [35]. The Bayes decision rule is the rule te&tcis the cate-
gory with minimum conditional risk [65]. In the case of mirnum-error-rate
classification, the rule will select the category with thexmaum posterior
probability. Suppose there akeclasses¢, ¢y, ..., c;. Given a feature vector
x, the minimum-error-rate rule will assign it to classf

Prob(cj|x) > Prob(c;|z) foralli # j (14)

Here, the posterior probability is used as the discrimiianttion. An alter-
native criterion for minimum-error-rate classificationteschoose class; so
that

Prob(z|c;)Prob(cj) > Prob(x|c;)Prob(c;) foralli#j  (15)

which is derived from well-known Bayes theorem:

Prob(x|c) = Prob}(ﬁ;})é@ob(c) (16)

Examples use naive Bayesian classifier for ontology magctiia [62], [13].

e WHIRL (Word-based Heterogeneous Information Representaibn Lan-
guage) learner. Whirl is an extension of conventional relational databases
perform soft joins based on the similarity of textual id&ats. Doan et al. use
the Whirl learner to classify an input instance based ondbelk of its near-
est neighbors in the training set [13]. It uses the TF-IDFilgirty measure
commonly employed in information retrieval.

e Neural networks. Atrtificial neural networks are made up of nodes and

weighted connections between them. The commonest typeibEiat neu-

ral network consists of three groups, or layers, of nodesyarlof "input”
nodes is connected to a layer of "hidden” nodes, which is eoted to a layer
of "output” nodes. Neural network has adapted to ontologycimnag, for ex-
ample, it is used t discover correspondences among adsvd category and
classification [36]. Authors use neural network to learnahmig parameters
such as matcher weights to generate features and sineita[lib].

e Decision trees Decision trees [66] is used as predictive model which maps
observations about an item to conclusions about the iteanget value. In
these tree structures, leaves represent classificatiah®ramches represent
conjunctions of features that lead to those classificatid@ecision trees are
constructed in order to help with making decisions. For gxlamdecision
trees are used for discovering correspondences entitj@sjiand for learning
thresholds in [15].
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e Stacked generalization Stacked generalization is an approach to combine
multiple learning algorithms [69]. This approach is addpig GLUE [13] to
aggregate different learners such as Naive Bayesian le&ker| learner.

e Bayesian networks Bayesian networks is a probabilistic approach. In ap-
proach [50], the source and target ontologies are tramkiate Bayesian net-
works, the concept mapping between the two ontologies aagetl as evi-
dential reasoning between the two translated Bayesianonksw The other
work [43] uses Bayesian networks to enhance existing matoégveen ontol-
ogy concepts.

3.5 Similarity Aggregation

Once the similarity between ontology entities are avaddialsed on different strate-
gies (e.g., string similarity, synonyms, structure simiije based on instances), ag-
gregating similarities algorithms are needed to combinéchesas. Euzenat and
Shvaiko summarize similarity aggregation measures asvis|[21]:

Definition (Triangular norm). A triangular norm T is a function from x D
— D (where D is a set ordered by and provided with an upper bound) satisfying
the following conditions:

T(z,T)==x (boundary condition)
r<y=T(x,z) <T(y,z) (monotonicity)
T(x,y) =T(y,x) (commutativity)
T(x,T(y,2) =T(T(x,y),2) (associativity)

Triangular norms are suitable to combine the highest scora &ll aggregated
values. Triangular norms tend to express the dependerstiesén the values of the
different dimensions.

Definition (Weighted product). Let o be a set of objects which can be analysed
in n dimensions. The weighted product between two suchtsbgeas follows:

Va,x' € 0,0(x,x") =[], 0(x;, )™

such that(z;, #}) is the dissimilarity of the pair of objects along ti& dimen-
sion andw; is the weight of dimension i.

Weighted product is another triangular norm. It has the tesk that if one of
the dimensions has a measure of 0, then the result is also 0.

Definition (Minkowski distance). Let o be a set of objects which can be anal-
ysed in n dimensions, the Minkowski distance between twoahjects is as follows:

Vl’,ZL‘, € O,(S(l’,l',) = c/Z?:1 (S(xl,.ib'é)p

17



School of Engineering State of the Art
Jonkbping university

whered (z;, «}) is the dissimilarity of the pair of objects along tki& dimension.

Minkowski distance is suitable to independent dimensiantstay to balance the
values between dimensions.

Definition (Weighted sum). Let o be a set of objects which can be analysed in n
dimensions, the weighted sum between two such objectsafass:

Vo, 2’ € 0,8(z, ') = Y wi x §(x4, ;)

whered(z;, z}) is the dissimilarity of the pair of objects along tifé¢ dimension
andw; is the weight of dimension i.

Weighted sum considers that the different important vataesbe aggregated.

Definition (Fuzzy aggregation operator). A fuzzy aggregation operator f is a
function fromD™ — D (with D being a set ordered by and provided with an upper
boundT) satisfyingvz, z1, ..., x., ¥, y1, - - -, Yn, € D the following conditions:

flz,...2) ==z (idempotency)

Vo, vy o <y = fler...xn) < flyr ... yn) (increasing monotonicity)
fis a continuous function (continuity)

Fuzzy aggregation is used for aggregating the results opeting algorithms.

Definition (Weighted average).Let o be a set of objects which can be analysed
in n dimensions. The weighted average between two sucht®igexs follows:

> wi><5($i,$;)

i1 wi

such thatj(z;, 2}) is the dissimilarity of the pair of objects along tié dimen-
sion andw; is the weight of dimension i.

Vo, 2’ € 0,0(x,2") =

Weighted average is often used as a fuzzy aggregate.

Definition (Ordered Weighted average).An ordered weighted average opera-
tor fis a function fromD”™ — D (with D being a set ordered by and provided with
an upper bound) satisfyingvzx, x4, ..., x, € D, such that:

flo,...x) =" wi x

where

wy, ... w, is a set of weights if01] such thaty " | w; = 1;
x; is the i-th largest element ¢k, . . . z,).

Ordered weighted average allows to give more importandeethighest (or low-
est) value.
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4 Ontology Matching Systems Overview

This chapter will illustrate several ontology matchingteyss or tools. There are
some surveys or comparisons about ontology matching sgstefi30], [44], [19],
[37], [9], [21]. We will compare the systems or tools basedlemontology strategies
discussed in chapter 3 and their input and output. Finallsbe is presented for a
summary of ontology matching systems.

4.1 PROMPT (Stanford Medical Informatics)

PROMPT [48] is a semi-automatic tool and a plug-in for therepeurce ontol-
ogy editor PROTEGE. It determines string similarity andlgnas the structure of
an ontology. It provides guidance for the user for mergintplmgies. It suggests
the possible mapping and determines the conflicts in thelagyoand proposes
solutions for theses conflicts. PROMPT consists of seve@st(see Figure 4).
iIPROMPT [45] is an interactive ontology merging tool. AncRROMT [46] uses
graph-based mappings to provide additional informationPROMPT. PROMPT-
Diff [46] compares different ontology versions by combigimatchers in a fixed
point manner. PROMPTFactor is a tool for extrating a partobatology.

i

Protégé-2000 Project Browser

e —— - B =t
Infrastructure
b
AnchorPROMPT
L graph-based ontology
Ul structure, — . mapping
anchors —
rets suggestions
IPROMPT —
interacts it ¥ X _-____
ai?:;??aoow K Ul structure,
T ) reference analysis -
X e S
\\ heuristics sub-ontalogy factoring
Ul structurs, "
heuristics
% 3 b1
\ PROMPTDIff
ontology versioning

Figure 4. The PROMPT infrastructure. (Source: [48])

Input of PROMPT is two ontologies with languages OKBC or OV@utput is
the suggestion of mapping and a merging ontology (basedarchsices). The main
strategies of PROMPT are based on string similarity andcira. For example,
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Anchor-Prompt is that if two pairs of terms from the sourcéotogies are similar
and there are paths connecting the terms, then the elenmethitssie paths are often
similar as well.

4.2 SAMBO (Link 6ping Universitet)

SAMBO (System for Aligning and Merging Biomedical Ontoleg) [33] is a sys-
tem that assists the user in aligning and merging two bioca¢dintologies. The
user performs an alignment process with the help of alignseygestions proposed
by the system. The system carries out the actual merging anged the logical
consequences of the merge operations.

Input of SAMBO is two ontologies with languages DAML+OIL oMZL. Out-
put is the suggestion of mapping and a merging ontology (baseuser choices).
The main strategies of SAMBO are including (combinationssifing similarity,
synonyms (based on WordNet and domain knowledge UMLS (WhMedical Lan-
guage Systems) [67]) structure-based strategies andithlgpsrbased on machine
learning. Figure 5 shows the alignment strategy.

- T general | 1 ""'c'l'— "
—— D, omain
instance _dlfllollurl?\_ .
corpora T |_thesauri !
— | v
1 1 4
alignment algorithm
s o — matcher a
o n matcher 1
u t !
o
r o =

combination

filter

o
g
i n
' N t
e suggestions L | user )
. A
R I\ 5
accepted ‘;O_Ilﬁlgl_ 5
suggestions . checker T

Figure 5: The SAMBO Alignment strategy. (Source: [33])

4.3 FCA-Merge (University of Karlsruhe)

FCA-Merge [60] is a method for merging ontologies based otheraatical tech-
niques from FCA (Formal Concept Analysis, [24]). FCA-Merga bottom-up tech-
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nique for merging ontologies based on a set of documentenkists of three steps
(see Figure 6, namely (i)instance extraction, (ii) condafpice computation and (iii)
the generation of the merged ontology based on the condépe)a

D Linguistic
Procassing -

q__;:[ Linguistic K_}
—* Procsssing

OI
Figure 6: The FCA-Merge process. (Source: [60])

Input of FCA-Merge is two ontologies and a set of documends #ne relevant
to both ontologies. Output is a merged ontology. The strasegf FCA-Merge are
based on string similarity, FCA and instances, structure.

4.4 GLUE (University of Washington)

GLUE [13] is a system that employs machine learning techegdo find mappings.
Given two ontologies, for each concept in one ontology GLUESithe most sim-
ilar concept in the other ontology. Figure 7 shows GLUE'h@ecture. It consists
of Distribution Estimator, Similarity Estimatpand Relaxation Labeler The Dis-
tribution Estimatortakes as input two taxonomies and instances. Then it applies
multiple machine learners and exploits information in @ptdnstances and taxo-
nomic structure of ontologies. It uses a probabilistic mddecombine results of
different learners. Next, GLUE feeds the above resultstimGimilarity Estimatoy
which applies a user-supplied similarity function to cortga similarity value for
each pair of concepts to generate similarity matrix. Re#axation Labelemod-
ule then takes the similarity matrix, together with domspecific constraints and
heuristic knowledge, and finds mappings.

Input of GLUE is two ontologies, where ontology is seen asxartamy of con-
cepts. Outputis (1-1) correspondences between the taxeaaitwo given ontolo-
gies: for each concept node in one taxonomy, find the mostasimoncept node
in the other taxonomy. The strategies of GLUE are based argstimilarity, taxo-
nomic structure of ontologies and machine learning tealesde.g., naive Bayesian
classifier, Whirl and stacked generalization, see Sec}.t8 dxploit instances.
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Figure 7. The GLUE Architecture. (Source: [13])

4.5 OLA (INRIA Rhone-Alpes and University of Montreal)

OLA (OWL Lite Aligner) [22] is a system that is designed wittetidea of balancing
the contribution of each elements of ontologies. It firsh&farms the input ontolo-
gies to graph structures and marks the relationships batestgies. The similarity
between nodes in the graph structures will depend on thgaatef nodes (e.qg.,
class, property) considered and all the features of thisgoay (e.g., superclasses,
properties).

Input of OLA is two OWL ontologies. OLA uses many elementg(eclasses,
properties, constraints, taxonomy, instances) in thelogies. Output is one-to-
many correspondences. The strategies of OLA are baseding similarity, syn-
onyms, structure and instances. The fix-point algorithmseduto aggregated the
results see Figure 8 and Sect. 3.3.4.
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Figure 8: The OLA architecture. (Source: [21] p. 127)
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4.6 ASCO (INRIA Sophia-Antipolis)

ASCO [1] [2] is a system that automatically discovers pafrearesponding ele-
ments in two ontologies. ASCO has three phases. In the fis@egylthe system nor-
malizes terms and expressions. Different string simyaméthods (e.g., JaroWinkler
metric, Monger-Elkan metric, see Sect. 3.1) are used to eoenje terms. TF-IDF
is used to calculate similarity value between descriptiohthe concepts or rela-
tions and WordNet is integrated. The second phase is steustatching. It uses an
iterative fixed point computation algorithm that propageatenilarities to the neigh-
bours (subclasses, superclasses and siblings). In thehaak, the results from the
above two phases are aggregated through a weighted sumheafidal similarities
correspondence are selected by a threshold.

Input of ASCO is two OWL or RDFS ontologies. ASCO uses manynelets
(e.g., concepts, relations, structure, even apply TF-iD€alculate similarity value
between descriptions of the concepts or relations) in thelogies. Output is one-
to-one or one-to-n correspondences. The strategies of A&€Mased on string
similarity, structure and synonyms (based on WordNet armd\®ordNet [17]).

4.7 QOM (University of Karlsruhe)

QOM (Quick Ontology Mapping) [14] is an approach that imgswhe efficiency of
NOM (Naive Ontology Mapping) [16]. The idea is that the lo§gwality (compared

to a standard baseline) is marginal, but the improvemeriticiency can significant
that it allows for mapping large-size ontologies. The rumetcomplexity of QOM is
O(n-log(n)), while NOM isO(n?-log?(n)) , AnchorPROMT [46] i< (n?-log*(n))

and GLUE [13] isO(n?). Figure 9 illustrates its six steps. To make an efficient map-
ping algorithm, several measures are used in the processiogexample, in the
second step, it uses heuristics to lower the number of catelishappings; in the
third step, it avoids the complete pairwise comparison eégrin favor top-down
strategy; in the fourth step, it applies sigmoid functionebhemphasizes high indi-
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vidual similarities and de-emphasizes low individual $amties; in the fifth step, it
uses a threshold to discard spurious evidence of similarity

Heraion (6) _"E\
— 3 —l4 5 Ouput
Search Step || | Similarity Similarity Inter-
Selection Computafion Aggreqation pretation

Figure 9: The QOM mapping process. (Source: [14])

Input
" Feature
Engineering

Input of QOM is two OWL or RDFS ontologies. QOM uses many eletaée.g.,
classes, properties, instances) in the ontologies. Oigjmune-to-one or one-to-none
correspondences. The strategies of QOM are based on dtniilgrgy, structure and
instances.

4.8 S-Match (University of Trento)

S-Match [26] is an approach that takes two graph-like stimestand finds a mapping
between the nodes of graphs that correspond semanticadigdo other. S-Match
determines determine semantic relations by analyzing #remg which is codified
in the elements and the structures of schemas. Labels at rmvdeautomatically
translated into propositional formulas. Then the matclpiradplem has been translate
intopositional validity problem, which can then be effidigrresolved using (sound
and complete) state of the art propositional satisfiab(#T) deciders, e.qg., [55].

Input of S-Match is two graph-like structures. Output is fsgnantic relations
(e.g., equivalencé=), more general2D), less generalC), disjointnesg_1)), while
the speciaidk (I do not know) expresses none of the relations. The stredgegfi
S-Match are based on string similarity, structure (SAT) agdonyms (based on
WordNet).

4.9 IF-Map (University of Southampton and University of
Edinburgh)

IF-Map (Information-Flow-based Map) [29] is a fully autotitaapproach to ontol-
ogy matching based on Barwise-Seligman [3] theory of infatron flow. Given two
local ontologies with instances, IF-Map generatésgec infomorphisn: a mapping
between local ontologies and reference ontology which authnstances. Figure
10 shows the IF-Map architecture. It consists four stepsadqquisition ontology,
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(il) translate ontology into Prolog clauses, (iii) fihmic infomorphisny(iv) display
results.
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Figure 10: The IF-Map architecture. (Source: [29])

Input of IF-Map is two local KIF or RDF ontologies and one refiece ontology.
Output is concept-to-concept and relation-to-relatiomegpondence. The strategies
of IF-Map are based on string similarity, structure (cheéssla hierarchy in both di-
rections), Barwise-Seligman theory and Horn logic.

4.10 Momis (University of Modena and Reggio Emilia)

Momis (Mediator Environment for Multiple Information Sa#) [5] is an approach
that creates a global virtual view (GVV) of the local sourcégyure 11 shows the
process for building the GVV for a set of Web pages in five steps

1. Local source schemata extraction. Wrappers generagmschfor the local
sources and translate them into the common languabé ;3 (extension of
Object Definition language [49]).

2. Local source annotation with WordNet. The integratiosigleer chooses a
meaning for each element of a local source schema, accaalthg WordNet
lexical ontology.

3. Common thesaurus generation. It describes relatioggfimter-schema and
intra-schema knowledge about classes and attributes gbtlnee schemata.
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4. GVV generation. It generates a global schema and setsmfings with local
schemata by using the common thesaurus and the local sclresmiations.

5. GVV annotation. It semi-automatically generates maggmetween local
schemas and global schema by exploiting the annotateddobamas.

Wrapping Common thesaurus generation GVV generation

Global classes ™

i {OD:Y-IB i Schama-derived relationships f
iataiioing E E
Fﬁ‘rﬁh E_E \ Lexicon-driven relationships F

Common
thenurus i
oDL;

Local schema N

| . N Designar- supplled ] A
— :.- ’ relationships g Mapping
5 SN | Inferred relationships // P, tables

et
Manual \ i /’ Semiautomatic

o;u\ /.
annotation 5{@ annotation
_' Synset
\G@ Syns@

Figure 11: The Momis architecture. (Source: [5])

Input of Momis is information sources (e.g., database, \&gbp and docu-
ments). Output is a global virtual view (merged ontologynirahe local data
schemas). The strategies of Momis are based on string sityjieynonyms (based
on WordNet) and structure.

4.11 Summary

See Table 5 for a summary of ontology matching systems.
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PROMPT SAMBO | FCA- GLUE OLA ASCO | QOM S-Match | IF-Map | Momis
Merge
Input Two on-| Two on-| Two on-| Two on-| Two on-| Two on-| Two on-| Two Two on- | Informa-
tologies | tologies | tologies | tologies | tologies | tologies | tologies | graph- | tologies | tion
(OWLor | (DAML | and doc-| (taxon- | (OWL) | (OWLor | (OWLor | like (KIM or | sources
OKBC) | + OlL or | uments | omy) RDFS) | RDFS) | structure| RDFS)
OWL) and one
refer-
ence
ontology
Output | One One One 1:1 cor-| I:N cor-| 1:1 or|1:1 or| Semantig 1:1 cor-| A global
merged | merged | merged | respon- | respon- | 1:N cor-| 1:none | relations | respon- | virtual
ontology | ontology | ontology | dence dence respon- | corre- dence view
dence spon-
dence
String Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Similar-
ity
SynonymisNo Yes No No Yes Yes No Yes No Yes
Structure| Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Similar-
ity
Instances No Yes Yes Yes Yes No Yes No Yes No
Aggrega-| Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
tion

Table 5: A summary of ontology matching systems
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5 Evaluation

Currently, there exist a number of ontology matching systeRowever, these sys-
tems are developed for various purposes and using diffeteategies. Noy and
Musen propose a framework for evaluating ontology-mappoots based on a vari-
ety in underlying assumptions and requirements [47]. Ireotd compare different
systems, surveys (e.g., [9], [37]) summarize and evalweral tools. However, this
evaluation focuses on functionality, user interaction ayaghping strategies, but does
not deal with matching quality.

To evaluate the increasing number of ontology matching odstand their qual-
ities, OAEI (Ontology Alignment Evaluation Initiative)ated arranging evaluation
campaigns yearly from 2004. We will focus on OAEI evaluatamne.

5.1 Evaluation Input

The input of evaluation are two ontologies written in the O\DL language. The
different elements of ontologies, e.g., concepts, ingama relations can be aligned.
The output is a *:* (* noted none) equivalence alignment ofned entities. For
example, one entity of one ontology can (e.g., injectivéalicone-to-one) map to
entity/entities of the other ontology. That means non gaiston the alignment.

Two benchmarks are proposed to be evaluated: a competenckrbark and a
comparison benchmark [20]. Competence benchmarks ainstiogiish the perfor-
mance of a special system regarding a set of well-defined takkch are isolated
special characteristics. Competence benchmarks helpy#tens designers to eval-
uate their systems to localize with the stable system. Cosgabenchmarks aim
to compare the performance of different systems on a defasdddr application. It
aims to improving the whole field instead of individual syste

5.2 How to Measure Evaluation Results

OAEI proposed different evaluation measures, from macfooased (e.g., compli-
ance and performance measures) to user-focused, fromajjéméask-specific mea-
sures. However, user-focused measures need interactisseos which is not easy
to get any objective evaluations. Task-specific measured tteset up different task
compare profiles with respect for certain tasks. It is diffibm determine the evalu-
ation value of the alignment process independently, souh@st evaluations focus
more on compliance and performance measures.
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5.2.1 Compliance Measures

Compliance measures aim to evaluate the quality of the optpwided by a system
compared to a reference output. Even the reference outpiot islways available,
not always useful and not always consensual. The compliare@sures consist of
Precision, Recall, Fallout, F-measure, Overall,.¢tere are their definitions [20]:

Definition (Precision).Given a reference alignment R, the precision of some
alignment A is given by

P(AR) = (R\Q|A) | (17)

It measures a valid possibility for ex-post evaluations.

Definition (Recall). Given a reference alignment R, the recall of some alignment
A is given by

R(AR) = (R‘Q‘A) | (18)

Definition (Fallout). Given a reference alignment R, the fallout of some align-
ment A is given by

_ A= ANR| _ |A\R]
F(AR) = A - (19)

It measures the percentage of retrieved pairs which are palsitive.

Definition (F-measure). Given a reference alignment R and a number between
0 and 1, the F-measure of some alignment A is given by

P(A,R) x R(A, R)
(1—a)xP(AR)+axP(AR)

M, (A,R) = (20)

It is used to aggregate the result of precision and recall.

Definition (Overall). Given a reference alignment R, the overall of some align-
ment A is given by

1
O(A,R)=R(A,R) x <2—m). (22)
It can also be defined as:

| R
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It measures the effort required to fix the given alignment.

5.2.2 Performance Measures

Performance measures compare important features of tbethgs (e.g., speed,
memory and complexity). However, performance measuresradepn the evalua-
tion environment and ontology management system. It iscdiffito get objective
evaluations.

5.3 Which Frameworks Can Be Used in Evaluation

OAEI provides two frameworks that can be used in evaluatadignment and eval-
uation frameworks. The participants can adapt their syst@mad implement Align-
ment API [18] to generate the results. The Alignment API diggpmany services
and new algorithms can be added through the interfaces. Vidteagtion framework
compares the alignment results to generate evaluatiottsesthe Alignment API

provides methods to get evaluation measures such as preaiscall, overall, fall-

out, f-measure directly.

5.4 KitAMO Evaluation Framework

Lambrix and Tan present KitAMO framework for evaluating @ogy alignment

strategies. KitAMO provides an integrated system for canmggevaluation of align-

ment strategies and their combinations [34]. The perfooeasf the strategies or
their combinations are compared. The output of KitAMO is tiuenber of the cor-

rect, wrong and inferred suggestions in a table.
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6 Conclusion and Research Questions

Ontology matching is a quite new area but developing faBarexample, before the
year 2000, 16 publications devoted to matching at varion$erences are collected
on the Ontology Matching website [40]. There are 15 pubilicetin 2001 and the
number grows to 53 in 2005. In this report we try to presentstiage-of-the-art in
ontology matching. We have discussed why we need ontologgimma (Chapter 1),
what ontology matching is and its applications (ChapteD&fferent strategies used
in ontology matching are presented in Chapter 3. Some duorgnlogy matching
systems are compared in Chapter 4. The evaluation measum@stblogy matching
are discussed in Chapter 5.

Ontology matching involves a large number of fields, e.g.cmg learning,
database schema, linguistics, etc. Different strategied in ontology matching (see
Chapter 3) are based on these fields. However, the matchatgnsy still need im-
provement. For example, how to improve the performance asitime consumption,
how to improve accurate similarity.

In section 3.5, we discuss some aggregation algorithms traboee matching
results. However, most algorithms are based on weight wisiohanually defined.
One research question can be: how to combine matchers? &opéx how to set
weight for matcher in the different applications. Is themother way to combine
matchers instead of based on weight?

Until now, there are a few ontology evaluation tools avddabOAEI propose
different measures to evaluate ontology matching (see SgdHowever, it does not
support to evaluate the combination of matchers. How touatalthe combination
of matchers and give suggestion for the combination will he interesting research
guestion.

From the above discussion, we summarizes the followingarebequestions:

1. How to combine different matchers? For example, how towssght for
matchers in different applications. Is there another wagoimbine matchers
instead of based on weight?

2. How to evaluate the combination of matchers and give stggefor the com-
bination?

3. How to improve current ontology matching strategies.(esgstem perfor-
mance, accurate similarity)?
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