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Optimization of Finite Element Grids 
Based on Minimum Potential Energy 
An initial study has been made of a method for optimizing finite element grids, This 
method is based on the minimum potential energy where the nodal point positions ,ire 
also treated as independent variables. Necessary conditions have been obtained for the 
optimized grids. Case studies demonstrate the procedure for a one-dimensional tape'ed 
bar under axial load and for a two-dimensional square membrane subjected to a para
bolic tensile stress. The optimized grids were observed to give improved stress estimaks. 

Introduction 

T, I HE SELECTION of an element grid is one of the most important 
decisions in a finite element analysis and yet little work seems to 
have been done on the subject. To date this selection is based on 
experience. The literature contains much information on dif
ferent types of elements and also on the effect of grid refinements 
[1, 2, 3, 4 ] l on the accuracy of solution. In this study we recog
nize that there are limitations placed on the grid size by the core 
size and speed of a digital computer. The increasing use of non
linear analysis which requires an order of magnitude increase in 
computing time accentuates the need for a coarser grid. Finally, 
another reason for having an optimized grid is to help the analyst 
decide where to distribute his nodes in cases where past ex
perience cannot be used as a guide. I t is one of the hazards of 
finite element analysis that a coarse mesh in a high stress gradient 
region results in an unsafe design. 

In this report we shall study the optimization of grids with a 
fixed number of nodes. The scope of the work does not include 
the use of optimization algorithms. Rather the equations gov
erning the optimization of grids are developed and a trial-and-
error procedure is then used to investigate the implications of the 
equations. 

The principle of minimum potential energy is employed to 
establish the requirements for a global but discrete minimum. 
The criterion used for determining the best grid is also based on 
this minimum. Examples of one- and two-dimensional finite 
element problems are studied in order to illustrate the method. 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Pressure Vessels and Piping Division and pre

sented at the Petroleum Mechanical Engineering Conference with 
Pressure Vessel and Piping Conference, New Orleans, La., September 
17-21, 1972, of T H E AMEKICAN SOCIETY or MECHANICAL ENGINEEBS. 
Manuscript received at ASME Headquarters, March 17, 1972. 
Paper No. 72-PVP-3. 

Theoretical Considerations 
The relationships derived in this section pertain to the dis

placement model of finite elements although similar formulations 
involving equilibrium models could be attempted. For the dis
placement model the principle of minimum potential energy will 
be used to establish the requirements for the "best" minimim 
amongst all potential energies associated with solutions based on 
a predetermined number of specific nodes and elements. 

For a compatible model which satisfies the basic criteria ••>[ 
constant stress states and rigid body motion, convergence In 
energy toward the exact value is known to be monotonic with i he 
degrees of freedom used [5]. The displacements and stress1'' 
converge uniformly and in the mean, respectively. I t is usually 
accepted that for this type of model a "better" solution is one th:it 
produces a lower potential energy or a higher total strain eneiyy 
since the latter is always a lower bound to the exact value. If thu 
criterion is applied to the selection of the best mesh distributi'in 
as well, then the requirements for the "best" solution can lu-
established in the following manner. 

For the displacement model the total potential energy is simply 

•KP = ~ {u\T[K}{u} - \?{P} 

in which 

{wj—:column vector of nodal displacements 
[K]—square positive definite matrix of stiffness influeno1 

coefficients 
{P}—column vector of applied loads 

In equation (1) the matrix [K] is a function of nodal coordi
nates. If {P] are energy equivalent loads then they also beco"'-" 
functions of the coordinates. Consequently 

7Tp = 1Tp(Ui, Xh) 
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Fig. I Tapered bar example 

where the subscript denotes node numbers pertaining to the 
finite element grid. Since the principle of minimum potential 
energy requires that 

5irP = 0 

then 

oirP dwp 
-— dm + -— 5xk 
OUi OXh 

(4) 

where the i summation is over the nodal displacements and the k 
summation is over the nodal coordinates. 

Although the displacement m is determined at the node having 
the coordinate Xi, if these parameters are made independent by 
not prescribing xt, then equation (4) would require that both 

dirp 
= 0 

and 

dirp 

dxk 
0 

Applying equation (5) leads to the well known result 

IK^m} - \Pt] = 0 

The second requirement of equation (6) gives 

(5) 

(6) 

(7) 

(8) 

in which — = 5,-* for all interior points and certain boundaries. 
OX,; 

For general surface boundaries such as shells XJ can be determined 

as a function of re* when k •£ j . The matrix { —- [ can be 
[ OXj ) 

established from the expressions for work equivalent loading on 
ta element. 
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Fig . 2 Effect of taper on op t imum grids 

Previous finite element solutions satisfy only equation (7) since 
the nodal coordinates xn are fixed by the analyst and not allowed 
to vary. 

I t is equation (8) which is the subject of this study. If this 
equation is satisfied simultaneously with equation (7), then the 
absolute minimum potential energy (in the discrete sense) will be 
attained. This will give an optimized arrangement of nodes and 
would constitute an optimum grid for the particular nodes that 
are allowed to move. For a general finite element problem the 
complete optimum grid will require that all nodes be allowed to 
move. The proof that an optimum grid does or does not exist in 
general or even in specific two- or three-dimensional problems 
may be difficult to ascertain. An at tempt at such a proof is out
side the scope of the present study. I t is only conjectured, albeit 
intuitively, on the part of the authors that satisfaction of equa
tions (7) and (8) which gives the best minimum of all potential 
energy approximations possible from any one discrete model will 
give the optimum arrangement of the nodal points. The simul
taneous satisfaction of (5) and (6) requires the solution of two sets 
of coupled nonlinear equations. This is of course difficult to 
achieve and in the following we have adopted an iterative ap
proach to the solution of the problem. Equation (5) is first 
satisfied through solution of the equilibrium equation (7). 

In order to gain some insight concerning the optimization of 
finite element grids, a simple one-dimensional problem was in
vestigated in which the complete requirements for a minimum 
were satisfied. The following section discusses the results. 

Tapered Axial Bar Example 
The tapered bar of Fig. 1 was divided into two and three linear 

displacement elements and subjected to an axial tensile force. 
The requirements of equation (7) and (8) were satisfied for various 
degrees of taper. The optimum locations of the nodes for the full 
range of taper are illustrated in Fig. 2. This figure shows the 
position of x0 for the optimum two element model for various de
grees of taper. Also shown are the optimum positions of Xi and 
x% for the three element model. Superimposed on these results 
is a sketch of the bar with a = 0.2 and the location of xn, Xi and Xi 
for a two and three element model, respectively. These results 
establish that at least for the one-dimensional case the optimum 
was obtained by the iterative procedure. I t is interesting to note 
that, for full taper of a = 1.0 in which a stress singularity exists 
at the tip, the nodes are positioned at the tip. This indicates 
that a minimum potential energy cannot be obtained and the 
grids cannot be fully optimized in such cases. However, the 
process will produce grids that tend toward the minimum and 
thereby provide better solutions (in energy) at any stage. This 
will be discussed further in the two-dimensional problem. I t is 
obvious tha t for K = 0 the bar is straight and the node may be 
positioned anywhere since the exact solution is reproduced in each 
element (constant stress). We have not investigated this de
generate condition. A final point of interest in Fig. 2 is the 
fact tha t the optimum location of XQ (the nodes of the two ele
ment model) lies almost midway between x\ and xi, the two nodes 
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Fig. 4 Original finite element grid 

of the three element structure. Regardless of taper, no node is 
found in the widest half length of the bar. 

An important consideration in finite element analyses is the 
discretization error. One measure of this error is a comparison 
of critical displacements between the discrete model and the 
exact solution. The practicality of obtaining optimum grids 
for direct applications will likely be judged upon the degree of 
reduction in this error. For the tapered bar, Fig. 3 illustrates 
the percentage error in potential energy and tip displacement for 
various degrees of taper. In order to illustrate the importance of 
grid optimization, the optimum grid results are presented along 
with nonoptimized cases. I t is seen that optimized grids reduce 
the discretization error by 50 percent for taper above K = 0.4. 
Results below this taper are all less than one percent. Fig. 3 also 
indicates the possibility that an optimized grid can be more 
accurate than a nonoptimized grid containing more degrees of 
freedom. A two-dimensional problem will be discussed next. 

Plane Stress Square Plate Example 

This example was selected only to explore the possibility of 
applying the above theory to a two-dimensional finite element 
problem. The square plate (see reference [6]) of Fig. 4, subjected 
to a parabolic end load was divided into triangular elements as 
shown. Because of symmetry only one quadrant of the plate 
was modelled. Only four nodes (2, 4, 5, 8) were allowed to move. 
Node 6 was maintained fixed in order to reduce the requirements 
of equation (8) to the following: 

Fig. 5 First modified grid 

Fig. 6 Second modified grid 

i w ' S w - (9) 

For the problem all 
fix,-

dXk 
bjh and 

dxj 

This example has not been fully optimized to the extent it can 
be since it was attempted on an exploratory basis and therefore a 
computational scheme to solve equations (7) and (8) was not em
ployed. The procedure used was basically manual in the sense 
that the displacements were determined from 

[K]{ = [Pi] 

for one grid of rct's and substituted into 

2 ' ' |_cto*J 
Ui\ = I 6*1 

(10) 

(11) 

to give a vector of so called "error" terms. Appendix A contains 
the matrix algebra in equation (11) for the linear displacement 
triangle. The error terms are simply 

e* = 
dTTp 

i>Xk 
(12) 

and therefore the sign of each e* establishes the direction in which 
node h should move. The nodes were moved in these indicated 
directions by an amount based on the relative magnitudes of the 
{ejt} and the total distance available to a neighboring node 
position. All the nodes were moved initially resulting in the 
MOD 1 grid of Fig. 5. je*} were recalculated and the process 
continued with only certain nodes being moved. The third and 
the seventh grids are shown in Figs. 6 and 7, respectively. 

The history of modifications and values of the errors are pre
sented in Table 1. The procedure used here is based on trial and 
error but the results are rather encouraging. 
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Fig. 7 Final modified grid 
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ITEM 

*2 
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"5 

^ 
*a 

tf 
< 
% 

£ 
tf 

ORIGINAL 

21,00 

- 2 5 . 0 0 

- 2 5 . 0 0 

25 .00 

25 .00 

1 9 . 6 7 * 

20.54 

3 7 . 0 3 

- 2 4 . 0 1 

-64.B9 

237.2158 

Table 1 

HOD 1 

20 .00 

- 3 5 . 2 5 

- 3 1 . 2 5 

31 .00 

11 .25 

- 1 8 . 1 0 

0 . 9 2 

- 3 4 . 3 3 

24 .09 

- 0 . 1 0 

240.3140 

Histo 

HOD 2 

22 .50 

- 3 5 . 2 5 

- 2 9 . 6 3 

20 .00 

41 .25 

9 .43 

8.22 

5.64 

- 1 6 . 0 2 

- I B . 3 0 

240.5046 

ry of m 

HOD 3 

23 .00 

- 3 5 . 7 5 

- 3 0 . 0 0 

30 .00 

4 1 . 2 5 

5.66 

5 ,33 

3.16 

- 4 , 4 9 

- 1 7 . 2 0 

240.6688 

odifjcati 

COD 4 

23 .00 

- 3 5 . 7 5 

- 3 0 . 0 0 

30 .00 

45 ,00 

5.75 

5.44 

- 4 . 1 8 

- 4 . 8 1 

11 .40 

240.6984 

ons 

HOD 5 

23 .00 

- 3 5 . 7 5 

- 3 0 . 0 0 

30 .00 

43 .25 

5.72 

5 .43 

- 0 . 8 6 

- 4 , 1 8 

- 2 . 7 6 

240.7134 

HOD 6 

23 .00 

- 3 5 . 7 5 

- 3 0 . 0 0 

30.00 

43 .50 

5.73 

5 .43 

- 1 . 3 1 

- 4 . 5 0 

- 0 . 8 1 

240.7144 

HOP 7 

23 .00 

- 3 9 . 0 0 

- 3 0 . 0 0 

30 .00 

43 .50 

2 .67 

- 0 . 5 1 

- 1 . 1 3 

- 0 . 6 6 

-0 .B3 

240.747H 

M u l t i p l y «11 v a l u a s by 10 . 

Although the seventh modification has error terms far from 
zero, they are considerably smaller than the original values. 
They show consistently that reductions in e* lead to a better 
minimum potential energy (or higher strain energy) and give 
better stresses as illustrated in Table 2. 

I t is interesting to note that the last grid produced triangles that 
tend toward an equilateral shape. Past experience has estab
lished that such triangles give improved results. Certainly, the 
final grid is far removed from the original (a common grid for 
plates) and one tha t few if any analysts would select initially. 

The authors consider this example as a stimulus with respect to 
the ideas outlined above and are currently researching methods of 
automating the procedure. 

Conclusion 
The necessary conditions for an absolute (discrete) minimum 

potential energy in a compatible displacement model of finite 
elements has been stated. An interpretation has been given 
when the number of nodes used is limited and when the nodal 
geometry is allowed to change. When applied to a one-dimen
sional problem the results produced optimum grids when they 
existed. The two-dimensional problem served to illustrate that 
the criterion assumed for producing better solutions was correct. 
Although an optimum grid was not obtained for lack of an auto
mated computer algorithm, the results are sufficiently encourag
ing to warrant additional study. 
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1 

7 
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9 

Tab 

ORIGINAL 

5 . 1 0 ( 2 4 ) * 

4 , 3 B ( - 1 1 ) 

7 . 4 M - 0 . 8 ) 

8 . 3 4 ( - 1 6 . 6 ) 

e 2 Normal stress {ay X 

HOD J. HOD 2 

5 . 2 6 ( 2 0 ) 

6 . 0 0 C - 3 0 ) 

7 . 2 7 < - 3 > 

9 . 1 5 ( - 8 . 5 ) 

i*. 8 8 ( 1 9 ) 

7 . 5 K - 1 2 . 5 ) . 

7 . 4 0 ( - 1 . 3 ) 

9 , 1 0 ( - 9 ) 

10-6) 

HOD 7 

4 . 8 1 ( 1 7 ) 

7 . S 0 ( - 1 2 . 7 ) 

7 . 4 3 ( - l ) 

9 . 2 4 ( - 7 . 6 ) 

EXACT 

4 . 1 1 

8 .59 

7 . 5 0 

1 0 . 0 0 

References 
1 Proceedings of the Second Conference on Matrix Methods in 

Structural Mechanics, Wright-Patterson Air Force Base, Dayton, 
Ohio, Oct. 1968. 

2 Gallagher, R. H., "Analysis of Plate and Shell Structures," 
Application of Finite Element Methods in Civil Engineering, A.S.-
C.E.—Vanderbilt University Symposium, Nashville, Tennessee, 
Nov. 1969. 

3 Felippa, C. A., "Refined Finite Element Analysis of Linear and 
Nonlinear Structures," PhD thesis, Dept. of Civil Engineering, 
University of California, Berkeley, California, 1966. 

4 "Finite Element Methods in Stress Analysis," TAPIR, Trond-
heim, Norway, 1969. 

5 Key, S. W., "A Convergence Investigation of the Direct Stiff
ness Method," PhD thesis, University of Washington, 1966. 

6 Cowper, G. R., Lindberg, G. M., and Olson, M. D., "A Shallow 
Shell Element of Triangular Shape," International Journal of Solids 
and Structures, Vol. 6, 1970, pp. 1133-1156. 

A P P E N D I X 

Derivation of {eh\ for the Constant Stress Triangle 

The constant stress triangle is derived using the linear displace

ment polynomials 

u = Oi + a%x + a3y 
(12) 

i> = a4-(- asx + aaj 

or in matrix form 

u = {R}T{a} (13) 

Substituting nodal coordinates Xh in matrix B leads to the nodal 
displacement matrix of the element, 

{«} = [C]{a] (14) 

such tha t the general displacement interpolation becomes 

u = {B^iCl^lu} (15) 

Since the strain displacement relations are simply derivatives of 

equation (15), the strains are 

{e} = {B}*[C]-i{u} (16) 

The stresses are then 

M = [D}{e] (17) 

Thus far only matrix [C] is a function of nodal coordinates. 

The potential energy is then 

irp = ~{u}T[Crr f {B}'D{B}dV[C]-i{u} - {u}T{F} (18) 
2 J V 

For the constant strain triangle the integrand is a constant scalar 
quantity and equation (18) reduces to 

*", = - {u\nC]~T{B\T[D\{B}[C\-iAt{u) - [u}*{F] (19) 

= j {u\T[k\{u} - {U)T{F\ 

Recalling equation (9) as 
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{«}*[£] {«}-0 (21) 

it is evident that by differentiating by parts 

(22) 

in which A is the area and function of X*. Thickness t is in equa
tion (19) and is of course in [fc]. Note that the last term in equa
tion (22) is the transpose of the second term and also that the 
stress strain relation D and the displacement to strain transforma
tion matrix {B) are independent of the nodal position Xk. 

For a typical triangle with nodes I, m, and n the area is given by 

and the [C] matrix is simply 

Va det. 

1 xi Y, 

1 xm Ym 

.1 Xn F„ 

(23) 

1 
1 
1 
0 
0 
0 

Xl 

Xm 

Xn 

0 
0 
0 

Yi 

Ym 

Y„ 
0 
0 
0 

0 
0 
0 
1 
1 
1 

0 
0 
0 
Xi 

Xm 

Xn 

0 
0 
0 
Yi 

Xm 

Xn 

Consequently equation (22) is a trivial matrix calculation. 
For elements with other than a constant stress equation (11) 

and for a general case equation (8) will have to be calculated 
numerically. However, even in the most general case, all calcu
lations can be performed on a single element at a time basis. 
This follows from the fact that the total potential energy for a 

compatible finite element model consists of the sum of individual 
element contributions. 
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