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Band structure of honeycomb photonic crystal slabs
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Two-dimensional (2D) honeycomb photonic crystals with cylinders and connecting walls have the
potential to have a large full band gap. In experiments, 2D photonic crystals do not have an infinite
height, and therefore, we investigate the effects of the thickness of the walls, the height of the slabs,
and the type of the substrates on the photonic bands and gap maps of 2D honeycomb photonic
crystal slabs. The band structures are calculated by the plane wave expansion method and the
supercell approach. We find that the slab thickness is a key parameter affecting the band gap size,
while on the other hand the wall thickness hardly affects the gap size. For symmetric photonic
crystal slabs with lower dielectric claddings, the height of the slabs needs to be sufficiently large to
maintain a band gap. For asymmetric claddings, the projected band diagrams are similar to that of
symmetric slabs as long as the dielectric constants of the claddings do not differ greatly. © 2006
American Institute of Physics. [DOIL: 10.1063/1.2194119]

I. INTRODUCTION

Photonic crystals have been a major research field for
scientists and engineers, for their capabilities of controlling
light propagation.1 The pursuit of photonic band gaps has
been a major topic in studying photonic band structure” be-
cause many applications of photonic crystals are based on
photonic band gaps. In the band gap region, there are no
optical modes and spontaneous emission. One can control
the light propagation direction in the band gap more easily.
That is why optimizing the size of the band gap is an inter-
esting issue.

Chern et al. have recently proposed a two-dimensional
(2D) honeycomb photonic crystal structure’ (Fig. 1). The
two-dimensional honeycomb photonic crystal without the
walls and also its slab structure was reported earlier, in Refs.
1 and 4, respectively. There are two geometrical parameters
in the two-dimensional honeycomb photonic crystal:3 the ra-
dius of the cylinders and the thickness of the walls. The
reasons to choose such a geometry are that the transverse
magnetic (TM)-type band gaps are favored in an isolated
high dielectric constant () region and the transverse electric
(TE)-type band gaps are favored in a connected lattice." The
cylinders are isolated dielectric medium units and the walls
connect them. The full band gap can be optimized if we
strike a balance between these two characteristics. Chern
et al’ reported a largest full band gap of two-dimensional
photonic crystals in the literature. Very recently, Fu et al’
have done some experiments on honeycomb photonic crys-
tals. They found that the gap frequency and the gap-midgap
ratio do not agree very well with the theoretical work of
Chern et al. The underlying reasons still need further inves-
tigations.

Based on their studies, we have done some further cal-
culations. The technique Chern et al. used is the finite differ-
ence multigrid method. We use plane wave expansion
method as implemented in the MPB pac:kage:.6 Fully vectorial
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eigenmodes of Maxwell’s equations with periodic boundary
conditions were computed by conjugate-gradient minimiza-
tion of the block Rayleigh quotient in a plane wave basis.’
Since in experiments the photonic crystals do not have an
infinite height, we investigate not only two-dimensional
structures but also photonic crystal slabs. The hexagonal lat-
tice slabs without the walls have already been studied
before.*” In our slab case we analyze the effects of the thick-
ness of the walls and the height of the slabs. We also discuss
the substrate impacts.

This paper is organized as follows. First, we will intro-
duce the theoretical formulas about the theory and tech-
niques used in our calculations, including the plane wave
method, supercell technique, and the projected band diagram
for photonic crystal slab calculations in the next section.
Then we will present the results of our calculations for two-
dimensional honeycomb photonic crystals, and honeycomb
photonic crystal slabs in Sec. III. For two-dimensional sys-
tems, we will show the band structures and gap maps. For
slab systems, we will show the band structures and discuss
the geometric and substrate effects. Finally, we will make a
brief summary of our work in Sec. IV.

Il. COMPUTATIONAL METHOD

The band structures are calculated by plane wave expan-
sion method, a frequency-domain method which expands the
fields in the plane wave basis and directly solves the eigen-
states and eigenvalues of Maxwell’s equations, as imple-
mented in the MPB package.6 To analyze in an easier but
exact way, we assume that light propagates in a linear, time-
invariant, lossless, magnetic uniform material (u=1).

The slabs are not perfect three-dimensional photonic
crystals since there is no periodicity in the z direction. We
use the supercell method, which introduces defects periodi-
cally. Since the slabs are periodic only in the x-y plane, we
add the original finite height cell with a sufficient amount of
background region in the z direction. Now it is a three-
dimensional case and takes a longer calculation time. If the
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FIG. 1. The honeycomb structure: r is the radius of the cylinders and d is
the thickness of the walls connecting the cylinders.

background region is large enough and the light is confined
in the central region of the cell and far enough from the
borders, the boundaries will not affect the result too much. In
other words, this technique is very useful for the modes con-
fined in the slab.®

For photonic crystal slabs, there is only two-dimensional
periodicity in the x-y plane and the wave vectors are con-
served in that plane, too. Since the wave vector in the z
direction is not conserved, only the projected band diagrams
on the plane will be plotted. That is, although we are inves-
tigating a three-dimensional system, our band structure only
involves the k points in the x-y plane.

The light cone is an important feature of the projected
band diagram. It is determined by the equation

k
25 = (1)
c n,

where n,. is the refractive index of the cladding. Equation (1)
comes from the concept of total internal reflection. In the
area below the light cone, light propagates within the slab. In
the area in the light cone, light propagates outside the slab
with a radiation loss.

In two dimensions, we always decompose the electro-
magnetic modes into two noninteracting modes: TE (polar-
ization of electric field confined in the plane) and TM (po-
larization of magnetic field confined in the plane) mode. In
slabs the modes are not purely TE or TM modes, but they
can still be classified as vertically even or odd modes with
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FIG. 2. Band structure for two-dimensional honeycomb photonic crystals
with e/gq=13, r/a=0.155, and d/a=0.035. The horizontal dotted lines de-
note the band gap region. The normalized frequency f’=wa/2mc.

J. Appl. Phys. 99, 093102 (2006)

-

[&]

|

(]

32

o

1

he

g 04

®

E

S 0.2r

z —— TE mode
—— TM mode

O n

0 0.1 0.2 0.3
Wall thickness (d/a)

FIG. 3. Gap map for two-dimensional honeycomb photonic crystals with
eleg=13 and r/a=0.155.

respect to the horizontal symmetry plane bisecting the slab.
The H, component has a symmetrical field distribution for
even modes and an asymmetrical field distribution for odd
modes. Besides, for the first-order modes which have no
node in the vertical direction, the field distributions within
the core are very similar to the corresponding modes in infi-
nite 2D photonic crystals. Moreover, in the mirror plane, the
modes are purely TE (or TM) polarized. Therefore we can
roughly regard even modes as being TE-like and odd modes
as being TM-like.”

lll. RESULTS AND DISCUSSION
A. Two-dimensional honeycomb photonic crystals

Figure 2 is the band structure of 2D honeycomb photo-
nic crystals, calculated by plane wave expansion method.
This figure agrees well with the results calculated by multi-
grid method (Fig. 4 in Ref. 3). Here normalized frequencies
(f' =wal/2mc) and wave vectors are applied. From this figure
we can see that for both TE and TM modes, no light within
f'=0.388 to f'=0.492 are allowed in this structure. This
means that there is a complete band gap in this system. We
define a gap-midgap ratio (ratio between band gap width and
midgap frequency) to measure how large the photonic band
gap is. Even if the scale of the system is changed, this quan-
tity remains the same.
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FIG. 4. Band structure for air-bridged honeycomb photonic slabs with
eleg=11.9, r/a=0.155, d/a=0.035, and h/a=0.4.
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FIG. 5. Even mode gap size (as the percentage of midgap frequency) vs slab
thickness of air-bridged honeycomb photonic slabs with e/g,=13, r/a
=0.155, and d/a=0.035.

We plot a gap map by plane wave method to see the
effect of the wall thickness. Figure 3 is the relationship be-
tween gap-midgap ratio and wall width d (with fixed r/a
=0.155). First, we notice that as d/a increases, the frequen-
cies decrease. This is because of a larger dielectric fraction
and average index.' Moreover, in some frequency ranges, the
TE mode gaps and the TM mode gaps overlap with each
other and form complete band gaps. Near d/a=0.035 the
complete band gap is the largest. From gap map we can find
out the optimal wall thickness easily.

B. Geometric effects on honeycomb photonic crystal
slabs

Figure 4 shows the band structure of air-bridged honey-
comb photonic crystal slabs. The slab thickness is one of the
key parameters in determining the band gap size in photonic
crystal slabs. For too thin slabs, the slabs do not provide
sufficiently strong perturbation to the background. The
modes can propagate outside the slabs easily and therefore
the guided modes will be very close to the light cone. For
too-thick slabs, higher-order modes with horizontal nodal
planes lie slightly above the lowest-order mode because of a
little more energy. Therefore no gaps exist.” Figure 5 shows
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FIG. 6. Even mode gap size (as the percentage of midgap frequency) vs wall

thickness for air-bridged honeycomb photonic slabs with e/gy=13, h/a
=0.8, and r/a=0.155.
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FIG. 7. Even mode gap map vs wall thickness for air-bridged honeycomb
photonic crystal slabs with €/gq=13, h/a=0.8, and r/a=0.155.

the gap size as a function of slab thickness. The gap-midgap
ratio is optimized when the slab thickness is equal to 0.8a.

Figure 6 is the gap size figure of honeycomb photonic
crystal slabs and Fig. 7 is the gap map of various wall thick-
nesses of slab structures. It is noticeable that when the wall
thickness is larger than d/a=0.13, the gap size remains the
same while the frequency range of gap differs. We know that
the key parameter affecting the band gap size is the slab
thickness, not the wall thickness. This reveals that the toler-
ance of wall thickness fabrication can be very large. Band
gap size is not sensitive to wall thickness. With the same gap
size, we can obtain different band gap frequencies by tuning
the wall thickness.

C. Substrate effects on honeycomb photonic crystal
slabs

Both symmetric and asymmetric triangular lattices of
circular air cylinders in dielectric slabs have been studied
before.”'*!" Here we focus on honeycomb photonic crystal
slabs. We consider two examples for symmetric photonic
crystal slabs: air-bridged photonic crystal slabs and weak-
confinement symmetric photonic crystal slabs.

Air-bridged photonic structures consist of a thin 2D pho-
tonic crystal in a high-index membrane (for example, silicon)
surrounded by air [Fig. 8(a)]. Here the index contrast be-
tween the core and the cladding is very high so the light is
strongly confined in the slab. However, it is not easy to in-
tegrate into a chip and this is the major disadvantage of this
system.12

Figure 8(b) is an example of weak-confinement symmet-
ric photonic crystal slabs. It consists of a silicon core and
silicon dioxide claddings. If we compare Fig. 9 to Fig. 4, we
can see that if we want to obtain the same order of band gap

E__ _air : Si0,
E" S air -g Si0,

(a) Air-bridged (b) SiO, background

FIG. 8. Side view of symmetric photonic crystal slabs with e/gy,=1 for air
and e/gy,=2.1 for SiO,.
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FIG. 9. Band structure of weak-confinement symmetric honeycomb photo-
nic crystal slabs with h/a=2.0, e/gy=1 for air, e/g,=2.1 for SiO,, and
eleg=11.9 for silicon.

size, the height of the structured slab should be larger. This is
because with the same height of air-bridged structures, the
perturbation photonic crystal provided is not strong enough
and we will not obtain any band gap in this case. On the
other hand, we should provide more perturbation to the back-
ground by adding the height of the slabs.

As for the asymmetric photonic crystal slabs, we con-
sider the silicon-on-insulator (SOI) systems. In a SOI sys-
tem, the lower cladding usually consists of an oxide layer
and the upper cladding consists only of air (Fig. 10). This
structure is easier to integrate onto a chip than a membrane,
but the asymmetry of the structure leads to additional losses
when ¢ of one of the claddings is lower.

Since the slab is not symmetric anymore, the modes can-
not be identified as pure even or odd modes. But if we com-
pare Fig. 11 to Fig. 9, we can see that although there are
some slight differences, we can still distinguish them as
evenlike or oddlike modes. The reason is that the &/¢g, of
upper cladding does not vary a lot in these two cases. There-
fore the modes do not vary very much in the symmetric [Fig.
8(b)] and asymmetric (Fig. 10) structures. The SOI system
behaves in a way similar to the asymmetric one.

IV. CONCLUSIONS

Tuning the frequency range of photonic crystal band gap
is a very important issue in photonic crystal applications. We
have done further studies of the honeycomb photonic crystal
that Chern et al. proposed in 2003. This structure has the
potential of a large complete photonic band gap. Two geo-
metric parameters, namely, the radius of the cylinders and
the thickness of the walls, provide more flexibilities of de-
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FIG. 10. Side view of a silicon-on-insulator system with £/gy=1 for air and
eleg=2.1 for SiO,.
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FIG. 11. The band structure of asymmetric honeycomb photonic crystal
slabs with 7/a=2.0, e/ey=1 for air, €/gy=2.1 for SiO,, and &/gy,=11.9 for
silicon.

signing photonic crystals. For two-dimensional honeycomb
photonic crystals, we have calculated the gap map for both
TM and TE modes and optimize the complete band gap. The
band structure tells us that the complete band gap is large, as
reported before.’

The main topic of this paper is, however, the photonic
bands and gap maps of honeycomb photonic crystal slabs.
For honeycomb photonic crystal slabs, projected band dia-
grams have been calculated. We focus on the guided modes
below the light cone boundary. We find that the band gaps of
two independent polarizations do not overlap with each other
anymore. Our results show that the slab thickness is the key
parameter of the band gap size and we have also determined
the optimal slab thickness. On the other hand, the wall thick-
ness does not affect the gap size very much. We obtain a
saturated gap size when the wall thickness is above a certain
value. This means that the tolerance for slab thickness fabri-
cation is small, but large for wall thickness. We have also
discussed about the effects of slab cladding, including the
symmetric and asymmetric ones. For symmetric claddings,
those slabs with weak-confinement claddings should be
higher to provide stronger perturbation to the background.
For asymmetric claddings, as long as the dielectric constants
do not differ a lot, the guided modes are much like the modes
of symmetric slabs. We can use the asymmetric slab struc-
tures instead of the symmetric ones since asymmetric struc-
tures are more commercially available.

In short, this work reveals various properties of honey-
comb photonic crystal slabs. Hopefully, the optimized pa-
rameters would provide useful tips for experimentalists.
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