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Abstract—In this paper, we investigate the performance of
constellations optimized for transmissions in dual-polar mobile
satellite applications. These four-dimensional constellations (in-
phase and quadrature per polarization) are designed for joint
transmission over the two polarizations. Such constellations
enhance the reliability of the system by providing certain
redundancy into their design. Their performance is compared
with transmission of independent 2D constellations over each
polarization. As performance metrics, the pragmatic achievable
mutual information and the bit error rate have been considered.
The gains serve to indicate the need to further investigate 4D
constellation design and its application in dual-polar MIMO
systems.

Index Terms—constellation design; pragmatic achievable mu-
tual information; dual-polar MIMO; land-mobile satellite chan-
nel

I. INTRODUCTION

In recent years, the continuously increasing demand of
reliable communications at higher data rates has driven the
scientific research towards spectrally efficient communication
schemes that try to take full advantage of the available degrees
of freedom. In this perspective, much effort has been dedicated
to investigate many different diversity techniques, leading, for
example, to space-time codes (STC) [1] and massive multiple-
input multiple-output (MIMO) systems [2]. In satellite sce-
narios, time diversity may be an unpractical solution for
applications with time constraints, while the spatial diversity
required by MIMO systems sometimes cannot be provided
by the satellite link [3]. On the other hand, polarization
diversity has been regarded as an effective replacement for
spatial diversity in satellite applications, where the number of
antennas and their sizes are limiting features of the satellite
transponder and the user terminal [3]. Several works have
considered exploiting dual polarization in the S-band, e.g., [4]
and [5]. The transmit processing in these works is performed
after the modulation, while independent and joint decoding
of streams have been considered. Moreover, these works are
agnostic to the underlying constellation.

On the other hand, constellation design has been considered
in terrestrial MIMO literature. Focussing on noncoherent re-
ception where the receiver has no channel state information
(CSI), finite cardinality constellations have been obtained in
[6] by optimizing the cut-off rate, and the resulting constel-
lations are actually a set of space-time codewords. For addi-
tional results on constellation design in noncoherent MIMO
systems, the reader is referred to [7], [8], and references

therein. Constellation design with imperfect channel estimates
at the receiver is considered in [9] and [10] among others.
In most of the works on constellation design for MIMO
systems, the adopted figure of merit for the optimization is
the pairwise error probability and the union bound [11], [12].
Furthermore, the designed constellations are obtained by using
standard constellations [13] or lattices [14]. Multidimensional
constellation design has been a popular topic in the past,
especially concerning the asymptotic performance when the
number of dimensions grows large [15]. A thorough analysis
of the trade-off among shaping gain, peak-to-average power
ratio, and constellation-expansion ratio for an arbitrary number
of dimensions can be found in [16].

In the paper, we focus on assessing the performance of
constellations for dual-polar satellite systems serving mobile
users. Contrary to the aforementioned approach, we assume
no CSI at the transmitter and perfect CSI at the receiver.
Since the transmitter does not have CSI, it assumes an additive
white Gaussian noise (AWGN) channel for the design of four-
dimensional (4D) constellations [17], where the number of
dimensions is given by the number of components (in-phase
and quadrature) used over the two polarizations. Moreover,
since the receiver has full CSI, a joint processing of the two
streams is considered. Such a setting can be construed as
the traditional dual-polar MIMO, with constellation design
implying transmit processing. Further, unlike the cited works
on constellation design in MIMO systems, in this paper
the main figure of merit is the pragmatic achievable mutual
information (PAMI), as done in [18]. Such a choice allows for
a joint optimization of the symbols and their labels, which is
of paramount importance for multidimensional constellations
of practical use [17]. Indeed, most of the recent works on mul-
tidimensional constellations assess the performance in terms
of symbol error rate or in uncoded systems [19], neglecting the
design of a suitable labelling for the constellations. Moreover,
the gain promised in uncoded systems usually disappears in
coded systems, becoming sometimes a loss because of the
unsuitability of classical mappings [17].

In the following, we assess the performance of 4D constella-
tions obtained in three different ways: as Cartesian product of
standard 2D constellations (which is equivalent to transmit-
ting independently over the two polarizations or performing
spatial multiplexing [3]), as Cartesian product of numerically
optimized 2D constellations (as in [18]), and by means of an
optimization performed directly in 4D (as in [17]). For all the
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considered constellations, we investigate the performance over
different channels commonly used in satellite communications.
In [17], only AWGN was considered with focus on spectral
efficiency, while this paper explores the idea of using the
constellations to enhance reliability and the system robustness
against fading. Numerical results are obtained for a variety
of channels, and interesting parallels with dual-polar MIMO
systems are eventually drawn. The results of this work indicate
that gains can be obtained in dual-polar MIMO satellite
systems by considering constellation design as being integral
towards exploiting polarization diversity.

In this paper we adopt the following notation: normal lower-
case symbols for scalars, bold lower-case symbols for vectors,
bold upper-case symbols for matrices, and we denote with .T

the transpose operator.

II. SCENARIOS, MODELS, AND FIGURE OF MERIT

A. Considered Scenarios

We consider a generic dual-polarized broadband satellite
scenario that can be seen as an abstraction of many different
practical satellite applications (e.g., Inmarsat S-band mobile
services, as well as Fleet and Iridium Pilot for maritime
applications). Such an abstract scenario can be specialized
to a particular application simply by choosing an appropriate
channel model. For example, mobile satellite services (MSS)
in the L- and S-bands require the channel described in [20]
and [21], whereas in the Ka-band the channel model can be
the one proposed in [22] and [23]. Without loss of generality,
we assume the polarizations to be circular, and left-hand (LH)
or right-hand (RH) oriented.

B. System Model

The considered system model is depicted in Fig. 1. The
information bits {bn} are encoded by a channel encoder and
then mapped into the information symbols {xk} belonging
to a finite N -dimensional constellation χ. In the following we
consider only constellations with M = 2m elements, which are
referred to as constellation points or transmitted symbols. The
transmitted symbols are associated to the bits at the input of the
modulator through the one-to-one labelling µ : χ→ {0, 1}m.
For any given symbol xk, we denote by µi(xk) the value of the
i-th bit of the label mapped to it. Since our aim is to use both
polarizations jointly, we consider symbols belonging to con-
stellations with N = 4 dimensions (one real and one imaginary
component per polarization). Nevertheless, the transmission
on the physical channel has to be done separately for each
polarization. Therefore, a projection of the selected 4D symbol
xk onto two orthogonal 2D planes needs to be performed. The
result of such a projection are the 2D projected symbols xk,RH
and xk,LH which are to be transmitted on the RH and LH
circular polarizations, respectively. The projection operation
is peculiar of dual-polar systems using non-Cartesian-based
4D constellations. Indeed, systems using Cartesian-based 4D
constellations are equivalent in principle to dual-polar MIMO
systems with spatial multiplexing, which do not require any
projection because the projected 2D constellations would be
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Fig. 1. System model.

identical to the 2D constellations chosen for the construction
of the 4D constellation, as explained in Section III.

In the following, we assume the information symbols {xk}
to be independent and uniformly distributed random variables.
It is worth noting that, depending on the chosen 4D con-
stellation χ, the projected symbols xk,RH and xk,LH may
have a non-uniform probability distribution (see, for example,
[17] and [19]) and may be correlated [16]. We denote by
xk = [xk,RH , xk,LH ]T the vector containing the 2D projected
symbols transmitted on the two polarizations at time k.

The channel is modeled by the 2×2 matrix Hk and the
distribution of its entries depends on the considered scenario.
The discrete-time received signal can be written therefore as

yk = Hkxk +wk

where yk = [yk,RH , yk,LH ]T denotes the received symbols,
and wk = [wk,RH , wk,LH ]T the samples of the AWGN
process introduced by the channel. On each polarization, we
assume the additive noise component wk,q to be a circularly-
symmetric complex Gaussian random variable with mean zero
and variance σ2

n per component, where q identifies the two
polarizations. Moreover, we consider symbols, AWGN, and
fading realizations to be mutually independent.

The possible correlation between xk,RH and xk,LH causes
a performance loss if the detection is undertaken separately
on each polarization. Therefore, only joint detection over the
polarizations will be considered in the following. The chosen
detection strategy is the soft maximum likelihood, providing as
output of the detector, at every time k, the set of M a posteriori
probabilities {P (xk|yk)} [24]. These probabilities are then
converted into log-likelihood ratios Ln by the demapper and
passed to the soft decoder for the final decoding process.
Finally, perfect CSI is assumed to be available at the receiver
but not at the transmitter.

C. Channel Models

For the ease of notation, we consider the generic time-
varying fading channel denoted in Fig. 1 by

Hk =

[
hk,RR hk,LR
hk,RL hk,LL

]
(1)

where the distribution of the entries depends on the chosen
channel under investigation. Namely, the performance assess-
ment is done over fading and land-mobile satellite (LMS)
channels. So as to assess the performance in a variety of



fading conditions, a Rice channel has been used for excellent
and medium line-of-sight (LOS) signal power, while the
Rayleigh channel has been adopted for the totally non-line-of-
sight (NLOS) condition [24]. For the Ricean fading, we use
the model described in [5], which also includes cross-polar
discrimination (XPD) and mobility effects. As an ideal case,
we consider Rayleigh flat fading without cross-polar effects
[24]. On the other hand, the LMS channel is a common as-
sumption for mobile satellite applications and is characterized
by Rayleigh-distributed multipath and lognormally distributed
shadowing [20]. In particular, we employ the channel model
detailed in [21], which describes the time variations of the
channel by means of a two-state Markov chain. Moreover,
it also includes: (i) shadowing effects (by resorting to the
Loo distribution [25]), (ii) XPD effects stemming from the
environment and the antenna characteristics, (iii) polarization
correlation for large scale fading (which is lognormally dis-
tributed) and for the small scale fading (which is Rayleigh
distributed), as well as (iv) temporal correlation induced by
mobility [21]. For further details on the Rice and the LMS
channels, the reader is referred to [5] and [21], respectively,
and references therein.

D. Pragmatic Achievable Mutual Information

It is well known that the performance of a system is
sensitive to the labelling when detection and decoding are
performed separately [26]. Therefore, a careful constellation
design needs to take the labelling into account, leading to
a joint optimization of the constellation symbols and the
corresponding labels. Thus, we choose the PAMI as objective
function of the optimization procedure (as well as performance
metric along with the bit error rate). Indeed, for a given
constellation χ and the corresponding labelling µ, the PAMI
in [26] is defined as

Ip(χ, µ) =

m∑
i=1

I(µi(x); y) (2)

where I(.; .) is the mutual information function and µi(x) is
the random variable indicating the i-th bit associated to the
transmitted symbol. For the fading channels with perfect CSI
at the receiver, Eq. (2) can be written as

Ip(χ, µ) =
1

M

m∑
i=1

∑
x∈χ

Ew,h

{
log

P (y|µi(x))
P (y)

}
(3)

where the expectation is taken with respect to both the AWGN
and the fading distributions. Since in most cases a closed-form
expression for the expectation in (3) is not known, numerical
methods are usually adopted to evaluate (3).

III. 4D CONSTELLATION DESIGNS

The simplest way to obtain a M -ary 4D constellation is
by taking the Cartesian product of two 2D constellations
(e.g.,

√
M -QAM or

√
M -PSK standard constellations), called

constituent constellations [16]. Since the projection onto a 2D
plane can be viewed as the inverse of the Cartesian product, in
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Fig. 2. Optimized 2D 8-ary constellation.

this case the two 2D projected constellations simply become
the constituent 2D constellations. On the contrary, if the 4D
constellation is not obtained as Cartesian product of two
2D constellations, then the projection onto a 2D plane may
induce a shaping in the projected 2D constellation [17]. The
possible shaping generated by the 2D projection introduces a
correlation between the projected symbols xk,RH and xk,LH ,
which is independent of the correlation introduced by the
channel.

In the following, we consider 64-ary constellations in order
to exploit the constellations provided in [17]. Optimized
constellations with a lower cardinality (i.e., 16-ary constel-
lations) show, over the AWGN channel, a negligible gain over√
M×
√
M -QAM that does not justify further investigations

[17]. On the other hand, higher order constellations are left for
future works. Our benchmark constellations are constructed
by taking the Cartesian product of two 8-QAM or two 8-
PSK constellations. This means that each of the eight symbols
belonging to a projected 2D constellation (8-QAM or 8-
PSK) can be associated to any other symbol belonging to an
identical constellation on the other polarization to form a 4D
symbol (i.e., the 2D projected constellations are independent).
These constellations are equivalent to the traditional spatial
multiplexing in dual-polar MIMO [3]. We denote the resulting
4D constellations respectively by 8×8-QAM and 8×8-PSK.

However, the performance of Cartesian-based constellations
can be improved by an accurate design of the constituting
2D constellation [17]. To this purpose, we choose the opti-
mized 2D constellation presented in [17]. This constellation
maximizes the PAMI over the AWGN channel at a signal-to-
noise ratio equal to 10 dB with an average power constraint.
Since the transmitter has no CSI, cross-polar effects have
not been taken into account in order to make the optimized
constellation independent of the environment. The shape of
this 2D constellation is shown in Fig. 2 and the resulting 4D
constellation, obtained by means of the Cartesian product, is
denoted by 8×8-OPT.

Further improvement of the performance can be achieved by
a joint optimization over the four dimensions. The coordinates
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of the resulting optimized 4D constellation are reported in
[17] and its 2D projected constellations are shown in Fig. 3.
In the following, we denote this 4D constellation by 64-OPT.
As it can be observed in Fig. 3, the 2D projected symbols
onto the two polarizations are correlated. Indeed, most of the
64 4D symbols have a 2D projection in one of the eight
clouds at the center of the constellation, whereas some of
them have an isolated 2D projection. This implies that it is
possible to correctly detect the original 4D symbol when an
isolated 2D symbol is correctly detected on one polarization,
even if the corresponding 2D symbol on the other polarization
is completely corrupted by the channel. This peculiarity of
the 4D design, which is not present in the Cartesian-based
designs, improves the robustness of the system against the
fading. However, this does not hold any longer if the correctly
detected 2D symbol belongs to one of the eight clouds: in this
case, the information conveyed by the other polarization is
necessary to correctly identify the original 4D symbol. This is
the main reason why a simpler detector operating separately on
the two polarizations (i.e., treating the received samples from
different polarizations as independent) would have a poorer
performance than the optimal detector even when the channel
does not introduce any cross-polar correlation. A performance
comparison over the AWGN channel among these optimized
4D constellations with respect to other 4D constellations from
the literature is also presented in [17], where significant gains
are shown.

IV. NUMERICAL RESULTS

In this section, we first evaluate the PAMI for the chosen
constellations, and then validate their performance over all
the considered channels in terms of bit error rate (BER). The
assumed abstract scenario is the downlink of a typical mobile
satellite service.

A. PAMI Comparison

A Monte Carlo approach has been adopted in order to get
reliable estimates of the expectation in (3). More precisely,
3×105 channel realizations have been simulated. For the Rice
and LMS channels, a XPD equal to 23 dB has been assumed,
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which is a value typical for professional equipment, and has
been included in the channel realizations as in [21]. Moreover,
the polarization correlation coefficients that characterize the
small-scale fading have been assumed equal to 1 (for the
transmit antennas) and 0.2 (for the receive antennas), as in
[5]. Since we are interested in assessing the performance in the
worst case scenario, for the LMS channel only the BAD state
has been considered [20]. Therefore, the triplet of parameters
required by the Loo distribution of the LMS model has been
set to values typical for a urban environment with heavy shad-
owing, namely (α,ψ,MP ) = (−8.2585, 3.1711,−12.8542)
dB, where α and ψ are respectively the mean and the standard
deviation of the lognormal distribution, and MP is the average
power of the Rayleigh component. A time interleaver is
typically used in LMS channels to render the channel relatively
fast fading. However, we do not consider a time interleaver
towards understanding the robustness of the proposed scheme.
Moreover, the Doppler effect caused by the mobility has been
included by considering a carrier frequency equal to 2.2 GHz
and a mobile speed of 50 km/h as in [5].

For a PAMI around 5 bits/ch. use, 64-OPT shows a gain
around 0.8 dB over 8×8-OPT over the Rayleigh channel, as
shown in Fig. 4. This gain increases to 1 dB over 8×8-QAM,
and even more over 8×8-PSK. It is worth noting that over
the AWGN channel with the same PAMI, the gain provided
by 64-OPT over 8×8-OPT is not exceeding 0.2 dB, as shown
in [17]. Such a result confirms that the correlation over the
polarization enhances the reliability of the system.

Over the Rice channel, the gains provided by 64-OPT
progressively reduce: down to 0.4 dB over 8×8-OPT, and 0.7
dB over 8×8-QAM (at a PAMI around 5 bits/ch. use). This is
caused by the relative reduction in the power of the multipath
component (i.e., for increasing values of the K-factor of the
Ricean distribution). This behavior is shown in Fig. 5 and
Fig. 6. In Fig. 7, it can be seen that the shadowing further
reduces the gains provided by the 4D optimization: only 0.2
dB over 8×8-OPT, and 0.4 dB over 8×8-QAM.
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B. BER Evaluation

In order to validate the results provided by the PAMI, we use
a LDPC code with rate R = 5/6 and code length n = 64800
bits in all scenarios. As predicted by the PAMI computations,
the 64-OPT constellation is more robust against the fading
than all the other constellations. Moreover, the gains obtained
in terms of PAMI (and shown in Figs. 4-7) relative to 64-OPT
over the other constellations can be seen in the BER curves
as well, as reported in Figs. 8-11.
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C. Relations to Dual-Polar MIMO

Exploiting dual polarizations to incorporate the MIMO
paradigm has been studied in a number of works including
[3]-[5]. Spatial multiplexing has been seen as a predominant
candidate for satellite-only S-band applications [4]. The use
of the Cartesian product of 2D constellations on the two
polarizations coupled with joint detection of the two streams
leads to the traditional MIMO paradigm with well known
constellations. Further, the use of 8×8-OPT would still be
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a dual-polar MIMO spatial multiplexing system. However,
the constellation is chosen differently in this case, and this
provides additional gains over spatial multiplexing. Finally, the
use of 64-OPT can be construed as a polarization code which
exploits the two polarizations to yield SNR gain (coding gain)
by improving the robustness of the system against the fading.
It would be interesting to extend the constellation design in
the temporal dimension for use in conjunction with STC like
the Golden code [5]. This is left for future work.

V. CONCLUSIONS

In this paper, we have compared the performance of a 64-ary
optimized 4D constellation with independent transmissions of
two 2D constellations on the two polarizations. Three channel
models have been considered: the Rayleigh flat fading channel,
the Rice fading channel, and the LMS channel. Our results
indicate that the optimized constellation in 4D outperforms
all the Cartesian-based constellations. This also indicates that
the 4D optimization provides a higher robustness against the
fading, stemming from the additional correlation introduced
between the polarizations. An even better performance is ex-
pected if the fading statistics and other channel characteristics
(such as the polarization correlation and the mobility effects)
were considered during the constellation design. Therefore,
future investigations will be focused on an environment-
dependent constellation design taking into account the partial
CSI available at the transmitter. Finally, by casting the contri-
bution in the dual-polar MIMO framework, the paper indicates
the importance of constellation design while opening up new
avenues for joint constellation-polarization-time designs.
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