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Abstract

We study the problem of minimizing the usage of electrical energy in rail systems. The
aim is to determine a train speed profile that minimizes energy consumption given a time
schedule. In collaboration with an industrial partner, we propose a new model that is more
complete than the ones existing in the literature, in particular the model takes into account
several non-linearities that emerge in a real setting. First, we formulate our problem within
the framework of optimal control where our solution approach consists in discretizing the
control problem and solving numerically the finite-dimensional optimization problem that
is obtained out of the discretization. To do so we develop a platform based on AMPL and
Ipopt that allows a fast and accurate solution. We then reformulate the problem within the
framework of Dynamic Programming which allows to get the optimal action for any initial
point. Solving the Dynamic Programming is very time consuming and we develop a C++
code to solve some simple examples. We finally implement our solution in a train simulator
in order to estimate the energy reduction obtained in several real examples provided by
INGETEAM S.A. The results obtained by the simulator indicate that the energy reduction
is between 8% and 25%. We thus conclude that our first approach represents a scheme
that could be implemented by industry to solve real-life cases.

1 INTRODUCTION

The problem of reducing energy consumption in railway systems has received lot of attention
in recent years because of its known impact on economy and environment; see, e.g., [1010] for
a monograph. This task can be accomplished by providing train drivers with speed profiles
that optimize the usage of electrical power while satisfying some timetables. The problem of
finding the optimal speed profiles can be formulated as an optimal control problem where the
utility function is the consumed energy and the control actions are the power and brake levels
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Maximum acceleration power= Pmax, brake= 0

Speed-Holding power s.t. dv
dt = 0, brake= 0

Coast power= 0, brake= 0

Maximum brake power= 0, brake= Qmax

Table 1: Optimal Driving Modes

selected by the driver. Unfortunately, given the complex relations between train motion and
energy consumption, which are non-linear, analytical results are scarce and are available only
in simplified cases.

However, we can mention the following very relevant results. In [88], it was shown that for
solar powered cars the optimal speed profile is a combination of four different driving modes.
This result was adapted (see [1010]) to show that the optimal speed profiles of trains are also
a combination of four driving strategies (see Table 11): maximum power, speed-holding, coast
and maximum brake. A simplified model was considered in [77] and the existence of an optimal
solution of the optimal-control problem is shown by applying Pontryagin’s Maximum principle.
In [1313], it is shown that the optimal speed profile is unique in simple cases such as level-track
trajectories, i.e., a completely flat path between origin and destination. The complexity of
the problem reduces considerably by combining the uniqueness result and the fact that the
solution contains only four possible driving modes, since now the problem reduces to finding
the switching points.

Given the complexity of the problem mentioned above, a large deal of effort has been
devoted to the development of approximate numerical schemes and algorithms. From a com-
putational perspective, an important stream of research has been based on the dynamic pro-
gramming approach; see, e.g., [44]. In this case, the decision process is simplified by dividing
the problem into simpler subproblems. This approximation implies a great computational
cost. Another research direction aims at designing speed profiles that are energy efficient
by exploring all the possible combinations allowed by the so-called ATO commands. The
ATO commands are not designed for minimizing energy but for passenger comfort reasons.
Measurements in Metro de Madrid show that the reduction in energy can be up to 13%, see
[66].

The goal of this paper is to provide a robust and efficient computational framework to find
an optimal speed profile that train drivers should follow to optimize the usage of electrical
energy within a given time schedule. We formulate this energy minimization problem for
one train in two different ways: (1) as an Optimal Control (OC) problem, (2) as a Dynamic
Programming (DP) problem. Unlike the models that have been studied in the literature, our
approach takes into account relations between train motion and energy consumption that are
more realistic. In particular, the characteristic curve of the tractive and brake efforts that we
consider have a piece-wise non-linear behavior that is train-dependent. This behavior is typical
in vehicles with electric motor. It turns out that these relations have a significant impact on
the structure of the optimal solution and yield more accurate results. In our approach, we
also take into account other essential aspects such as resistance to air, gradient force, comfort
constraints, maximum acceleration and different maximum speed limits.

Given the non-linear nature of all the features mentioned above, an analytical solution of
the resulting problem is extremely difficult to obtain. Therefore, we propose two methods
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of a very different nature to solve the problem numerically. In the first approximation we
perform a discretization of the model converting the continuous-time model into a standard
(finite-dimensional) non-linear optimization problem. This allows us to obtain efficiently an
approximate solution of the original continuous-time problem using well-established interior-
point methods from optimization theory. A software prototype has been built using AMPL
[1111] and Ipopt [33]. In the second approximation we discretize all the variables considered
in the model obtaining a discrete state space and we adapt it so that we get a recursive
objective function where the cost adds up in time. This reformulation of the model within
the framework of Dynamic Programming can be solved by backward recursion and an optimal
speed profile can be obtained for every possible initial point of the state space. This can
be very useful, since once the DP is solved, the driver could instantaneously know how to
react to any change or modification along the trip (a longer break than expected, lowering
the speed due to bad meteorological conditions etc.). Solving the DP numerically can be very
expensive computationally. In [44] they allow only 10 possible values for the control variables
to reduce the computational cost, in our case we use the information of the solution obtained
by AMPL/Ipopt to reduce cost without adding any restriction to the control variable. We
have developed a software package in C++ that allows to solve real life examples, although
the accuracy is not good enough for a possible implementation in a real system. We believe
this is a very promising research avenue for the future, since more research is needed in order
to make this technique suitable for implementation in industry.

To evaluate the impact of our study, we compare our speed profiles with real speed profiles
taken from a metro of a major city in Europe and provided by INGETEAM Traction S.A.
This comparison is performed on top of a train simulator developed by INGETEAM Traction
S.A. The results obtained by this simulator over several trip profiles indicate that the energy
reduction of a typical trip is between 8% and 25%.

The main contributions of the paper are: (i) the development of a new model that captures
more closely, than the ones available in the literature, the real and desired dynamics of the
system for short journeys as in metro systems, (ii) the development of a numerical platform
based on AMPL and Ipopt that allows a fast and accurate solution, (iii) the development of
a C++ code that provides an optimal solution under any possible circumstance, and (iv) the
implementation of our solution in a train simulator in order to estimate the energy reduction
obtained in several real examples.

The rest of the paper is organized as follows. In Section 22 we develop the model, in
Section 33 we briefly describe the main numerical methods to solve control problems in the
context of railway systems, in Section 44 we introduce our first solution approach that is based
on a discretization of the original problem, in Section 55 we present our second approach that
consists on the discretization of the whole state space and the definition of a recursive objective
function, and in Section 66 we present the numerical results obtained with the train simulator.
Finally, Section 77 draws the conclusions of our work and outlines future research.

2 MODEL DESCRIPTION

As in other works, e.g., [1010], we assume a point-mass train. Let p(t) ≥ 0 be the power applied
at time t to accelerate the train and q(t) ≥ 0 be the power at time t to decelerate it. Then,
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the dynamics of a point-mass train is described by the following state equations,

dx(t)

dt
= v(t), x(0) = 0, (1)

m
dv(t)

dt
=
p(t)− q(t)

v(t)
−R(x(t), v(t)), v(0) = 0, (2)

where x(·) denotes the position, v(·) the speed and R : R2 → R is the counterforce given by

R(x, v) := m (a+ bv + cv2) +mg sinα(x), (3)

where a, b and c are drag coefficients, m is the mass of the train, g is the gravitational accel-
eration and α(x) is the slope of the track in point x. The first summand in (33) captures the
air resistance and is known as Davis formula, and the second summand corresponds to the
gradient force.

The objective is to find function (p(t), q(t)), i.e., a power profile, that minimizes the energy
consumed by a train in a journey while ensuring that the train reaches destination in no more
than T time units. This yields the following optimal control formulation

min
p(t),q(t),v(t), ∀t∈[0,T ]

∫ T

0
p(t) dt, (4)

subject to state equations (11) and (22),

x(T ) = X, (5)

p(t)q(t) = 0, (6)

v(t) ≤ Vmax, (7)

the comfort or jerk constraints ∣∣∣∣d2v(t)

dt2

∣∣∣∣ ≤ 0.8 m/s3, (8)

−1.2 m/s2 ≤ dv(t)

dt
≤ 1.15 m/s2, (9)

and the tractive/brake effort constraints,

p(t)

v(t)
≤


Emax if v(t) < ω0,
Emaxω0
v(t) if ω0 ≤ v(t) < ω1,

Emaxω0ω1
v2(t)

if ω1 ≤ v(t),

(10)

q(t)

v(t)
≤

{
Emax if v(t) < ω2,
Emaxω2
v(t) if ω2 ≤ v(t),

(11)

p(t), q(t), v(t) ≥ 0, (12)
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where Emax is the constant that defines the maximum tractive effort and brake effort and the
values ω0, ω1, ω2 represent the speed at which the characteristic curve of the tractive effort
changes.

The incorporation of constraints (1010)-(1111) represent an important contribution of the pa-
per. Their expression show that the power consumed when accelerating or braking the train
strongly depends on the speed of the train and on other train-dependent coefficients. In
existing works (see for example [1010], [1313]) (1010)-(1111) have the more simple form:

p(t) ≤ Pmax and q(t) ≤ Qmax, (13)

where the constraints become a restriction in the useable power directly. Making this as-
sumption yields the possibility of giving power without taking the speed of the train into
account.

To illustrate the impact of constraints (88)-(1111), we consider a real case-study for a short
trip. This refers to a track which presents uphill inclines during all the ride, see Figure 11.
Figure 22 shows three different profiles for tractive effort and speed: i) the real profiles (RP),
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Figure 1: Track profile for example 1.

which are measured in a real example, ii) the profiles obtained by applying the model in [1010],
and iii) the profiles obtained with our model (LAAJR). We plot the profiles obtained in the
first 30 seconds of the ride (the ones for all ride will be described in Section 66). In Figure 22
we highlight the impact of constraints (88)-(1111). Due to the fact that all the constraints are
considered, the speed profile obtained in LAAJR captures the physics of train very closely. In
Figure 2a2a we observe that the simplified model, as used in [1010], does not capture the dynamics
of trains accurately. Since RP and LAAJR are close, we conclude that the current profile used
in reality, in the first 30 seconds of the ride, is very close to the optimum.

3 NUMERICALMETHODS FOR OPTIMAL CONTROL PROB-
LEMS

As we have explained in the introduction, given the complex relations between train motion
and energy consumption, analytical results are available only in simplified cases. Due to this
difficulty, a large deal of effort has been devoted to the development of approximate numerical
schemes and algorithms. In this section we briefly mention some of the most important
approaches undertaken within the context of optimization of railroad systems. We refer to,
e.g., [11] and [55] for a more exhaustive overview on numerical methods applied to optimal
control.
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Figure 2: Comparison between the three profiles for a real example.

3.1 Direct Methods

Direct methods do not require a previous knowledge about the structure of the solution. The
first step is to discretize the problem to obtain a finite dimensional problem and then Nonlinear
Programming (NLP) techniques can be used. The idea of these techniques is to solve simpler
subproblems that converge to the original solution in a finite number of iterations or in the
limit. Two different type of algorithms are addressed:

1. Interior-Point Method and Penalty Function methods: The problem is reformulated to
convert it into an unconstraint optimization problem. Afterwards, unconstraint opti-
mization methods can be used to find a solution, such as gradient based methods.

2. Newton-like Methods: The problem is solved by finding a point that satisfies the Karush-
Kuhn-Tucker conditions (necessary conditions for optimality). In [22] quadratic program-
ming was used to solve the simplified model of trains introduced in [1010], but we note
that the method did not converge for various examples.

3.2 Indirect Methods

Indirect methods require to have knowledge about the structure of the solution, because a good
initialization is needed. As an advantage, the discretization of the problem is not needed. The
most important method is the so-called shooting method. The idea is to iteratively improve
the estimates of the adjoint values, the Lagrange multipliers and the terminal time, so that the
Euler-Lagrange equations are satisfied. In [99], a shooting method is used to find the switching
points at which the driving mode is changed from speed-hold to maximum power or coast.
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4 SOLUTION APPROACH: BY DIRECT METHOD

As explained in the introduction, our aim is to develop a numerical scheme that could be
implemented in a metro in order to assist the driver. Thus, the solution approach needs to be
fast, efficient, robust and completely automatic, that is, without requiring any initialization or
human assistance. This motivates us to approximate the optimal control as a finite dimensional
optimization problem, as said in Section 3.13.1.

However, in contrast with previously presented schemes, we propose to solve the finite-
dimensional optimization problem directly. This approach was perhaps too time consuming
a few years ago, but due to the tremendous technological progress of recent years we will
show that it is possible to solve real-life examples in a few seconds with a personal computer.
There are three main steps in our approach. First, we perform a discretization of the original
continuous-time formulation. Then, we formulate the problem as a finite-dimensional opti-
mization problem and, finally, we develop a software prototype to solve the problem based
on AMPL and Ipopt, which are consolidated tools for the formulation and the solution of
finite-dimensional optimization problems.

4.1 Discretization

The problem needs to be adapted due to the fact that both the gradient force and the speed
limits are determined by the position at which the train is located. Therefore, the state
equations and the cost functional are reformulated in order to make them space dependent.
The conversion of the continuous optimal control problem is then performed by discretizing
the state space uniformly.

Let N be the number of space stages in the interval [0, X] of length ∆x = X/N . Then, by
using a midpoint rule for the discretization of the cost functional, we obtain

J(−→p ,−→v ) :=

N−1∑
`=0

p` + p`+1

v` + v`+1
∆x,

and using Euler’s method for the state equation, we obtain for ` = 0, . . . , N − 1,

m
v`+1 − v`

∆x
=
p` − q`
v`

−R(`∆x, v`),

subject to the initial and boundary conditions,

v0 = 0, vN = 0, t0 = 0, tN = T,

4.2 Finite dimensional constraint optimization

After the discretization process the following nonlinear optimization problem is obtained,

Problem (P1) : min
p`,q`,v`,`=0,...,N

Jx0,v0 (14)

subject to for ` = 0, . . . , N − 1 v`+1

t`+1

∆t`

 =

 v` + ∆x
m

(
p`−q`
v`
−R(`∆x, v`)

)
t` + ∆x 2

v`+v`+1

t`+1 − t`

 ,
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p`q` = 0, (15)

v` ≤ Vmax(`∆x), (16)

∣∣∣∣(v`+1 − 2v` + v`−1)v2
`

∆x2

∣∣∣∣ ≤ 0.8, (17)

−1.2 ≤ (v`+1 − v`)v`
∆x

≤ 1.15, (18)

p`
v`
≤


Emax if v` < ω0,
Emaxω0
v`

if ω0 ≤ v` < ω1,
Emaxω0ω1

v2`
if ω1 ≤ v`,

(19)

q`
v`
≤

{
Emax if v` < ω2,
Emaxω2
v`

if ω2 ≤ v`,
(20)

p`, q`, v` ≥ 0,

for all ` = 0, . . . , N . Let P `max denote the maximum traction power that can be allocated at
step ` while the constraints (1616)-(2020) are satisfied, respectively, let Q`max be the maximum
braking power that can be allocated at step ` making sure constraints (1616)-(2020) are satisfied.
The formulated model is solved using Ipopt and we obtain the optimal speed and power profiles
that are energy efficient.

4.3 Implementation and Results

We program in AMPL/Ipopt the optimization problem (P1), and we solve it in a Core i3 @ 3.2
GHz, 4GB AM 1333 MHz DDR3 computer. Here, Ipopt (see [33]) is a nonlinear optimization
solver that provides with a local optimal solution, it is programed in C++ and it is open
source, it requires third party code in order to compile it, such as AMPL (see [1111]). AMPL is
a mathematical programming language that provides automatic differentiation functionality
and it allows the programmer to model with the same mathematical notation used in regular
optimization problems. With this software prototype that we have built we analyse a large
variety of track profiles, some taken from examples available in the literature, and some other
real profiles provided by INGETEAM S.A. Based on the extensive numerical computations
carried out we observe that the obtained power profiles are characterized by four possible
actions: maximum power, speed hold, coast and brake, see Table 22. This observation is known
to hold for a simplified version of the problem (see [1010]), but remains to be proven under the
more realistic constraints. We note that the value of power when maximum acceleration is
applied in Table 22 is the maximum that the constraints in tractive efforts, comfort, maximum
speed and maximum acceleration allow, i.e P `max, analogously the value for q will be computed
by taking the maximum that these constraints allow, i.e Q`max, see Figure 22.

We finally note that in all real examples provided, the computation time required is less
than 8 seconds, which makes the method very interesting in view of a real application.
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Table 2: Optimal Driving Modes for the Proposed Model

Maximum power (a) q` = 0, p` = P `max=maximum value
allowed by constraints (1616)-(2020)

Speed-Holding (h) p` s.t dv
dt = 0, q` = 0

Coast (c) p` = 0, q` = 0

Maximum brake (b) p` = 0, q` = Q`max=maximum value
allowed by constraints (1616)-(2020)

5 SOLUTION APPROACH: BY DYNAMIC PROGRAMMING

The direct method outlined in Section 44 allows to obtain the optimal solution given an initial
point (x0, v0). From a practical point of view this is quite limited. Indeed imagine the
situation where a train is following the optimal trajectory and an unexpected event takes
place (for instance slowing down the speed due to the presence of an obstacle). This implies
that the formerly obtained solution might no longer be optimal. A possible solution will be
to solve problem (P1) again on-line. Another solution, which we present here, will be to solve
off-line the optimization problem for all initial points in an efficient way. This can be done
with a DP technique.

Dynamic Programming (DP) techniques allow to solve the control problem without any
initialization of the problem and under any given circumstances the optimal solution can be
computed, this is one of the major advantages of the DP approach, it goes through the whole
state space to provide with a solution from any possible point of the state space until desti-
nation. The idea is to divide the complex problem into simpler subproblems, and each time a
subproblem is solved the solution is stored in the memory to help solve bigger subproblems.
The major drawback of using this method is that it implies a very expensive computational
cost, to overcome this issue in [44] they propose to allow only 10 possible values for the control
variable for all the points of the state space. However, in the solution we obtained by the direct
approach we observed that the optimal speed profile is always characterized by four different
driving modes, see Table 22. Therefore, for each point in the state space only 4 possible values
should be considered for the control variable, letting this 4 values vary according to the point
in the state space in which we are. This trick allows to reduce the number of possible control
variables without adding any restriction on the values that the control can take. It allows
a considerable reduction of the memory required to store the information, compared to the
existing solution presented in [44].

5.1 Dynamic Programming formulation

The DP formulation of the energy minimization for one train problem consists on discretizing
the model proposed in Section 22 by defining a uniform time, space and speed discretization and
adapting the objective function. We divide the time interval [0, T ] into Nt intervals of length
∆τ , [0, X] into Nx and [0, vmax] into Nv steps, where vmax is the maximum value Vmax(x)
takes

vmax = max{Vmax(0), . . . , Vmax(X)}.
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Therefore the state of the system for k = 0, . . . , Nt is

δk = (τk, ik, vk, vk+1),

where

τk =

{
T − tk if tk ≤ T,
−1 if tk > T,

so τk represents the time left until the limiting time T is reached, and

ik =

{
X − xk if xk ≤ X,
−1 if xk > X,

so ik represents the distance left until destination X is reached. Finally,

vk ≡ speed at time τk, vk+1 ≡ speed at time τk+1.

Thus, k defines the backward stage, i.e k = 0 defines the discretization point corresponding to
time T and k = Nt defines the discretization point corresponding to the initial time 0. Once
the state space has been set we define the four possible controls that can be applied in each
point of the state space,

maximum acceleration (a)→ pk = P kmax, qk = 0,

speed hold (h)→ pk = P kh s.t
dvk
dτ

= 0, qk = 0,

coast (c)→ pk = 0, qk = 0,

maximum brake (b)→ pk = 0, qk = Qkmax.

where, as explained in Table 22, P kmax is the maximum value that the traction power pk can
take in stage k due to the constraints (1616)-(2020), and respectively, Qkmax is the maximum value
that the braking power qk can take in stage k. P kh denotes the power at stage k that is needed
in order to keep the speed constant. Having determined the state and the control space we
define the objective function for the DP approach. First, we define

Jk = min
uk,uk+1

{Jk−1 +m(δk, uk, uk+1)},

which is the cost to reach destination starting at stage k, where uk = (pk, qk). Here mk

represents the immediate cost to transfer the system from stage k to k − 1,

m(δk, uk, uk+1) = ∆τ

(
pk(ik) + pk+1(ik+1)

2

)
,

and Jk−1 the cost from stage k − 1 until destination in stage 0. This objective function can
not be solved by backward recursion due to the presence of the control in stage k + 1 which
is not known. We adapt the objective function by

J̃k = Jk +
∆t

2
pk,
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obtaining the recursive formula

J̃k = min
uk∈{a,h,c,b}

{J̃k−1 + m̃uk(δk)}, (21)

where m̃uk(δk) = ∆τpk(ik), with uk = (pk, qk) and

a = (P kmax, 0), h = (P kh , 0), c = (0, 0), b = (0, Qkmax).

We will then denote by muk the immediate cost to transfer the system from a state in stage
k to a state in stage k − 1. Observe that the immediate cost in the case of uk = c or b is 0.

The objective function in equation (2121) subject to the constraints (1616)-(2020) form the DP
model, which can now be solved by backward recursion. We will refer to this problem as (P2).

5.2 Backward recursion

To perform the backward recursion in (P2) we first need to define the immediate and the final
costs.

• Final Cost: We denote by final states the points in the state space for which the process
stops, there is no need to apply any control on them. By setting the cost of falling into
these final states high or low we make sure the system ends in the right state. If the
train reaches destination beyond the limiting time, i.e

δ1
0 = (−1, 0, vk, vk+1), vk > 0,

or on time with positive speed, i.e

δ2
0 = (τk, 0, vk, vk1), τk ≥ 0, vk > 0,

we set the final cost J̃1
0 incurred by δ1

0 and J̃2
0 incurred by δ2

0 high. We set the final cost
J̃3

0 to zero if it reaches destination on time, i.e

δ3
0 = (τk, 0, 0, vk+1), τk ≥ 0,

therefore,

J̃0 =

{
TEmaxvmax if δ0 = δ1

0 , δ
2
0

0 if δ0 = δ3
0

,

Once the immediate costs, muk , and the final costs, J̃0, have been set we can code the recursion,
given by equation (2121), in C++ to obtain the optimal speed profile for any possible starting
δk. The way to proceed is summarized in Algorithm 11.

As said in the introduction to this section the Algorithm 11 carries a big computational
cost, since for each state δk we need to keep the information of the optimal action in Ak and
optimal cost of each strategy in arrays of size Nt ×Nx ×Nv ×Nv.
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Algorithm 1 Backward Recursion

J̃1
0, J̃2

0 ← TEmaxvmax
J̃3

0 ← 0
for k ≥ 1 do

given δk compute δak , δ
h
k , δ

c
k, δ

b
k

and compute ma(δk),m
h(δk),m

c(δk),m
b(δk)

if δak , δ
h
k , δ

c
k or δbk brake a constraint then

recompute δak , δ
h
k , δ

c
k or δbk

recompute ma(δk),m
h(δk),m

c(δk),m
b(δk)

end if
end for
for k ≤ Nt do

minuk∈{a,h,c,d}{J̃k−1 +muk(δk)}
store Ak ← uk and Ck ← J̃k

end for

5.3 Implementation and Results

In order to perform the backward recursion in problem (P2) we developed a C++ code with
the procedure explained in the previous section and solve the DP model in a Core i3 @ 3.2
GHz, 4GB AM 1333 MHz DDR3 computer. Note that by using this approach: (1) we do not
obtain a good accuracy in the solution unless we take a very fine discretization of the time,
space and speed intervals, incurring in a huge memory capacity (around 3×Nt×Nx×N2

v bits)
and that (2) the finer the discretization is the longer it takes to compute the solutions (around
1e−5 × Nt × Nx × N2

v seconds). This approach will then be feasible for short journeys. We
again take a great variety of examples of real profiles provided by INGETEAM S.A. and other
examples in the literature and we compare the solutions with those obtained in the direct
approach that was proposed in this report. Based on several experiments we have observed
that the solution obtained solving (P2) converges to the solution obtained in (P1) as the
discretization of the state space becomes finer, see an example in Figure 33. The DP solution
presented in Figure 33 took around an hour of computation.

The accuracy obtained by the direct approach by solving (P1) could not be obtained by the
approach proposed in Section 55 due to its memory requirements. In order to attain accuracy
of this method more research is needed as for instance, the states that we know will not be
reached in the recursion could be eliminated or we could leave the profiles that are unprovable
aside, this would reduce the computational cost considerably.

6 NUMERICAL AND SIMULATIONS RESULTS

In this section, we report the simulation results we have obtained. As explained in Section 44
and 55, we first solve problem (P1) using AMPL/Ipopt, and later we solve (P2) by a software
package developed in C++. Both results, the speed profiles obtained solving (P1) and the
ones obtained by solving (P2), coincide for a fine discretization of the problem (P2). We have
verified this for several real case examples. As a second step we use a train simulator developed
by INGETEAM S.A. to quantify the reduction in energy obtained by our approach in two
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Figure 3: Comparison of the solution of problem (P1) and (P2).

different rides of a metro in a major city in Europe.
The main conclusions regarding the numerical results are the following:

• Our model (due to the additional constraints), (88)-(1111), captures more accurately the
dynamics of a train than existing models in the literature.

• The solution of (P1) is always formed by four possible actions which can be summarized
in Table 22.

• The computation time required to solve (P1) for real examples is below 8 seconds, thus
our approach represents a realistic solution that can be implemented in real systems.

• The computational time to solve (P2) is

1e−5 ×N1 ×N2 ×N2
3 s.

For the example presented in Figure 33 the required time for an accurate solution would
be 2 days an a half.

• The memory required to save all the optimal strategies is

3×N1 ×N2 ×N2
3 bits.

• The energy reduction obtained is larger in tracks that present downhill sections.

• In real examples the energy reduction varies between 8% and 25%.
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Table 3: Energy reduction compared to real profiles

Section LAAJR energy RP energy Reduction

example 1 15.1485 kWh 16.6101 kWh 8.7995 %

example 2 15.2289 kWh 19.897 kWh 23.4613 %

6.1 Simulations

Simulations carried out in the simulator developed by INGETEAM S.A. allow us to (i) compare
the structure of our profiles with real examples and (ii) to measure the reduction in energy that
our solution would provide. The procedure with the simulator is the following; we provide the
speed profile obtained with Ipopt and the simulator gives the power profile that a train would
need to complete the journey determined by this speed and computes the energy consumption.

In Figures 55 and 66 we consider two different real examples from a metro in a major city in
Europe. The track in the first example (example 1) presents steep uphill sections in most of
the track, see Figure 11, and the track in the second example (example 2) presents a flat track
with a steep downhill section in the end, see Figure 44. We compare the speed and energy
consumptions obtained with the simulations with the profile used in reality and with that
obtained by solving Problem (P1) and (P2).

In Table 33 we represent the energy consumption for the two trips considered. The results
show that the solution profile obtained by solving (P1) and (P2) provide a larger reduction in
energy in tracks that present downhill sections, i.e., these tracks are more sensitive, in view of
energy efficiency, to a good switching strategy. The energy reduction varies between 8% and
25% depending on the track considered.

0 10 20 30 40 50 60 70 80 90 100
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time (s)
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cl
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Figure 4: Track profile for example 2.

7 CONCLUSIONS AND FUTURE WORK

This paper proposes a robust model for the problem of finding the power and speed profiles
that minimize the energy in short railway journeys. We propose two numerical methods to
handle the difficult constraints that this problem presents avoiding simplifications in the model
as it has been done in the literature.

The efficiency of this methods allow a real application in typical trips of metro systems,
being able to: (1) compute new profiles given any circumstance by the approach proposed in
Section 44 , and (2) compute off line all the optimal profiles for any possible circumstance by
the approach proposed in Section 55. Our study shows that the method presented in Section 44
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Figure 5: Simulations for example 1.
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Figure 6: Simulations for example 2.
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could be implemented in a real system immediately, whereas more research is required in order
to solve real-life problems with the method of Section 55. Besides, the simulations have shown
to obtain a great reduction in the consumption of energy of around 8-25%.
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