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Thework in this paper proposes the hybridisation of the well-established strength Pareto evolutionary algorithm (SPEA2) and some
commonly used surrogate models. The surrogate models are introduced to an evolutionary optimisation process to enhance the
performance of the optimiserwhen solving design problemswith expensive function evaluation. Several surrogatemodels including
quadratic function, radial basis function, neural network, and Kriging models are employed in combination with SPEA2 using real
codes. The various hybrid optimisation strategies are implemented on eight simultaneous shape and sizing design problems of
structures taking into account of structural weight, lateral bucking, natural frequency, and stress. Structural analysis is carried out
by using a finite element procedure. The optimum results obtained are compared and discussed. The performance assessment is
based on the hypervolume indicator. The performance of the surrogate models for estimating design constraints is investigated. It
has been found that, by using a quadratic function surrogate model, the optimiser searching performance is greatly improved.

1. Introduction

Since they have been invented for several decades, the
implementation of evolutionary optimisers on a wide variety
of real-world design problems has successfully been made in
numerous fields.The algorithms are attractive and popular as
they can responsd to unavoidable disadvantages of classical
mathematical programming. The evolutionary algorithms
(EAs) can deal with almost all kinds of design problem as
their search mechanisms, to some extent, rely on randomi-
sation and need no function derivatives, for example, [1–
4]. Recently, single-objective evolutionary methods that have
outstanding performance in several applications are real-
code ant colony optimisation (ACOR) [5], covariance matrix
adaptation evolution strategy (CMA-ES) [6], and differential
evolution (DE) [7]. The methods are robust and capable
of reaching global optima. Most importantly, for multiple-
objective design cases, they can be used to explore a Pareto
optimal front of the problem within one simulation run.
However, EAs have some unacceptable drawbacks that are
a complete lack of consistency and low convergence rate.
As a result, the obtained design results are considered near

local optima for single objective cases and approximate Pareto
fronts for multiobjective design [8].

With those aforementioned shortcomings, it is difficult or
even impossible to employ themethods for solving the design
problems with expensive function evaluation or limited
number of function values available. Such obstructions can
however be alleviated by introducing a surrogate model (SM)
to an evolutionary optimisation procedure. With the use of
such a model, an approximate function can be constructed,
and inexpensive function prediction can be achieved. The
hybridisation of EAs and SM for design optimisation has
been studied since the last decade, and it has been found to
greatly enhance the performance of EAs. Many researchers
and engineers have focused their efforts on this research issue.
Thedesign problems can have single ormultiple design objec-
tives, for example, in [9–14] while mostly the demonstration
problems are unconstrained or box-constrained. The hybrid
EAs with SMs have been implemented on a wide variety
of engineering application, for example, aerodynamics [15–
17], heat and mass transfer [18–20], and structures [13,
14, 21–23]. Design problems requiring a surrogate-assisted
optimisation may be roughly categorised to have 9 classes
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as given in [10]. Surrogate-assisted EAs not only employ
function approximation but also use some mathematical
programming to enhance the searching performance [24, 25].
A comprehensive survey on the surrogate models used for
enhancing EAs performance can be found in [26–29].

The surrogate models commonly employed include poly-
nomial regression techniques [11, 20, 22, 26, 27, 30], radial
basis function interpolation (RBF) [9, 11, 12, 16, 18, 27],
artificial neural network (ANN) [9, 15, 23, 26], support
vector machines [31], moving least square method [32], and
Gaussian process model (Kriging model) [10, 16, 25–27].
Recent alternative surrogate-based approaches are concerned
with the approximation of field vectors (such as velocity and
pressure fields for computational fluid dynamics and dis-
placement and stress fields for structural analysis) rather than
approximating objective and constraint functions directly.
The proper orthogonal decomposition (POD) technique is
employed for this task [33–35]. With this concept, a designer
can deal with more complicated design problems such as
design optimisation when aeroelasticity is taken into consid-
eration. Apart from that, there exist optimisers with the use of
grid-based computing integrating nongeneration evolution-
ary algorithms, surrogate models, local search, and Lamarck-
ian learning process together. This approach is termed asyn-
chronousmetamodel-based evolutionary algorithms [36, 37].
A technique used in the design of computer experiment phase
is usually a Latin hypercube sampling technique. Recently,
there have been several papers focusing on the development
of optimum Latin hypercube sampling [38, 39]. Another
interesting approach is an infill sampling technique [40].

The most challenging task for surrogate-based optimi-
sation is to improve the convergence rate. To the authors’
best knowledge, the work in the literature mostly demon-
strated applying the design approaches to unconstrained or
box-constrained optimisation which is simple to handle by
using EAs. Nevertheless, there are usually many nonlinear
constraints in the real-world design problems particularly
in structural optimisation. The approximation of objective
function, although being inaccurate, can lead to real optima
(referred to as “Blessing of Uncertainty” in [11]). On the other
hand, in estimating constraint functions, the approximate
function needs to be as precise as possible so that the
evolutionary search can land in the real feasible region.
Inaccurate constraint function approximation can lead the
optimiser to an undesirable design space.

In this paper, the hybridisation of the well-established
multiobjective evolutionary algorithm (MOEA), namely,
strength Pareto evolutionary algorithm [41] and some pop-
ular surrogate models is developed. The work is concerned
with the studies of using several SMs for performance
enhancement of multiobjective evolutionary algorithms in
solving structural constrained optimisation. A number of
surrogate models including quadratic function, radial basis
function, neural network, and Kriging models are employed
in combination with SPEA2 using real codes. The various
hybrid optimisation strategies are implemented on eight
simultaneous shape and sizing design problems of a structure
having design functions as structural weight, lateral bucking,
natural frequency, and stress. Structural analysis is carried out

by using finite element analysis (FEA). The optimum results
obtained are compared and discussed. The performance of
SMs for estimating design constraints is investigated. It has
been found that, by using a quadratic surrogate model, the
searching performance of SPEA2 is greatly improved.

2. Hybridisation of SPEA2 and
a Surrogate Model

There have been several ways to properly integrate SMs into
EAs. The hybrid algorithm proposed in this paper is similar
to what is presented in [18]. The SPEA2 with real codes
is employed as the main MOEA procedure. The surrogate-
assisted SPEA is illustrated in Figure 1. The computational
steps in the figure can be separated into two parts as the
main SPEA procedure and the SPEA subproblem that uses
an approximationmodel.Themain SPEA is slightly modified
from the original version presented in [41]. The real code
recombination and mutation are similar to the work pre-
sented in [18].The procedure starts with an initial population,
an (empty) Pareto archive, and some other predefined param-
eters, for example, an external archive size and recombination
and mutation rates. The fitness of the individuals in the
population is then assigned by performing actual function
evaluation. The current population and their corresponding
fitness values are brought to the surrogate environment as
some of them are picked to build a surrogate model. Having
such an approximation model, the SPEA is employed to
solve the optimisation problem with approximate function
evaluation.

The nondominated solutions from this stage are put
back to the main SPEA procedure where their actual fit-
ness values are determined. The current population, the
external archive, and the nondominated solutions from
performing a surrogate-based optimisation are put together
while their nondominated solutions are determined. The
external archive is then updated by replacing it with these
nondominated solutions. In case that the number of the
nondominated solutions exceeds the predefined archive size,
some of them will be removed from the archive by means
of the nearest neighbourhoodmethod [41]. Subsequently, the
so-called binary tournament selection is performed to select
some members in the newly updated archive to reproduce a
set of offspring.The algorithm goes back to the step of fitness
function evaluation and is repeated until the termination
criterion is fulfilled.

Design solutions are selected froma current population to
build a surrogate model based upon the idea that they should
be evenly distributed throughout the design space. The
proposed approach is operated on the domain of objective
functions, which is somewhat similar to the adaptive grid
algorithm, a Pareto archiving technique used in the Pareto
archive evolution strategy [8]. The procedure to select the
solutions for surrogate modelling is illustrated in Figure 2.
On the objective domain, all of the design points in the
current population are plotted, and a proper grid is generated
covering all the points. A solution that is the closest to the
centre of each mesh is selected for function estimation.
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Figure 1: Flowchart for surrogate-assisted SPEA.

3. Surrogate Models

Let 𝑦 = 𝑓(x) are a function of a design vector x sized
𝑛 × 1. Given a set of design solutions (or sampling points)
X = [x1, . . . , x𝑁] and their corresponding function valuesY =

[𝑦
1
, . . . , 𝑦

𝑁
] selected during an evolutionary optimisation

process, a surrogate or approximation model is constructed
by means of curve fitting or interpolation. Approximation
models used in this study are as follows.

3.1. Polynomial Regression. The most commonly used poly-
nomial surrogate model or a response surface model (RSM)
is of the second-order polynomial or quadratic model, which
can be expressed as

𝑦 = 𝛽
0
+∑𝛽

𝑖
𝑥
𝑖
+∑𝛽

𝑖
𝑥
𝑖
𝑥
𝑗
, (1)

where 𝛽
𝑖
for 𝑖 = 0, . . . , (𝑛 + 1)(𝑛 + 2)/2 are the polynomial

coefficients to be determined. The coefficients can be found
by using a regression or least square technique [26].

3.2. Kriging Model. A Kriging model (also known as a
Gaussian process model) used in this paper is the famous
MATLAB toolbox named design and analysis of computer
experiments (DACE) [42]. The estimation of function can be
thought of as the combination of global and local approxima-
tion models, that is,

𝑦 (x) = 𝑓 (x) + 𝑍 (x) , (2)

where 𝑓(x) is a global regression model while 𝑍(x) is a
stochastic Gaussian process with zero mean and nonzero
covariance representing a localised deviation. In this work,
a linear function is used for a global model, which can be
expressed as

𝑓 = 𝛽
0
+

𝑛

∑

𝑖=1

𝛽
𝑖
𝑥
𝑖
= 𝛽
𝑇f , (3)

where 𝛽 = [𝛽
0
, . . . , 𝛽

𝑛
]
𝑇, f = f(x) = [1, 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇. The

covariance of 𝑍(x) is expressed as

Cov (𝑍 (x𝑝) , 𝑍 (x𝑞)) = 𝜎2R [𝑅 (x𝑝, x𝑞)] (4)
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Figure 2: Selection of sampling points for constructing a surrogate
model.

for 𝑝, 𝑞 = 1, . . . , 𝑁 where 𝑅 is the correlation function
between any two of the 𝑁 design points, and R is the
symmetric correlation matrix size 𝑁 × 𝑁 with the unity
diagonal [26]. The correlation function used herein is

𝑅 (x𝑝, x𝑞) = exp (−(x𝑝 − xq)𝑇𝜃 (x𝑝 − xq)) , (5)

where 𝜃
𝑖
are the unknown correlation parameters to be

determined by means of the maximum likelihood method.
Having found 𝛽 and 𝜃, the Kriging predictor can be achieved
as

𝑦 = f (x)𝑇𝛽 + r𝑇 (x)R−1 (y − F𝛽) , (6)

where F = [f(x1), f(x2), . . . , f(x𝑛)]𝑇 and r𝑇(x) = [𝑅(x, x1),
𝑅(x, x2), . . . , 𝑅(x, x𝑁)]. For more details, see [42].

3.3. Radial Basis Function Interpolation. The radial basis
function interpolation has been used in a wide range of appli-
cations such as integration between aerodynamic and finite
element grids in aeroelastic analysis [43]. The use of such
a model for surrogate-assisted evolutionary optimisation is
said to be commonplace [9, 18, 27].The approximate function
can be written as

𝑦 (x) =
𝑁

∑

𝑖=1

𝛼
𝑖
𝐾(

󵄩󵄩󵄩󵄩󵄩
x−x𝑖󵄩󵄩󵄩󵄩󵄩) , (7)

where 𝛼
𝑖
are the coefficients to be determined, and 𝐾 is a

radial basis kernel. (Here it is set to be linear splines.) The
coefficients can be found from the 𝑁 sampling points as
detailed in Srisomporn and Bureerat 2008 [18].

3.4. Neural Network. Artificial neural network (ANN) is
developed in response to the need to use complicated func-
tion expression rather than a simple quadratic or radial basis
function. The model consists of interconnecting neurons or
nodes that somewhat mimic the constructs of biological
neurons as shown in Figure 3. ANN has been implemented

Table 1: Design variables and bounds for F1–F6.

Design variables Bounds (mm)
𝑥
1
= 𝑙
𝑑

0 ≤ 𝑙
𝑑
≤ 60

𝑥
2
= 𝑙
𝑝

100 ≤ 𝑙
𝑝
≤ 200

𝑥
3
= 𝑟
𝑝1

15 ≤ 𝑟
𝑝1
≤ 35

𝑥
4
= 𝑟
𝑝2

15 ≤ 𝑟
𝑝2
≤ 30

𝑥
5
= th 3 ≤ th ≤ 4.5

Input layer

Hidden layer

Output layer

Neuron or node

Figure 3: Neural network.

on a wide variety of real world applications. The use of
ANN for surrogate-assisted optimisation can be found in
the literature [9]. The neural network model used in this
paper is the feedforward multilayer perceptrons. The details
of the network in this work are the learning algorithm =
backpropagation and network training function = Levenberg-
Marquardt backpropagation.

In this work, a simple heuristic algorithm is used to
construct a network topology. The procedure starts with a
network with two hidden layers while the number of nodes
𝑁
𝑅
on each layer is randomly chosen with the bound 𝑁

𝑅
∈

[15, 50]. The transfer function for the hidden layer can be
either hyperbolic tangent sigmoid or logarithmic sigmoid based
on randomisation. If the termination criterion (training goal)
is notmet, randomly increase a number of nodes in the layers.
If the number of nodes reaches the upper bound 𝑁

𝑅
= 50,

add the third hidden layer to the network where a transfer
function and node number are randomly chosen. In case that
the stopping criterion is not fulfilled, increase the number of
nodes. The algorithm repeats until the stopping criterion is
met.

4. Testing Problems

Six testing multiobjective design problems are posed to
design a torque arm [44] structure shown in Figure 4. Since
it is a plate-like structure under inplane loading, design
criteria to be taken into consideration are weight, stress,
buckling, and natural frequency. The function calculation
can be carried out by using FEA where shell elements are
employed. The design variables and their bound constraints
are given in Table 1 where other dimensions are set as 𝑙

𝑑
=

30mm, 𝑙
𝑝
= 190mm, 𝑟

𝑝1
= 26mm, and 𝑟

𝑝2
= 27mm.
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Figure 4: Torque arm.

The six biobjective optimisation problems are termed F1,
F2, F3, F4, F5, and F6, respectively, and can be expressed as:

objective function:
min 𝑓

1
(x) , max𝑓

2
(x)

F1 : 𝑓
1
(x) = 𝑤, 𝑓

2
(x) = 𝜔

F2 : 𝑓
1
(x) = 𝑤, 𝑓

2
(x) = 𝜆

F3 : 𝑓
1
(x) = 𝑤, 𝑓

1
(x) = 𝜆 + 𝜔

𝜔
0

subject to

𝜎von −
𝜎
𝑦

𝑆
𝐹

≤ 0

1 − 𝜆 ≤ 0,

objective function:
min𝑓

1
(x) , max𝑓

2
(x)

F4 : 𝑓
1
(x) = 𝑤, 𝑓

2
(x) = 𝜔

F5 : 𝑓
1
(x) = 𝑤, 𝑓

2
(x) = 𝜆

F6 : 𝑓
1
(x) = 𝑤, 𝑓

2
(x) = 𝜆 + 𝜔

𝜔
0

subject to

𝜎von −
𝜎
𝑦

𝑆
𝐹

≤ 0

1 − 𝜆 ≤ 0

𝜔 − 𝜔
0
≤ 0,

(8)

where 𝑤 = structural weight, 𝜔 = first mode natural fre-
quency, 𝜆 = lateral bucking factor (it is the ratio of critical
load to applied load herein), 𝜎von = maximum von Mises
stress on the structure, and 𝜔

0
= 7.2688 rad/s. Furthermore,

material properties are Young’s modulus 𝐸 = 60 × 106N/cm2,
Poisson’s ratio ] = 0.3, yield stress 𝜎

𝑦
= 80000N/cm2, density

𝜌 = 0.00718 kg/cm3, and safety factor 𝑆
𝐹
= 1.5.

In fact, the F1, F2, and F3 problems are similar to the F4,
F5, and F6 problems, respectively, except for the introduction
of natural frequency constraints to the last three problems.
This means that the performance of several surrogate models
in estimating a natural frequency during an optimisation

procedure can be examined.The bound constraints in Table 1
are not presented in the design problems as they can be dealt
with in the SPEA procedure. It should be noted that the
finite element analysis for these design studies is not time
consuming as the work focuses on a comparative study of the
several multiobjective optimisers.

Since the F1–F6 problems are small-scale, other two test
problems are posed so as to investigate the capability of those
surrogate models when dealing with large-scale problems.
Two design problems of a simple wing-box displayed in
Figure 5 are expressed as

objective function:
min𝑓

1
(x) , max𝑓

2
(x)

F7 : 𝑓
1
(x) = 𝑤, 𝑓

2
(x) = −𝜆

F8 : 𝑓
1
(x) = 𝑤, 𝑓

2
(x) = − (𝜔

1
+ ⋅ ⋅ ⋅ + 𝜔

5
)

subject to

𝜎von − 𝜎𝑦 ≤ 0

1 − 𝜆 ≤ 0,

(9)

where 𝜔
𝑖
is the 𝑖th mode natural frequency of the wing-box.

Thewing-box ismade up of Aluminiumwith Youngmodulus
𝐸 = 70GPa, Poisson’s ratio ] = 0.34, density 𝜌 = 2700 kg/m3,
and yield strength 𝜎

𝑦𝑡
= 100MPa. The structure consists of 2

spars, 4 ribs, and 4 skins (front, rear, top, and bottom skins)
resulting in 52wing segments as shown.The thickness of each
segment is assigned to be a design variable; therefore, there
are 52 design variableswith the lower andupper bounds being
0.002m and 0.010m respectively. This can be classified as a
large-scale sizing optimisation problem. The wing is subject
to static loads on the front spar as shown in Figure 5. Shell
elements are used for finite element analysis similarly to F1–
F6.

The multiobjective optimisers used in this paper are
named as follows:

(i) SPEA-O the original SPEA2without using a surrogate
model,

(ii) SPEA-Q SPEA using a quadratic response surface
model,
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Figure 5: Simple wing-box.

(iii) SPEA-R SPEAusing the radial basis function interpo-
lation,

(iv) SPEA-N SPEA using a neural network model,
(v) SPEA-K SPEA using a Kriging model.

Each evolutionary algorithm is employed to solve each
problem ten runs with 30 generations (50 for F7-F8) and a
population size of 20 (50 for F7-F8) for SPEA-O. For the
algorithms using an approximation model, the number of
generations and population size used in the main procedure
is 15 (25 for F7-F8) and 20 (50 for F7-F8), respectively, while
on each generation additional 20 (50 solutions for F7-F8)
solutions are taken from optimising a surrogate subproblem.
In the surrogate subproblem, the number of generations
and population size is set to be 100 and 100, respectively.
The external Pareto archive size is set to be 100. During
the optimisation process, constraints are handled by using
the approach presented in [45]. It should be noted that
there have been a number of techniques used to handle
design constraints in evolutionary optimisation [46]. We
choose the aforementioned technique because it is simple and
sufficiently effective.

5. Results and Discussion

The performance comparison of the five MOEAs for solving
the eight design problems is based on the hypervolume indi-
cator. Two types of performance assessment are conducted as
detailed in Tables 2–4. In Table 2, each cell is the normalised
mean value of 10 nondominated front hypervolumes obtained
from using the optimiser on the corresponding column for
solving the problem on the corresponding row. For each
design problem, the best and worst mean values are nor-
malised to be “1” and “0”, respectively. The total normalised
mean values given in the table are used for evaluating the
overall performance of the surrogate-assisted SPEAs. From
the results, the best algorithm for F1 is SPEA-R while the
second best is SPEA-Q. SPEA-Q is the best for F2 while the
second best is SPEA-N.The best optimisers for F3, F4, F5, and
F6 are SPEA-K, SPEA-R, SPEA-K, and SPEA-K, respectively,
whereas the second best for those 4 design problems is SPEA-
Q. SPEA-O without using a surrogate model is the worst
performer for F2, F5, and F6 while SPEA-N is the worst
performer for F1, F3, and F4. The overall best performer

Table 2: Comparison of normalised average hypervolume.

SPEA-O SPEA-Q SPEA-R SPEA-N SPEA-K
F1 0.429 0.704 1.000 0.000 0.523
F2 0.000 1.000 0.052 0.917 0.692
F3 0.577 0.995 0.745 0.000 1.000
F4 0.457 0.916 1.000 0.000 0.497
F5 0.000 0.976 0.640 0.161 1.000
F6 0.000 0.673 0.243 0.007 1.000
∑ F1–F6 1.463 5.264 3.679 1.084 4.713
F7 0.811 1.000 0.724 N/A 0.000
F8 0.337 1.000 0.453 N/A 0.000
∑ F7-F8 1.148 2.000 1.177 N/A 0.000

Table 3: Performance matrix of F1.

SPEA-O SPEA-Q SPEA-R SPEA-N SPEA-K
SPEA-O 0 0 1 0 0
SPEA-Q 0 0 1 0 0
SPEA-R 0 0 0 0 0
SPEA-N 1 1 1 0 1
SPEA-K 0 0 1 0 0
Total 1 1 4 0 1
Ranking 2 2 1 5 2

Table 4: Comparison of ranking scores by t-test.

SPEA-O SPEA-Q SPEA-R SPEA-N SPEA-K
F1 2 2 1 5 2
F2 4 1 4 1 1
F3 1 1 1 5 1
F4 3 1 1 5 3
F5 4 1 3 4 1
F6 3 2 3 3 1
∑ F1–F6 17 8 13 23 9
F7 1 1 1 N/A 4
F8 2 1 2 N/A 4
∑ F7-F8 3 1 3 N/A 8

based on the evaluation is SPEA-Q whereas the second best
is SPEA-K. For the large-scale problems, only SPEA-Q can
surpass SPEA-O. SPEA-R is said to be equal to SPEA-Owhile
SPEA-K gives that worst performance. Note that SPEA-N
cannot be applied to these problems as it takes excessively
long running time for network training. It can be said that
only the quadratic response surface model is useful for the
large-scale wing-box design.

The second performance assessment is based on the
statistical t-test. For each design problem, to compare the 5
MOEAs, a performance matrix T sized 5 × 5 whose elements
are full of “0” is generated. For the element 𝑇

𝑖𝑗
of the matrix,

if the mean value of the 10 hypervolumes obtained from
method 𝑗 is significantly larger than that obtained from
method 𝑖 based on the statistical t-test at 95% confidence
level, the value of 𝑇

𝑖𝑗
is set to be one. Table 3 shows the

performance comparison of the problem F1. Having had the
performance matrix, the 6th row on the table displays the
total scores of each optimiser. The ranking is made in such
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a way that the best method is ranked as 1 while the worst is
ranked as 5.The overall performance assessment based on the
t-test is given in Table 4 where the last row on the table shows
the total score of all theMOEAs.The lower the score the better
the performer. Similar to the first assessment, the overall best
method for F1–F6 based on this assessment is SPEA-Q while
the close secondbest is SPEA-K.Theworstmethod is SPEA-O
without using a surrogate model. For the large-scale test
problems, the only surrogateassisted method that is superior
to the non-surrogate SPEA is SPEA-Q.

Figures 6 and 7 show the search history as plots of
hypervolume against the number of function evaluations of
SPEA-O and SPEA-Q for solving F7 and F8, respectively.The
values of front hypervolume can fluctuate due to the use of a
Pareto archiving technique to remove some nondominated
solutions from the Pareto archive. From the figures, it can
be seen that SPEA-Q requires approximately half of the total
number of function evaluations employed by SPEA-O to have
equally good nondominated fronts.

The best approximate Pareto front of F1 obtained after
numerous optimisation runs of the surrogate-assisted SPEAs
is chosen and plotted in Figure 8 whereas the structures of
some selected design points are shown in Figure 9. Figure 10
displays the best front of the F2 problemwhere some selected
design solutions are illustrated in Figure 11.The best front and
some selected optimal structures of the design problemF3 are
displayed in Figures 12 and 13, respectively. Similarly, the best
approximate fronts and some selected design solutions of F4,
F5, and F6 are illustrated in Figures 14, 15, 16, 17, 18, and 19.
Figures 20 and 21 show the best fronts obtained from using
the various SPEAs for solving F7 and F8, respectively. It can
be seen that the best fronts are from SPEA-Q, and SPEA-O.
The SPEA-Q front does not totally dominate that of SPEA-
O but they overlap each other while the SPEA-Q front has
obviously, greater front extension.

According to the aforementioned performance assess-
ments, it can be said that SPEA-R is the best algorithm in

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12
F8

No. of function evaluations

H
yp

er
vo

lu
m

e

SPEA-O
SPEA-Q

Figure 7: SPEA-O versus SPEA-Q for F8.
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Figure 8: Approximate Pareto front of F1.

the cases of the F1 design problem while the close second
best is SPEA-Q. When adding a natural frequency constraint
to F1 becoming the F4 problem, the overall best and second
best methods are still SPEA-R and SPEA-Q, respectively.
For the F2 case and the F5 design problem which is F2
with additional natural frequency constraint, the top two
performers are SPEA-Q and SPEA-K. The same can be said
for the case of F3 while SPEA-K outperforms the others for
the F6 design problem. The surrogate models, that is, the
quadratic response surface model, the radial basis function
interpolation, and the Kriging model, are said to enhance the
searching performance of SPEA for the small-scale problems.
The addition of constraints to the design problems can cause
the searching performance of the hybrid algorithms. The
SPEA using ANN is inferior to the other surrogate-assisted
methods or even the original SPEA2 without using a sur-
rogate model because it requires efficient network topology
optimisation before being used to estimate functions while
in this paper the simple heuristic approach is employed.
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Figure 9: Selected design points from Figure 8.
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Figure 10: Approximate Pareto front of F2.
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Figure 11: Selected design solutions from Figure 10.
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Figure 12: Approximate Pareto front of F3.
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Figure 13: Selected design solutions from Figure 12.
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Figure 14: Approximate Pareto front of F4.
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= 4.5 and 𝜔 = 10.349 = 4.2534 and 𝜔 = 9.6302
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Figure 15: Selected design solutions from Figure 14.
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Figure 16: Approximate Pareto front of F5.
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Figure 17: Selected design solutions from Figure 16.
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Figure 18: Approximate Pareto front of F6.
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Figure 19: Selected design solutions from Figure 18.

More investigation on this issue would greatly improve the
performance of SPEA-N. In cases of large-scale problems,
only SPEA using a quadratic function is superior to the
nonsurrogate SPEA.

6. Conclusions

The use of multiobjective evolutionary algorithm for the
design of a torque arm leads to multiple optimum structures
for decision making. The hybridisation of SPEA and several
surrogate models is developed.The various surrogate models
including the quadratic regression technique, the radial
basis function interpolation, and the Kriging model can
help improving the searching performance of the strength
Pareto evolutionary algorithm. For a design problem having
mass and natural frequency as objective functions and stress

and buckling as constraints, SPEA using RBF is the best
method. The SPEA using a quadratic regression is the best
for the design case of F2. For the other multiobjective design
problems, the best and the second best performers are SPEA
using the Krigingmodel and the quadratic RSM, respectively.
Nevertheless, when considering all of the design problems the
overall top performer is SPEA2 using the quadratic regression
while the close second best uses theKrigingmodel.Moreover,
SPEA using a quadratic response surface model is the only
strategy that is useful for solving large-scale problems. The
use of ANN for approximating constrained optimisation
problems is not effective as a proper network topology
optimisation needs to be constructed before entering the
surrogate subproblem. It is however possible to enhance
the performance of the ANN-based optimiser if an efficient
network topology optimisation is performed during the
optimisation process.
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