
Compression and SSD: Where and How?
Aviad Zuck∗, Sivan Toledo, Dmitry Sotnikov, Danny Harnik

Tel Aviv University IBM Research - Haifa

Abstract
Compression is widely used in storage systems to reduce
the amount of data that is written to physical storage de-
vices, in order to improve both bandwidth and price per
GB. In SSDs, which use NAND flash devices, compres-
sion also helps to improve endurance, which is limited
to a fixed number of raw bytes written to the media, and
to reduce garbage-collection overheads.

Compression is typically implemented in one of three
layers: the application, the file system or the firmware of
the storage device. Our main findings are that compres-
sion embedded within the SSD outperforms the built-in
host-side compression engines of a well-known database
and file systems. Therefore we focus on intra-SSD com-
pression schemes. We investigate the effects of compres-
sion granularity and the arrangement of compressed data
in NAND flash pages on data reduction and the lifetime
of the SSD. We compare several schemes in this design
space, some taken from the literature and some new.

1 Introduction
Compression within SSDs is poised to become ubiqui-
tous because of two technological trends. One is the
physical characteristics of NAND flash devices. Over
time, endurance limits deteriorate and latencies remain
essentially constant. The other trend is the continuing
improvement in logic gate sizes (Moore’s law), which
makes computation cheaper overtime. Together these
trends make compression a sensible choice for SSDs,
potentially bringing several positive effects. First, it de-
creases the storage footprint of user data. This can in-
crease the exposed capacity of the drive, thereby im-
proving the $/GB ratio and additionally it significantly
reduces garbage collection overheads. Second, it de-
creases the wear of the NAND flash cells that make up
the SSD. This not only increases the lifetime of the SSD,
but also delays the performance degradation that results
from the aging of cells. Finally, it can also reduce IO
latency. On the other hand, compression requires addi-
tional resources and its benefits may vary substantially
depending on the data at hand. Thus employing com-
pression should be done carefully in order to avoid po-
tential pitfalls.

Where to Compress? To fully exploit the poten-
tial benefits of compression, we need to decide whether
to embed compression functionality within the SSD,

∗Supported by the Israeli Ministry of Science, Technology and
Space

as implemented in [1, 2, 3], or in higher layers of
the storage hierarchy (in data-storage application like
databases [4, 5] or the file system [6, 7, 8]).

One of the main findings of our research is that plac-
ing compression low in the storage hierarchy, and in par-
ticular placing it in the SSD’s firmware (possibly with a
hardware accelerator) leads to better results than using
the compression at existing file systems or applications.
This result is somewhat counter-intuitive, but backed by
several consistent experiments on realistic data and sys-
tems.

In general, there is a tradeoff at hand, where higher
layers in the storage hierarchy have more information
about the data but less control over where it is eventu-
ally stored. The additional information that higher layers
have about data can be used to improve the compression
ratios and overall system performance. For example by
compressing together related data (e.g., rows from a sin-
gle database table) or avoiding compression of uncom-
pressible or temporary data.

On the other hand, modern day interfaces between
the different layers of the storage hierarchy are based on
storing and mapping fixed-sized chunks. Databases and
other data-intensive applications pack data into aligned
fixed-size pages (e.g., 4KB) that they transfer to/from
file systems and block devices. File systems move fixed-
size blocks to/from block devices. Block device drivers
move fixed-size blocks to/from SSDs and HDDs. How-
ever, the introduction of compression breaks this ab-
straction since compression of fixed-size chunks yields
variable sized outputs. The disparity between the fixed-
size interfaces and the variable sizes of compressed data
can create all sorts of inefficiencies, for example, adding
another level of indirection. These problems are mostly
avoided once compression is shifted down to the lowest
level, i.e. by embedding compression into the SSD, and
this is consistent with our observed results.

A different approach is to change the file system or
application layers both by modifying their standard data
access behaviors and by removing their fixed-sized in-
terface constraints to better suit those of the underlying
SSD. However this requires tailoring the file system or
application to the intimate characteristics of the under-
lying storage, for example, to the specific SSD’s page
size.

How to Embed Compression? Compressing data
inside an SSD requires a mapping of uncompressed
data to its physical compressed layout. There are sev-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357607072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


eral techniques to implement such a mapping that vary
mainly in the size of the compressed data chunks and
their ordering. In our study we evaluate a number of
such techniques, some taken from the literature and
some new. The first is a chunk-based approach [9]
that compresses fixed-size groups of LBAs into a single
chunk. Another scheme, which we call binpacking,
is based on the work of [10]. This scheme accumu-
lates several compressed LBAs and tries to pack them
into a single flash page. We extend this approach by
intelligently re-ordering the compressed LBAs to
improve compression effectiveness. The last scheme,
called compaction, writes compressed LBAs sequen-
tially to flash, leaving no space between them, but allow-
ing a compressed LBA to span two physical pages.

We analyzed these methods not only with respect
to their compression benefits, but also by the amount
of hardware and system resources required to imple-
ment the compression scheme. Our investigation shows
that the chunk-based scheme performs the worst, wear-
ing out the device 30-109% faster than the alternative
schemes and increasing the storage footprint by 33-54%.
The compaction scheme achieves the best storage uti-
lization. The re-ordering scheme is only slightly worse
in terms of storage utilization, yet uses up to 30% less
RAM; it appears to be the best scheme among the ones
we tested. The binpacking scheme is not competitive
with the re-ordering and compaction schemes.

Method of evaluation. In our study we focus on an
Online Transaction Processing (OLTP) workload for
databases. OLTP workloads are ideal for SSDs, be-
cause they are characterized by small random accesses
and high IO rates. A workload of this type that can be
serviced by a single SSD may require using tens or even
hundreds of HDDs. In addition, different data types can
have very different compressibility and therefore will
not achieve the same degree of benefits associated with
compression. Database contents have been established
as one of the most interesting “compression friendly”
data types [3, 11, 12]. Moreover, the integration of com-
pression in a system is especially challenging for small
random access IO patterns, making this workload a par-
ticularly interesting study case for compression.

Typical benchmarking tools generate either incom-
pressible data (e.g., totally random) or highly compress-
ible data, neither of which are typical of real data. For
our testing, we extended the TPC-C workload of OLTP-
bench [13], a standard OLTP benchmarking tool, to gen-
erate data with variable compression ratios. Our evalu-
ation consists of running the OLTP-bench workloads on
MySQL, a popular database management system, which
in turn runs on standard file systems. Data was stored to
a high-precision SSD emulator [14] that we modified to

support the compression schemes described above. We
evaluated compression in the SSD emulator, as well as
compression at the MySQL level, or compressing at file
systems with built-in compression support.

Summary of contributions.
• We built an evaluation environment for exploring

the effect of compression on various OLTP work-
loads with SSDs. For this end we extended the
OLTP benchmark and the SSD emulation.

• We explored and evaluated the design space of us-
ing compression with SSDs and showed that it is
best to embed compression within the SSD, not in
the host’s file system or in the application layer.

• We expanded the solutions for intra-SSD compres-
sion and compared the new methods with existing
schemes. In particular, we show that for random ac-
cess workloads previously suggested schemes fall
short in terms of either wear and resource require-
ments, or compression effectiveness.

Paper organization. Section 2 provides background
and related work on compression in SSDs and at the
host. Section 3 describes the intra-SSD compression
schemes covered in this paper and their implementation.
Section 4 describes the methodology and results of our
evaluation. Conclusions appear in Section 5.

2 Background
2.1 Compression in SSDs
Several papers have explored the use of compression
to improve the lifetime of small single-chip flash de-
vices. zFTL [15] checks whether data is compressible.
If not, it writes it as is to flash. Otherwise, it tries to
compress as much data as possible into a 4KB buffer.
The file system described in [16] also uses a similar
approach. Yim et. al [10] have suggested the Inter-
nal Packing Scheme (IPS) to improve the lifetime of
SmartMedia Cards. IPS maintains several write buffers
in battery-backed SRAM. Every write request is com-
pressed, and the resulting data is added to one of the
write buffers. The authors describe two main buffering
policies, first-fit which puts the data in the first write
buffer with enough free space, and best-fit which tries
to minimize internal fragmentation in the write buffers.

Others have explored compression in multi-chip
SSDs. LSI uses a proprietary technology to support
compression in some of its flash controllers [1], but does
not provide any details on the compression algorithms,
hardware, and data structures being used. Boboila et.
al [17] suggested using the on-board cores in SSDs to
assist the host CPU in high-performance compression
computations. Delta-FTL [18] achieves data reduction
through extensive write buffering coupled with selective
storing of compressed deltas for a small portion of the



data. We have not implemented this scheme because the
results in [18] show that this approach is fairly ineffec-
tive for OLTP workloads. Chen et al. also suggested in
[19] that intra-SSD compression might be beneficial but
did not specify how it should be implemented. Lastly,
CaFTL [9] suggested a technique that attempts to im-
prove not only the lifetime but also the performance of
SSDs. CaFTL employs a hardware accelerated compres-
sion module called BlueZIP. This module includes a 4-
page write buffer, which caches recent writes from the
host. When the buffer is full, the data is compressed and
written as a single chunk to flash. The IPS and CaFTL
schemes are described in further detail in Section 3.

2.2 Host-side Compression
Many file systems and databases can compress data on
the host. We point to some popular examples in this
section. In this paper we evaluate the behavior of com-
pression under a typical application workload, using two
well-known file systems and one database, all of which
support built-in compression schemes.

Btrfs [6] is a Linux-based file system. Btrfs is consid-
ered experimental, but has already been integrated into
the mainline kernel. It stores files by dividing them to
chunks indexed by B-trees. By default, Btrfs tries to
compress the first extent of every file to determine its
compressibility. Every extent then serves as a compres-
sion block. Since Btrfs writes data to disk in 4K-aligned
offsets, padding is used to re-align the chunks. The size
of an extent is not fixed and varies according to file ac-
cess patterns.

ZFS [7] is an established open-source file system,
known for its data protection capabilities. It divides files
into fixed-size records, and tries to compress them as
much as it can to fit into block sizes.

For evaluating compression in databases we have
chosen the MySQL relational database, probably the
most popular freely-available open-source database sys-
tem [20]. MySQL’s InnoDB engine compresses both
data and index chunks using the LZ77 compression al-
gorithm, which eliminates repeated sequences of data.
Since data is arranged in B-trees, MySQL stores changes
to each page within the tree to a modification log. When
the modification log is full, the data is recompressed and
possibly split. The size of uncompressed and maximum
compressed B-tree pages is configurable. Obviously, to
retain a decent level of compression, the B-tree uncom-
pressed page size must be larger than the compressed
page size. Typical sizes are 16K for the uncompressed
page, and 1K-8K for a compressed page.

Other options for host side compression include:
NTFS [8] is a proprietary Windows file system with a
compression solution reportedly close to that of ZFS.
Oracle’s Database also uses compression at the block-

A1'

A1 A2 A3 A4

A2' A3' A1' A2'

A4' A3'

IOhrequesthsequence

(a)hbinpackinghfirst-fit

dumphto
hflash

A1' A2' A3'

(b)hre-ordering

sort A3' A1' A4' A2'

A3' A2' A1'

(1)

(2)

A4'

(c)hchunk-based

(A1h+hA2h+hA3h+hA4)'

A1 A2 A3 A4

dumphto
hflash

re-buffer

(d)hcompact

A3'

A4'A1' A2'

buffered compressed on-flash

Figure 1: Handling an IO request sequence with four 4KB
LBAs A1-A2-A3-A4 under each type of compression scheme.
Each LBA compresses to a fraction of its original size 0.6, 0.3,
0.65, 0.4 respectively.

level, by saving a symbol table stored within each block,
as a dictionary for compressed data [5]. ZBD [21] is a
block-layer driver that includes compression to reduce
writes to the device. ZBD requires an additional redun-
dant translation layer, and several tens of MB of NV-
RAM on the host for buffering.

3 Intra-SSD Compression Schemes
To evaluate the effectiveness of hardware-based com-
pression, we compare four possible schemes illustrated
in Figure 1.

Chunk-Based Scheme. The chunk-based scheme
is based on CaFTL [9] described earlier. It optimizes
compression by clustering together every n consecutive
4KB blocks of written data from the host into an NV-
RAM buffer. CaFTL uses n = 4, we also tested n = 8.
When the buffer is full, its data is compressed to a large
chunk, whose size varies between 1 and n flash pages.
The chunk is written as a unit to consecutive pages. A
write request is acknowledged to the host as soon as the
block is written to the NV-RAM buffer, thereby keeping
the write latency bounded even if it takes a long time to
collect the n blocks that are compressed together. The
use of an NV-RAM buffer has additional benefits that
are unrelated to compression.



Binpacking. The binpacking (or bp in short)
scheme is based on the IPS method [10]. This scheme
also uses a large NV-RAM buffer partitioned into into
m page-sized bins (4KB). Whenever the host issues a
new write request for a logical block of data, the FTL
compresses it. It then tries to fit the newly compressed
block of data into one of the bins, using either a first-
fit or a best-fit policy. When none of the bins contain
enough free space, the fullest bin (i.e. one which con-
tains the least free space) is committed to flash, and the
new block of data is inserted to the newly freed bin.

Re-ordering Scheme. We developed the new
reordering scheme (or re-bp in short) as an
improvement to binpacking. This scheme uses a much
more aggressive binpacking heuristic in order to reduce
even further the padding at the end of each bin. The
scheme uses the same NV-RAM data structure as
binpacking, but when there is no room in the bins for a
new compressed block, it first tries to re-bin the blocks.
If re-binning creates enough space in some bin for
the new block, we avoid flushing a bin at that point.
If there is still not enough room, we flush the fullest
bin. Re-binning is done in two stages: (1) sort all the
compressed blocks in the bins by size, and (2) re-insert
blocks to bins by size using the first-fit policy.

Compaction Scheme. The compaction scheme is
also new. It uses a small page-sized NV-RAM buffer
(4KB). It compresses each host-written block separately
as soon as it arrives from the host. It copies the com-
pressed block to the end of the NV-RAM buffer. If the
buffer overflows during copying, it writes the exactly-
full buffer to a flash page, clears the buffer, and copies
the end of the compressed block into the beginning of the
buffer. This scheme requires a more complex mapping
table in the FTL, because a single host-written block
may reside on two physical flash pages (which are of-
ten but not always consecutive).

3.1 Comparison
The chunk-based, bin-packing, and re-ordering schemes
usually leave some unused space at the end of pages con-
taining compressed blocks. We expect the chunk-based
scheme to perform most poorly in this respect and the
re-ordering scheme to perform the best. The compaction
scheme leaves no unused space. Apart from the padding
issue, the chunk-based scheme has the best potential for
effective compression, because it compresses n blocks
at a time whereas the other three compress each block
separately. In the chunk-based scheme, reading an LBA
(host block) may require reading and decompressing up
to n compressed LBAs, possibly spanning more than
one physical page. In the bin-packing and re-ordering
schemes reading a block requires reading exactly one

QEMUdRamdDisk

QEMUdGuestdOS

DatabasedApplication

File system

Block layer

VSSIMdSSDdModule

dLatency
Manager

dddddFlashdTranslationdLayer
)Mapping,dCompression,dGCf

IDEdInterface

Figure 2: Evaluating a database over an SSD FTL with com-
pression, as part of the VSSIM evalualtion platform

physical page and decompressing exactly one LBA. In
the compaction scheme, reading an LBA requires read-
ing one or two physical pages and decompressing ex-
actly one LBA. All the schemes require an NV-RAM
buffer. Compaction requires the smallest buffer (one
page). The more complex mapping table of the com-
paction scheme requires more RAM on the SSD.

3.2 Implementation
We have implemented all intra-SSD compression
schemes using the VSSIM [14] SSD emulator. VSSIM
is unique in that it emulates not only an SSD, but also
its entire eco-system. VSSIM works as a plugin to a
qemu [22] virtual machine. It emulates flash response
times by storing its virtual disks on faster media (i.e.
RAM). A disk that is designated as an SSD uses a soft-
ware module that implements a flash controller logic (i.e.
FTL). The data is saved on RAM, but the software mod-
ule inserts carefully calculated emulated delays to mimic
the response times of flash operations. Figure 2 illus-
trates the VSSIM architecture used in this paper.

To minimize FTL overhead, we implemented each of
our schemes by extending a simple page-mapping FTL,
included in the VSSIM distribution. The page mapping
FTL was also evaluated without intra-SSD compression
as a baseline in our experiments. We also extended the
victim block selection policy of the FTL’s garbage col-
lection module, to improve wear leveling, by maintain-
ing a threshold of no more than 20% difference between
the amount of free blocks in every chip.

4 Evaluation
4.1 Methodology
All experiments are carried out on a machine with an
Intel quad-core i7-3770 3.4GHz processor and 16 GB
of RAM, running Linux kernel 3.13.0. The qemu guest



0
20
40
60
80
100
120
140
160
180
200

0

10

20

30

40

50

60
e
x
t4 zf
s

zf
s+
co
m
p

b
tr
fs

b
tr
fs
+
co
m
p

e
x
t4 zf
s

zf
s+
co
m
p

b
tr
fs

b
tr
fs
+
co
m
p

e
x
t4 zf
s

zf
s+
co
m
p

b
tr
fs

b
tr
fs
+
co
m
p

high medium low

reads/tx writes/tx tx/s

Figure 3: The average flash read/write accesses per transac-
tion during an OLTP benchmark (bars), with varying levels of
compressibility under three file systems. The y-axis on the right
(triangles) shows the number of transactions/second

machine used had the default setting of VSSIM of Core
2 Duo processor. The guest machine uses 2 virtual disks
(stored in RAM), one 6 GB disk is used as the main disk
for storing the operating system and application code
and data, and another 4 GB disk is used for SSD em-
ulation. The guest is equipped with 1 GB of RAM, and
runs Linux kernel 3.8.0. The SSD emulator is configured
with 8 flash chips, each residing on a separate channel.
The chips are divided into 4 KB pages and 64-page erase
blocks. Flash access times for reads and writes are con-
figured to 25 µs and 250 µs respectively. The SSD uses
a standard 25% overprovisioning factor, so it exposes a
3 GB capacity to the guest machine. Measurements us-
ing the fio [23] benchmark suite show that the device is
capable of delivering 7K random 4K IOPs.

We performed the evaluation using TPC-C, a well-
known benchmark for OLTP, for several reasons:

• OLTP workloads are dominated by small random
accesses. This makes SSDs an ideal candidate
for storage media of OLTP data. In fact in re-
cent years a plethora of flash based OLTP oriented
solutions [24, 25, 26] have emerged. This de-
velopment stems from the fact Solid-State Drives
(SSDs) provide superior performance for OLTP
workloads [27, 28], versus the much slower Hard-
Disk Drives (HDDs) which were the mainstay for
database storage until recently.

• The benefits of compression only materialize if user
data is compressible. Database content is typically
highly compressible [3]. We also verified this ob-
servation on a 10GB real-life database, which con-
tains tables created by Computer Science university
students for a variety of projects. Standard com-
pression libraries achieve saving of 76% for this
database (it compressed to 24% of its original size).

All experiments were run using the TPC-C bench-
mark of the OLTP-bench framework [13]. However, this
benchmarking tool, and others as well [29] store ran-
dom data in most fields. Our initial experiments showed
that a database created using the default data genera-
tor compresses by only 13%, which leaves little room
for optimizations, and does not match known compres-
sion properties of OLTP databases [3]. We therefore
made a small modification to decrease the randomness
of data fields generated by the workload. By default
most values are randomly generated strings and num-
bers. We varied the fraction of truly random characters
and digits in every string/number. This resulted in 3 dif-
ferent “optimal” levels of compressibility for the entire
database data, of 82%, 70% and 63% which we refer to
as HighComp, MedComp and LowComp respectively.
These levels span the range of compressibility results on
many databases, including on our own 10 GB real-life
database.

We used three file systems in our evaluation: ext4
(which does not support compression), ZFS and Btrfs
(both of which do support compression). All file sys-
tems were configured with a 4KB block size to match
the SSD’s write-unit size. We configured ZFS to use
a smaller 16KB record size, which is more suitable for
small random access workloads, and proved the most
stable in our tests.

All file systems were tested under MySQL 5.6.16 as
the database for a TPC-C workload. To improve perfor-
mance we made two modifications to MySQL’s default
configuration. First we configured the InnoDB storage
engine to use 4 KB disk page size, instead of the default
16 KB page size. The larger disk page size is an opti-
mization intended for HDDs, and is not recommended
for OLTP workloads on SSDs, where random access is
much faster [30]. Our tests proved that using the default
page size indeed deteriorated performance.

For evaluating intra-SSD compression schemes we
also configured the storage engine to use the SSD as a
raw partition, instead of using data and index files over a
mounted file system. This removes any file system over-
head, and allows us to stress the device and minimize
the effects of the buffer cache. To minimize the effect
of compression on our evaluation, all schemes employ a
fast LZ4 compression algorithm for compressing data.

Each test begins with an initial priming phase of cre-
ating a clean database over a fresh SSD, and loading of
20 warehouses to the database. We then run a TPC-C
workload with 32 users. We configure the workloads to
a maximum rate of 500 transactions per second, and run
the test for 30 minutes. The throughputs we measured
were always lower than this maximum.

Our main evaluation metric is the amount of flash ac-
cesses per workload. We average these results per trans-



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

2

4

6

8

10

12

compact chunk4 chunk8 bp32 re-bp32

v
s.

 n
o

-c
o

m
p

re
ss

io
n

re
a

d
s/

tx

HighComp

0

0.5

1

1.5

2

2.5

0

2

4

6

8

10

12

14

16

18

compact chunk4 chunk8 bp32 re-bp32

v
s.

 n
o

-c
o

m
p

re
ss

io
n

re
a

d
s/

tx

MedComp

0

0.5

1

1.5

2

2.5

3

0

5

10

15

20

25

compact chunk4 chunk8 bp32 re-bp32

v
s.

 n
o

-c
o

m
p

re
ss

io
n

re
a

d
s/

tx

LowComp

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

0.5

1

1.5

2

2.5

compact chunk4 chunk8 bp32 re-bp32

v
s.

 n
o

-c
o

m
p

re
ss

io
n

w
ri

te
s/

tx

HighComp

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

0.5

1

1.5

2

2.5

3

3.5

compact chunk4 chunk8 bp32 re-bp32

v
s.

 n
o

-c
o

m
p

re
ss

io
n

w
ri

te
s/

tx

MedComp

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

compact chunk4 chunk8 bp32 re-bp32

v
s.

 n
o

-c
o

m
p

re
ss

io
n

w
ri

te
s/

tx

LowComp

Figure 4: The average flash read/write accesses per transaction during an OLTP benchmark (bars), with varying compressibility
levels. The y-axis on the right (dots) shows the relative number of accesses versus a simple page-mapping FTL with no compression

action to compare the effectiveness of compression.

4.2 Results

In this section we present the results of our experiments.
We first present the results of flash accesses generated
on average by each transaction, under the three evalu-
ated file systems, with and without built-in compression.
Next we evaluate every intra-SSD compression scheme
and compressibility level. We then continue to present
the average decompression work which resulted from
every transaction, and analyze its implications for com-
pressor hardware in SSDs.

We also measured the effectiveness of MySQL’s built-
in compression module (of the InnoDB storage engine).
We configured it with a 16K page size, and 4K com-
pression chunk size (key_block_size=4 configuration).
Versus a configuration with no compression, the results
show a 30-50% decrease in transactions per second. Fur-
thermore, even under the HighComp workload it per-
formed twice as more writes to flash than the simple
page-mapping FTL with no compression under ext4, and
also worse than both ZFS and Btrfs. The results became
significantly worse as we reduced the compressibility of
data. This surprising result stems from the fact MySQL
uses in-page logs to store compressed data. This causes
a read-modify-write behavior, and also means that a sig-
nificant portion of a B-tree page contains only padding.
These results were disappointing, so due to lack of space
we decided not to include them in this paper.

4.2.1 Reads and Writes
Figure 3 shows the flash accesses generated on average
by an OLTP transaction under three file systems. In this
experiment compression was turned off in the SSD and
in MySQL. For each file system we repeated the ex-
periment with built-in compression turned on, whenever
available. In all experiments a simple page-mapping
FTL was used. The results show that using file-system
compression can significantly improve performance. It
yields up to 6x and 64% more transactions per second
for ZFS and Btrfs respectively. This can be explained by
the fact compression significantly reduces the amount
of used space in the device. Therefore the task of free
space management, usually done in the background, can
greatly affect performance and response times. Com-
pression is clearly much more effective for ZFS than
Btrfs. However, even with compression ZFS and Btrfs
perform more poorly than ext4 which does not per-
form compression. This can be explained by the fact
that file system compression engines aim to compress
large chunks of data. However, compressing in large
units makes them susceptible to small random accesses
(which is the common workload for SSDs).

Figure 4 shows the flash accesses generated on av-
erage by an OLTP transaction, for every type of com-
pression scheme: compaction, chunk-based with 4 or
8 pages per chunk, binpacking with and without re-
ordering, and simple page mapping without compres-
sion. In this experiment compression in MySQL was
turned off, and MySQL stored data on the raw de-
vice. For the binpacking and re-ordering schemes we
present the best-performing configuration, with 32 bins



(128 KB). All workloads resulted in 190-230 Tps (trans-
actions per second). The major factor affecting this fig-
ure was the compressibility of data being used. For
comparison, moving the database backend storage to an
HDD instead of an SSD emulator based on a RAM disk,
resulted in a rate of about 10 Tps, meaning that even for
our limited setup reaching the same level of Tps would
require using 20 HDDs.

For read performance, the chunk-based scheme de-
livers the worst performance. With a 4-page chunk it
requires 13-88% more read accesses than the best per-
forming scheme on all workloads, which is binpacking
with 32 bins. Using an 8-page chunk almost doubles
the amount of reads, as expected. This validates the sig-
nificance of small random read accesses in OLTP work-
loads. Under such workloads, the chunk-based scheme
suffers from high read amplification, due to reading large
chunks which span multiple pages, in-order to extract
data for a single LBA.

For reads, the binpacking scheme performs best, since
random accesses require at most a single page read. The
compaction scheme on the other hand may require read-
ing 2 pages to serve a single logical read, which is man-
ifested in 16% more reads. For LowComp data this is
exacerbated, since the chances of data of a compressed
logical page to overflow to the next physical page are in-
creased, and the compaction scheme now performs 31%
worse. The reordering scheme performs worse by 5%.
This is due to the loss of read locality when reordering
all bins before deciding whether to dump a victim bin
to flash. The page mapping scheme delivers on-par read
performance, since it also does not require redundant ac-
cesses to serve small random reads, but this comes of
course at the cost of significant write amplification.

For writes the compaction scheme demonstrates su-
perior performance for both MedComp and LowComp
workloads, though the re-ordering scheme does not lag
far behind. For the compaction scheme this comes at the
cost of using 30% more RAM, for storing extra map-
ping entries in the translation map. In the HighComp
workload, the compaction scheme is out-performed by
the reordering scheme by 16%. This is not only because
of improved space utilization, but also because the bins
in effect function as a small write buffer; For highly-
compressible data they can cache more LBAs. For larger
SSDs the write buffering effect due to such a small buffer
in NV-RAM would probably be much smaller.

Not surprisingly, the chunk-based scheme performed
better with larger chunks, but still not as good as the
compaction scheme. When using a 4-page chunk it per-
formed 30-109% worse than the compaction scheme.
For the re-ordering binpacking scheme, reducing the
number of bins has a negative effect on writes, as ex-
pected. In the worst performing configuration using only

0%

10%

20%

30%

40%

50%

60%

HighComp MedComp LowComp

co
m

p
re

ss
io

n
 g

a
in

compact

chunk4

chunk8

bp32

re-bp32

Figure 5: Compression gain achieved for every intra-SSD
compression scheme, under the OLTP benchmark with vary-
ing levels of compressibility

4 bins, it now performs 3%, 7% and 23% more writes to
flash than the 32-bin configuration (for the LowComp,
MedComp and HighComp workloads respectively).

The results for the simple page-mapping FTL are dis-
played on the secondary Y axis. They validated that it
performed more writes than all compression schemes in
proportion to the compressibility level of each workload.

We note that the benchmark does not fully utilize the
high IOPs rate the device is capable of. This is consis-
tent with measurements of OLTP benchmarks on real-
life SSDs [27, 28] capable of 100Ks of IOPs; the OLTP
benchmarks only reached rates of thousands of transac-
tions per second on these devices.

The results described so far indicate that intra-SSD
compression is superior to host-side compression. It
performs significantly fewer read and write accesses for
the same workload. This improves the life span of the
device, and also results in better rates of transactions per
second in almost all workloads. Therefore we proceed
to evaluate the storage footprint of each intra-SSD com-
pression scheme.

4.2.2 Intra-SSD Storage Footprint
To further evaluate the effective compression gained by
each intra-SSD compression scheme, under each work-
load, we measure the ratio between the number of bytes
written to flash and the number of bytes written to the
SSD by the host. The results are displayed in Fig-
ure 5. Again, for highly-compressible data, the re-
ordering scheme achieves the best results, because of
its larger write buffer. The chunk-based scheme always
performs the worst when using 4 pages per chunk, using
33-54% more space than the other schemes. The num-
bers improve, as expected, as we increase the amount
of data fed to the chunk-based compressor, but as we’ve
seen this comes at a heavy cost of performing more reads
(and as we see next, also decompression).

The potential benefit of the binpacking scheme (with



1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

1.E+7

compact chunk4 chunk8 bp32 re-bp32 pm

high med low

Figure 6: GC-related writes as a result of one hour long TPC-
C workload for each scheme

and without re-ordering) dramatically decreases when it
has to pack fewer and larger chunks of data to the same
number of bins. This also explains why the compaction
scheme performs better than the re-ordering scheme, as
the data becomes less compressible. When using only
4 bins, the re-ordering scheme deteriorates by 22% in
compression gain versus the 32-bin configuration in the
HighComp workload, but much less dramatically for the
rest of the workloads. We have also verified the results
using an offline analysis of each intra-SSD compression
scheme on a real-life 10GB database. The results are
omitted due to lack of space.

Lastly, we note that each compression level results in
different levels of valid data stored on the device, and
therefore different levels of stress on the garbage collec-
tion process. For compressible data, embedding com-
pression within the device increases the effective over-
proviosining factor; as a result the reclamation process
requires reading and writing very little data. For exam-
ple when the data is 82% compressible, much less data
is effectively written to flash. Figure 6 demonstrates this
effect for one-hour long runs of the TPC-C benchmark.

4.2.3 Hardware Requirements
In our evaluation so far we assumed that the compression
and decompression resources for intra-SSD schemes are
unlimited. However, in real-life SSDs, the hardware re-
sources dedicated for compression are of course limited
in terms of cost, power, and size. Requiring less from
the compression hardware used by the SSD would al-
low vendors to use weaker, cheaper and more energy-
efficient hardware without creating a bottleneck.

Most of our OLTP workloads using intra-SSD com-
pression delivered a rate of about 200 transactions per
second. Even in the least-performing scheme, i.e. the
chunk-based scheme with the 8-page configuration, this
translates to throughput of 7 MB/s compressed and 40
MB/sec decompressed data. These numbers are low, and

0

100

200

300

400

500

600

700

800

900

compact chunk4 chunk8 bp32 re-bp32

M
B
/s

compress

decompress

Figure 7: Compression/decompression rates required by each
scheme, based on Tps rate extracted from real-life SSDs

can be supported even with relatively weak compression
hardware. On several high-end SSDs, transaction rates
of up to 3K per second have been reported [27, 28].
Extrapolating our results to such SSDs would require
the compression/decompression rates shown in Figure 7.
Supporting these rates would require relatively powerful
compression hardware.

We can see that for the chunk-based schemes, the
decompression requirements are 342-660 MB/s, 3x-6x
higher than the other schemes. The requirements for
compression throughput are the same for all techniques,
but these figures do not take into account garbage collec-
tion writes. These would add additional penalty in the
case of the chunk-based scheme, which re-compresses
data during garbage collection. High-end compression
hardware can probably meet even these relatively high
requirements; low-end compressors appear to be too
weak [31, 18, 32]. Therefore, using the compaction or
re-ordering scheme would be preferable, allowing SSD
vendors to use cheaper compression hardware.

5 Conclusions

Our paper explores mechanisms and policies for com-
pressing data over SSDs. Using a representative work-
load, we show that intra-SSD compression is superior to
using existing application or file system level compres-
sion. Flash does not allow straightforward write in-place
and therefore almost all SSD firmwares keep some form
of large translation maps in RAM on the device. Em-
bedding compression within the SSD avoids the need for
an additional level of indirection by utilizing the SSD’s
existing translation maps. In addition having the com-
pression at this low level sidesteps most of the problems
related to variable and fixed chunk sizes.

We evaluate several methods for embedding compres-
sion in SSDs and suggest improvements over the exist-
ing methods.



References
[1] LSI durawrite data reduction. http:

//www.lsi.com/company/technology/
duraclass/pages/durawrite.aspx.

[2] Data compression – intel. www.intel.com/
support/ssdc/hpssd/sb/CS-
034293.htm.

[3] Jon Tate, Bosmat Tuv-El, Jorge Quintal, Eyal Trai-
tel, Barry Whyte, et al. Real-time Compression
in SAN Volume Controller and Storwize, volume
7000. IBM Redbooks, 2012.

[4] MySQL InnoDB compressed tables.
https://dev.mysql.com/doc/refman/5.6/en/innodb-
compression.html.

[5] Oracle advanced compression with Oracle
database 12c. http://www.oracle.com/
technetwork/database/options/
compression/advanced-compression-
wp-12c-1896128.pdf.

[6] Btrfs compression.
https://btrfs.wiki.kernel.org/index.php/Compression.

[7] OpenZFS project homepage. http://open-
zfs.org/wiki/Main_Page.

[8] NTFS file compression and decompres-
sion. http://msdn.microsoft.com/en-
us/library/windows/desktop/aa364219

[9] Sungjin Lee, Jihoon Park, K. Fleming, Arvind, and
Jihong Kim. Improving performance and lifetime
of solid-state drives using hardware-accelerated
compression. Consumer Electronics, IEEE Trans-
actions on, 57(4):1732–1739, November 2011.

[10] Keun Soo Yim, Hyokyung Bahn, and Kern Koh. A
flash compression layer for smartmedia card sys-
tems. Consumer Electronics, IEEE Transactions
on, 50(1):192–197, Feb 2004.

[11] Cornel Constantinescu, Joseph S. Glider, and
David D. Chambliss. Mixing deduplication and
compression on active data sets. In Data Com-
pression Conference (DCC 2011), pages 393–402,
2011.

[12] D. Harnik, E. Khaitzin, D. Sotnikov, and
S. Taharlev. A Fast Implementation of Deflate. In
DCC. IEEE Computer Society, 2014.

[13] OLTP-bench benchmarking tool.
http://oltpbenchmark.com.

[14] Jinsoo Yoo, Youjip Won, Joongwoo Hwang, Sooy-
ong Kang, Jongmoo Choi, Sungroh Yoon, and Jae-
hyuk Cha. VSSIM: Virtual machine based ssd sim-
ulator. In MSST, 2013.

[15] Youngjo Park and Jin-Soo Kim. zftl: power-
efficient data compression support for nand flash-
based consumer electronics devices. Consumer
Electronics, IEEE Transactions on, 57(3):1148–
1156, August 2011.

[16] Yangwook Kang and Ethan L. Miller. Adding
aggressive error correction to a high-performance
compressing flash file system. In Proceedings of
the Seventh ACM International Conference on Em-
bedded Software, EMSOFT ’09, 2009.

[17] S. Boboila, Youngjae Kim, S.S. Vazhkudai,
P. Desnoyers, and G.M. Shipman. Active flash:
Out-of-core data analytics on flash storage. In
Mass Storage Systems and Technologies (MSST),
2012.

[18] Guanying Wu and Xubin He. Delta-ftl: Improving
ssd lifetime via exploiting content locality. In Pro-
ceedings of the 7th ACM European Conference on
Computer Systems, EuroSys ’12, 2012.

[19] Feng Chen, Tian Luo, and Xiaodong Zhang. Caftl:
A content-aware flash translation layer enhanc-
ing the lifespan of flash memory based solid state
drives. In Proceedings of the 9th USENIX Confer-
ence on File and Stroage Technologies, FAST’11,
pages 6–6, Berkeley, CA, USA, 2011. USENIX
Association.

[20] DB-engines database management systems pop-
ularity ranking. http://db-engines.com/
en/ranking.

[21] T. Makatos, Y. Klonatos, M. Marazakis, M.D.
Flouris, and A. Bilas. Zbd: Using transparent com-
pression at the block level to increase storage space
efficiency. In Storage Network Architecture and
Parallel I/Os (SNAPI), 2010 International Work-
shop on, pages 61–70, May 2010.

[22] Fabrice Bellard. Qemu, a fast and portable dy-
namic translator. In Proceedings of the Annual
Conference on USENIX Annual Technical Confer-
ence, 2005.

[23] fio bencmarking tool. https://github.com/axboe/fio.

[24] ZD-XL SQL accelerator.
http://ocz.com/enterprise/zd-xl-sql-accelerator-
pcie-ssd.

[25] IBM Netezza data warehouse appliances.
http://www-01.ibm.com/software/data/netezza/.

[26] A. De, M. Gokhale, R. Gupta, and S. Swan-
son. Minerva: Accelerating data analysis in next-
generation ssds. In Field-Programmable Custom
Computing Machines (FCCM), 2013 IEEE 21st
Annual International Symposium on, pages 9–16,
April 2013.

http://www.lsi.com/company/technology/duraclass/pages/durawrite.aspx
http://www.lsi.com/company/technology/duraclass/pages/durawrite.aspx
http://www.lsi.com/company/technology/duraclass/pages/durawrite.aspx
www.intel.com/support/ssdc/hpssd/sb/CS-034293.htm
www.intel.com/support/ssdc/hpssd/sb/CS-034293.htm
www.intel.com/support/ssdc/hpssd/sb/CS-034293.htm
http://www.oracle.com/technetwork/database/options/compression/advanced-compression-wp-12c-1896128.pdf
http://www.oracle.com/technetwork/database/options/compression/advanced-compression-wp-12c-1896128.pdf
http://www.oracle.com/technetwork/database/options/compression/advanced-compression-wp-12c-1896128.pdf
http://www.oracle.com/technetwork/database/options/compression/advanced-compression-wp-12c-1896128.pdf
http://open-zfs.org/wiki/Main_Page
http://open-zfs.org/wiki/Main_Page
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking


[27] Sysbench OLTP benchmark.
http://www.storagereview.com.

[28] Virident flashmax m1400 mysql - tpcc-mysql
report. http://www.percona.com/files/white-
papers/virident-mlc-tpcc.pdf.

[29] tpcc-mysql bencchmarking tool.
https://code.launchpad.net/ percona-
dev/perconatools/tpcc-mysql.

[30] Ilia Petrov, Robert Gottstein, Todor Ivanov, Daniel
Bausch, and Alejandro Buchmann. Page size selec-
tion for oltp databases on ssd storage. Journal of
Information and Data Management, 2(1):11, 2011.

[31] J.L. Nunez and S. Jones. Gbit/s lossless data com-
pression hardware. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 11(3):499–
510, June 2003.

[32] S. Navqi, R. Naqvi, R.A. Riaz, and F Siddiqui. Op-
timized rtl design and implementation of lzw algo-
rithm for high bandwidth applications. Electrical
Review, 2011(4):279âĂŞ285, April 2011.


	Introduction
	Background
	Compression in SSDs
	Host-side Compression

	Intra-SSD Compression Schemes
	Comparison
	Implementation

	Evaluation
	Methodology
	Results
	Reads and Writes
	Intra-SSD Storage Footprint
	Hardware Requirements


	Conclusions

