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Abstract: In this paper, we prove the unique continuation property (UPC) and decay about the Korteweg-de-
Burgers (KdVB) equation

ut − uxx + uxxx + uux + a(x)u = 0

in a bounded interval with a localized damping term. We will show that the UPC holds with the condition of
ux(0, t) = 0 and u ≡ 0 in ω × (0, T ), where ω is a nonempty open subset of (0, L), if a localized damping
acting on a moving internal is applied in KdVB equation. And we prove the exponential decay of the KdVB
equation with some boundary and initial condition.
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1 Introduction
In this article, we are concerned with the Korteweg-de-Vries-Burgers Equation (KdVB) in a bounded interval with a
localized damping term a(x)u,

ut − uxx + uxxx + uux + a(x)u = 0, in (0, L)× (0, T )
u(0, t) = u(L, t) = 0, t ∈ (0, T )
ux(L, t) = 0, t ∈ (0, T )
u(0) = u0, on (0,L)

(1)

All along the paper we assume that the function a(x) satisfies

a ∈ L∞(0, L), a(x) ≥ a0 > 0 a.e.in ω, (2)

where ω is a nonempty open subset of (0, L). The original KdVB equation is

ut − γuxx + uxxx + uux = 0,

which is reduced from the generalized Korteweg-de-Vries-Burgers(GKdVB) equation

ut − γuxx + µuxxx + uαux = 0

mentioned in [1] as a model for the propagation of one-dimensional, unidirectional small amplitude long waves in nonlin-
ear media. In GKdVB equation, µ, γ > 0 and α is a positive integer is considered, the independent variable x represents
the medium of propagation, t is proportional to elapsed time, and u(x, t) is a velocity at the point x at time t. And

If ν = 0, α = 1, the GKdVB equation (1) reduces to the Korteweg-de-Vries(KdV) equation, which is a nonlinear
dispersive partial differential equation that presents a model of propagation of small amplitude along water in a uniform
channel[4-5].
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If µ = 0, α = 1, the KdVB equation (1) reduces to the Burgers equation which models turbulent liquid flow through
a channel.[6-8].

Recently, some researchers obtained many results about the UCP of differential equation. In [9] for the KdV equation,
Kenig, Ponce, and Vega considered conditions, only at two different times, on the support of a solution u, proving that if
this solution is supported in an interval (−∞, B) at t = 0 and t = 1, then u = 0.A similar result was obtained in [10]
for the generalized KdV equation. Reinhard Recke proved a UCP for solutions of the wave equation in [11]. In [12],for
a general class of dispersive equations, Saut and Scheurer proved that if a solution u = u(x, t), x ∈ Rn, t ∈ R, in such
class,vanishes in an open set Ω ∈ Rn × R, then it vanished in all the horizontal components of Ω. Rosier and Bingyu
Zhang applied the moment approach to prove the UCP of the BBM equation and extended it to certain BBM-like equation
in [13].The UCP for the Ostrovsky equation with negative dispersion was proved in [14] by Pedro Isaza. In [16], Ademir
Fernando Pazoto proved the exponential decay for the energy of solutions of the Korteweg-de Vries equation in a bounded
interval with a localized damping term.

In this paper, we investigate the Unique Continuation Property (UCP) of KdVB equation and its applications to control
problem for (1). Recall that UCP holds in some class X of function if, given any nonempty open set ω ⊂ T, the only
solution u ∈ X of (1) fulfilling u(x, t) = 0 for(x, t) ∈ ω × (0, T ) is the trivial solution u ≡ 0. This property is
very important in control theory, and the study of unique continuation property is usually proved by applying some
Carleman estimated, as it is equivalent to the approximate controllability for linear PDE, and it also is involved in the
classical uniqueness/compactness approach in the proof of the stability for PDF with a localized damping. Here,we apply
the method in Menzala [15] which combines energy estimates, multipliers and compactness arguments the problem is
reduced to prove the unique continuation of weak solutions. Multiplying the equation (1) by u ,

uut − uuxx + uuxxx + uux + a(x)u2 = 0

integrating the above equation in (0, L), and set

E(t) =
1

2

∫ L

0

|u(x, t)|2 dx (3)

we get
dE(t)

dt
= −

∫ L

0

a(x) |u(x, t)|2 dx−
∫ L

0

|ux(x, t)|2 dx− 1

2
|ux(0, t)|2 (4)

This indicates that the term a(x)u in the equation is a feedback damping mechanism. Consequently, as an energy
function, E(t) is a decreasing function and a rate of decay of solutions is expected. For the boundary value problem (1)
under consideration, according to the above dissipation law (4),when a = 0, the energy is dissipated through the extreme
x = 0. On the other hand,when a ≡ 1, it is straightforward to see from (4) that the energy decays uniformly exponentially
as t → ∞. The same holds when a(x) ≥ a0 > 0, a.e. in (0, L).

The problem of stabilization when the damping is effective only on a bounded subset of the interval (0, L) is much
more subtle and, in view of (3), the problem of the exponential decay of E(t) can be stated in the following equivalent
form: To find T > 0 and C > 0 such that

E(0) ≤ C

∫ T

0

[

∫ L

0

(a(x)u2(x, t) + u2
x(x, t))dx+ u2

x(0, t)]dt (5)

holds for every finite energy solution of (1). From (4) and (5), combining the semigroup theory, we have E(t) ≤ λE(0)
with 0 < λ < 1 , i.e. the exponential decay of E(t) is derived.

This article focus on analyzing this problem. The case for KdV equation with the damping term is in [15] , in this case,
the damping term a(x)u is active simultaneously in a neighborhood of both extremes of the interval (0, L) was addressed.
It was proved that for all T > 0 and any solution with initial data satisfying E(0) ≤ R, simultaneously, the following
inequality holds

E(0) ≤ C

∫ T

0

[

∫ L

0

a(x)u2(x, t)dx+ u2
x(0, t)]dt

with a constant C = C(R, T ) . Consequently it was shown that, for any R > 0 , there exist positive constants C(R) and
α(R) satisfying

E(t) ≤ C(R)E(0)e−α(R)t,∀t > 0 (6)

provided E(0) ≤ R. The proof in [15] follows closely the multiplier techniques developed in [18] for the analysis of
controllability properties. However, when using multipliers, the nonlinearity produces extra terms in [15] were handled
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by compactness. In fact, proceeding as in [15] the problem of obtaining (5) is reduced to showing that the unique solution
of KdV equation, such that,a(x)u = 0 everywhere and ux(0, t) = 0 for all time t, has to be the trivial one. This problem
may be viewed as a unique continuation one since au = 0 implies u = 0 in {a > 0} × (0, T ).

However, the existing unique continuation results (see [12]) do not apply directly since the solutions we are dealing
with are weak, with initial data in L2(0, L) and the regularity conditions required to derive Calerman inequalities are not
fulfilled. We point out that such inequalities are those reminiscent of the classical Carleman estimates in which the lower
order terms (with bounded coefficients or even with unbounded coefficients under suitable integrability conditions) of
the equation can be controlled in some weighted norms by the principal part of the operator (see for instance [19-20]).
Consequently, this article may be considered as a new contribution in the subject of proving unique continuation properties
of weak solutions of partial differential equations, this time in the context of KdVB equations. As far as we know, the
situation we are considering here has not been addressed in the literature yet since, to our knowledge, the existing results
on unique continuation for KdV-like equations ([15][20]) require the solution u to be in L∞(0, T ;Hs(0, L)) with s > 2

3 .
Let us now describe our strategy of proof in some more detail. We first differentiate the equation in (1) with respect to

t and analyze the regularity of y = ut, which is a solution of
yt − yxx + yxxx + (u(x, t)y)x + a(x)y = 0, in (0, L)× (0, T )
y(0, t) = y(L, t) = 0, t ∈ (0, T )
yx(L, t) = 0, t ∈ (0, T )
y(0) = y0, on (0,L)

(7)

where u ∈ L2(0, T ;H1
0 (0, L)) ∩ L∞(0, T ;L2(0, L)) is the weak solution of (1) and y0 = y(x, 0) = ut(x, 0) in H( −

3)(0, L). Of cause,since u ≡ 0 in ω × (0, T ) ,y ≡ 0 on ω × (0, T ) as well,ω being the subinterval where the damping
potential a is effective. The above model (7) can be viewed as a linearized KdVB equation. Therefore, inspired by the
work of Rosier and Zhang [20-21], we argue as in the linear case, combining multiplier techniques and the so called
“compactness-uniqueness” argument (see [22]), which is useful to handle the extra terms that the “potential” u(x, t)
produces in the inequality. And then we can prove the fact that y ≡ 0 in ω × (0, T ) implies the extra regularity property
y ∈ L2(0, T ;H1

0 (0, L))∩L∞(0, T ;L2(0, L)) which yields enough regularity on to apply the unique continuation results
obtained in [12] by means of Carleman inequalities.

The paper is organized as follows. In Section 2, we state our the main results of this work and prove our main result,
i.e., the UCP of weak solutions and the exponential decay of (1) .

2 Main result and proof
Firstly, for the sake of completeness, we state the well-posedness result for problem (1) obtained in [17]:
Theorem 2.1(see[17])For any give u0 ∈ L2(0, L), the problem (1) has a unique global mild solution. And, the following
enery identity holds for all T ≥ 0 :

1

2
∥u(t)∥2L2(R) +

∫ T

0

∥ux(x, t)∥2L2(R) dt+

∫ T

0

∫
R

a(x) |u(x, t)|2 dxdt = 1

2
∥u0∥2L2(R) . (8)

Furthermore, let T ≥ 0 and a(x) ∈ H1(0, L),for every u0 ∈ Hs(0, L), 0 ≤ s ≤ 3, the nonlinear problem (1) admits
a unique solution u, which belongs to the class Bs,T ,there exists a continuous function C : R+ × (0,∞) → R+,
nondecreasing in its first variable, such that

∥u∥Bs,T
≤ C(∥u0∥2 , T ) ∥u0∥Hs(R) (9)

in which BT := C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)),
with the norm ∥u∥B = ∥u∥C([0,T ];L2(0,L)) + ∥ux∥L2(0,T ;L2(0,L))

The main results of this paper can be summarized as follows:
Theorem 2.2 Let u be the solution of problem (1) obtained in Theorem 2.1 and ω and a(x) as in (2), 0 < T < ∞. If
ux(0, t) = 0 in ω × (0, T ), then

u ∈ L2(0, T ;H3(0, L)) ∩H1(0, T ;L2(0, L))

Consequently, the UCP holds and, therefore, u ≡ 0.
For proving Theorem2.2, we show the following lemmas:
Lemma 2.1 Let u be the solution of problem (1) obtained in Theorem 2.1. Then, problem (7) has an unique mild solution
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y ∈ L2(0, T ;H1
0 (0, L)) ∩ L∞(0, T ;L2(0, L)) whenever y0 ∈ L2(0, L).

Proof. Firstly, we consider the following system
yt − yxx + yxxx + a(x)y = 0, in (0, L)× (0, T )
y(0, t) = y(L, t) = 0, t ∈ (0, T )
yx(L, t) = 0, t ∈ (0, T )
y(0) = y0, on(0, L)

(10)

Setting
A = −∂3

x + ∂2
x − aI,D(A) = H3(R)

According to[17],A generates a strongly continuous semigroup {S(t)}t≥0 of contractions in L2(R), T > 0,and (10) has
aunique mild solution y ∈ C([0, T ];L2(R)),and y(t) = S(t)u0.Furthermore, we multiply the equation in (10) by y and
xy, and integrate over (0, L)× (0, T ),we obtain

∥y(·, T )∥2L2(0,L) = ∥y0∥2L2(0,L) −
∫ T

0

|yx(0, t)|2 dt− 2

∫ T

0

∫ L

0

[a(x) |y|2 + |yx|2]dxdt

and ∫ T

0

∫ L

0

y2xdxdt+
1

3

∫ L

0

xy2(x, T )dx+
2

3

∫ T

0

∫ L

0

xa(x)y2dxdt+
2

3

∫ T

0

∫ L

0

xy2xdxdt =
1

3

∫ L

0

xy0(x)dx

Then,we may deduce that S(·) satisfies the following properties

∥S(t)y0∥L2(0,L) ≤ ∥v0∥L2(0,L)

∥S(•)y0∥L2(0,T ;H1
0 (0,L)) ≤ C(L+ T ) ∥v0∥L2(0,L) .

(11)

for all 0 ≤ t ≤ T and v0 ∈ L2(0, L). According to [17], the unique mild solution of (7) has the following

y(t) = S(t)y0 +

∫ t

0

S(t− s)[u(x, s)y]xds = Φ[y](t) (12)

Thus, the problem of existence and uniqueness for (7) is reduced to finding a fixed point of Φ. To do that, we show that
Φ is a contraction from a suitable ball BR of BT := C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)) into itself when T > 0
is small enough (both R and T depend on the size of the initial data y0 in L2(0, L) and of the potential u = u(x, t) in
C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)). This shows that system (7) has an unique mild solution for 0 ≤ t < T , with
T small. Thus, for concluding the proof of Lemma 2.1, it is sufficient to prove that this solution exists globally. We first
multiply the 2equation in (7) by y and integrate by parts over (0, L) to obtain

1

2

d

dt

∫ L

0

y2dx+

∫ L

0

y2xdx+
1

2
y2x(0, t) +

∫ L

0

y2a(x)dx =

∫ L

0

yyxudx. (13)

Applying the Cauchy-Schwarz and Holder’s inequalities in (19), we have∫ L

0
y2dx+

∫ T

0

∫ L

0
y2xdxdt

≤
∫ L

0
y20dx+

∫ T

0

∫ L

0
|uyxy| dxdt

≤
∫ L

0
y20dx+ (

∫ T

0
∥uy∥2L2(0,L) dt)

1
2

∫ T

0
∥yx∥2L2(0,L) dt)

1
2

≤
∫ L

0
y20dx+

∫ T

0
∥u∥2L∞(0,L) ∥y∥

2
L2(0,L) dt+

∫ T

0
∥yx∥2L2(0,L) dt.

(14)

Simplify (14), we deduce that∫ L

0
y2dx ≤

∫ L

0
y20dx+

∫ T

0
∥u∥2L∞(0,L) ∥y∥

2
L2(0,L) dt

⇒ ∥y∥L∞(0,T ;L2(0,L)) ≤
∫ L

0
y20dx+

∫ T

0
∥u∥2L∞(0,L) ∥y∥

2
L2(0,L) dt = C1.

(15)

Here C1 is a positive constant. On the other side, multiply equation in (7) by xy and integrate by parts over (0, L) ×
(0, T ),using the boundary condition. Then according to Poincare’s inequality, we deduce that∫ T

0

∫ L

0

y2x(x)dxdt ≤ C2

{∫ L

0

y20(x)dx+

∫ T

0

(1 + ∥u∥2L∞(0,L)) ∥y∥
2
L2(0,L) dt

}
(16)
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For some positive constant C2 = C2(T, ∥u0∥L2(0,L) , ∥y0∥L2(0,L)) > 0.Combining (15),(16) and Theorem 2.1, we have

∥y∥L2(0,T ;H1
0 (0,L)) ≤ C (17)

Here C = max{C1, C2}. This concludes the proof of Lemma 2.1.
Lemma 2.2 (see in [17]) There exists a positive constant C = C(T, ∥u0∥L2(0,L)) such that

∥y0∥2L2(0,L) = ∥y(t)∥2L2(0,L) + 2
∫ T

0
∥yx(t)∥2L2(0,L) dt+ 2

∫ T

0

∫ L

0
a(x) |y|2 dxdt

≤ C
{∫ T

0
y2x(0, t)dt+

∫ T

0

∫ L

0
a(x) |y|2 dxdt

}
+ ∥y0∥2H−3(0,L)

(18)

holds for every solution y of (7) as in Lemma 2.1.
We are now in conditions to prove Theorem 2.2.
Proof. Let u0 ∈ L2(0, L).According to the definition of y,we have

y0 = y(x, 0) = ut(x, 0) = −u0,xxx − u0u0,x + u0,xx − a(x)u0 ∈ H3(0, L)

If ux(0, t) = 0 and a(x)u vanishes, then yx(0, t) = 0 and a(x)y ≡ 0 as well. Consequently, if the damping potential
a = a(x), y ≡ 0 , in ω × (0, T ), according to (2) and Lemma 2.2, we obtained that y0 ∈ L2(0, L), combining Lemma2.1
and system (1), we get

ut = v ∈ L∞(0, T ;L2(0, L)) ∩ L2(0, T ;H1(0, L)) (19)

and {
uxxx = −ut − ux − uux − a(x)u in (0, L)× (0, T )
u(0, t) = u(L, t) = 0 t ∈ (0, T )

(20)

Then, combining (19) ,(20) and Theorem2.1, we have a conclusion that u ∈ L2(0, T ;H3(0, L))∩H1(0, T ;L2(0, L)) and
using the UPC in (12),we have u ≡ 0.
Our main result on exponential decay is as follows:
Theorem 2.3 For any L, any damping potential a satisfying (2) and M > 0 , there exist c = c(M) > 0 and µ = µ(M)
such that

E(t) ≤ c ∥u0∥2L2(0,L) e
−µt (21)

holds for all t ≥ 0 and any solution of (1) with u0 ∈ L2(0, L) such that ∥u0∥L2(0,L) ≤ M
Proof of Theorem 2.3: As mentioned in the introduction, once Theorem 2.2 is known, Theorem 2.3 holds immediately
applying the methods in [17].
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