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ABSRACT

Graphite  has  always  been  a  very  important 
material  both  industrially  and  academically  due  to  its 
physical  structure.  But  ever  since  the  isolation  of 
Graphene (a single sheet of Graphite) a few years ago, it’s 
been one of the most widely studied molecular systems for 
its  potential  applications  in  nano-electronics  and  other 
break-through  areas.  Some  of  the  desirable  traits  of 
Graphene are its high thermal and electronic mobility, and 
its  low noise  properties.  This  paper  outlines  a  standard 
method  for  calculating  phonon  dispersion  curves  in 
Graphene by making use of force constant measurements. 
This information is usually obtained from approximations 
of  inter-atomic  potentials,  which  involve  derivatives  of 
simplified potential  approximations  between every atom 
in  Graphene  to  get  the  force  constant  tensors.  In  this 
paper, the measured values for the force constants are used 
in  a  mathematically  rigorous  way  to  calculate  the 
Graphene phonon dispersion curves. 

NOMENCLATURE

D                dynamical matrix             [N/m]
w                            frequency                                [cm-1]

INTRODUCTION

one  of  the  prominent  issues  that  the 
microelectronics industry is struggling with today is heat 
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generation  and  dissipation  in  solid  state  devices. 
Therefore,  while  the  industry  makes  the  transition  to 
nanoscale  transistors,  there  is  an  opportunity  to 
incorporate new materials that possess not only excellent 
electrical properties, but also desirable thermal properties 
that will lend themselves to efficient heat extraction and 
dissipation. Graphene, along with Carbon Nanotubes, has 
recently been  hailed  as  such  a  material.  A considerable 
amount  of  research  is  currently  going  into  the  use  of 
graphene  in  integrated  circuits.  Some  of  this  research 
focuses  on  the  use  of  graphene  nano-ribbons  as  semi-
conducting channels in graphene-based transistors, and a 
portion  of  the  research  focuses  on  the  potential  use  of 
graphene and CNT's as interconnects.  Regardless of  the 
final  application  of  graphene  in  IC  chips,  there  is  a 
consensus that its thermal properties are just as important 
as its electrical properties, if not more so.    

BACKGROUND

Heat is mainly carried by lattice vibrations in non-
metallic  materials.  Electrons  also  contribute  to  heat 
transport.  Lattice vibrations, when quantized, are known 
as  phonons.  At  low  temperatures,  atoms  are  frozen  in 
place  and  the  inter-atomic  potential  that  exists  in  the 
motionless  structure  is  used to calculate how the atoms 
influence each other. The force that is exerted is in fact the 
derivative of this potential. This potential is parabolic in 
shape around the equilibrium distance between atoms, and 
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therefore can be approximated by a harmonic oscillator's 
potential profile. For this reason, we can model atoms as 
masses connected by springs, as depicted in figure 1. The 
stiffness of the springs corresponds to the strength of the 
bonds  between  adjacent  atoms.  Within  this  harmonic 
approximation,  we  can  write  down  the  equations  of 
motion for all atoms, and solve them together to find out 
how kinetic energy is transferred among them. 

Figure 1. Chain of masses connected by springs

It  was  classically  believed  that  the  energies  of 
these oscillations were continuous, but we now know that 
all harmonic waves actually have quantized energies. For 
this reason, phonons are understood as discrete vibrational 
'packets'  or  'particles'  with  energies  that  are  integer 
multiples of  hv (Planck's constant times frequency). This 
is  why  we  treat  vibrations  as  particles  with  certain 
energies depending on their frequencies. 
The vibrational properties of a structure can be described 
by its phonon dispersion relation. This relation describes 
the relationship between the phonon frequencies and the 
reciprocal-space  wave  vectors,  k,  associated  with  those 
frequencies.  

METHOD

The method that we will focus on for this paper is 
known as the 4th  nearest neighbor force constant method 
(4NNFC).  We  show  how  this  method  is  implemented 
based  on  how  it  is  described  in  the  book  “Physical 
Properties  of  Carbon Nanotubes” by M.  S.  Dresselhaus 
and co. [1]. As was pointed out above, we start with a set 
of equations of motion for as many atoms as we like in the 
structure. 
In general, the equation of motion for a system of atoms is 
written as:

              M⋅ü i = ∑
j

K i j ⋅u j−ui 1         

Where “i” is the central atom, “j” represents neighboring 
atoms,  “M” is  the  mass,  and  “u” is  the  atomic 
displacement,  and  K is  the  3X3  force  constant  matrix 
between “i” and “j”.  
What this means is that the Oscillations of atom “i” are 
transferred  to  atom  “j”  through  the  K force  constant 
matrix. 
2
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After  Fourier  transforming  equation  1,  we  can 
show  that  the  equation  can  be  rewritten  formally  as 
equation (2) by introducing a Dynamical Matrix “D” with 
dimensions of 3x3 for every atom in the unit cell:      

                      D k ⋅u j = 0 3     

all we have to do to find the frequencies w2(k) is solve the 
equation:

                    det D k  = 0 4

for periodic systems such as graphene, the elements of the 
dynamical matrix are actually given by the product of the 
force  constant  matrix  K(ij)  and  the  phase  factors 

e i⋅k⋅Ri j .

                 Di j = K i j ⋅ei⋅k⋅Ri j 5

APPLICATION TO GRAPHENE

Graphene  has  a  honeycomb  structure  made 
entirely of  carbon atoms.   Therefore it  has a hexagonal 
structure  with  a  basis  of  two.   In  this  paper  we  will 
consider interactions with up to the four nearest neighbor 
atoms.  This is depicted in the following two figures.

Figure 2. Two atoms in the graphene unit cell, A and B, and their 
nearest neighbors connected by rings
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There  are  two  atoms  in  the  unit  cell,  therefore  the 
dynamical matrix is going to be 6X6. For convenience, it 
is  common to  break up the  dynamical  matrix  into four 
separate  matrices,  each  of  which  are  3X3  in  size.  The 
following equation demonstrates this fact:

                   D k =D
AA DAB

DBA DBB 6

where  DAA describes  the  effects  of  A type  neighboring 
atoms  on  atom  A,  DAB describes  the  effects  of  B type 
neighboring atoms on atom A, DBA describes the effects of 
A type atoms on atom  B, and so on and so forth. In the 
first picture of fig 2, while considering atom A, the matrix 
DAA is calculated by adding all the contributions from  A 
type  atoms  up  to  the  fourth  nearest  neighbors.   These 
contributions are calculated by multiplying the appropriate 
force  constant  tensors  K  by  the  corresponding  phase 
factors, as shown in equation 5. All the other matrices are 
calculated in the same fashion.

But  where  do  we  get  the  appropriate  force 
constant tensors?  In this implementation of the 4NNFC 
model, we construct the tensors from force parameters that 
that  are  given  in  reference  1.   These  parameters  are 
reproduced  below.  The  parameters  represent  force 
constants  in  Newtons  per  meter  in  the  radial  (bond 
stretching),  tangential  in-plane  (bond  bending),  and 
tangential  out-of-plane  (bond  bending  out-of-plane) 
directions.

     radial               Tangential 
  in-plane          out of plane

Ring 1 Φ r = 365.0  Φ i = 245.0 Φ o = 98.2

Ring 2 Φ r = 88.0 Φ i = -32.3 Φ o = -4.0

Ring 3 Φ r = 30.0 Φ i = -52.2 Φ o = 1.5

Ring 4 Φ r = -19.2 Φ i = 22.9 Φ o = -5.8

Table 1. force constants in unit of N/m

As  an  example,  we  will  construct  the  first  two  force 
constant tensors that couple atom A to atoms B1 and B2.

                      K  A, B1 =
r

1 0 0
0 i

1 0
0 0 o

1

The only difference between B1 and B2 is their angles in 
reference  to  atom  A.  Therefore  to  calculate  the  force 
constant tensor for atom B2, we must take the  B1 tensor 
and apply tensor rotation rules to it. This simply involves 
3
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the following operation:

           
K  A, B2 = U −1⋅K  A , B1⋅U 7

 
where U  is a rotation tensor defined as follows:

           U =
cos  sin 0
−sin cos 0

0 0 1
8

 and Θ is the angle that corresponds to  B2, which in this 
case happens to be 2π /3. 

Using this method, we can now calculate all the 
force  constant  tensors that  couple atoms  A and  B to  all 
their nearest neighbors. The next step is to construct the 
6X6  dynamical  matrix  according  to  equation  (6),  and 
solve  for  its  eigenvalues.  The  eigenvalues  are  actually 
squares of the frequencies that we want,  so we must be 
careful  to  take  square  roots  after  solving  for  these 
eigenvalues.  The last step is to plot the frequencies versus 
the reciprocal wave vector within the Brillouin zone. This 
plot will be our dispersion relation. The above procedure 
is  straightforward  to  implement  in  a  mathematical 
simulation package such as Matlab, as done here. 

Technically, frequency relations can be plotted for 
any specific direction in reciprocal space, but it is often 
useful  to  plot  them  along  directions  that  have  high 
symmetry.  This simply means that the dispersion shows 
continuity  as  we  traverse  several  different  segments  of 
wave  vectors.  The  following  figure  shows  the  most 
symmetric path within the Brillouin zone (BZ).

Figure 3. The Brillouin zone for graphene, with high-
symmetry lines shown
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RESULTS

The following plot shows the dispersion relation 
along the wave vector that goes from the  Γ-point (center 
of Brillouin Zone) to the M-point (edge center of Brillouin 
Zone). 
 

Figure 4. Dispersion relation, Gamma to M

The second high-symmetry direction to plot  is  from the 
M-point (edge center of BZ) to the K-point (edge corner 
of BZ). The following relation is obtained:

Figure 5. Dispersion relation, M to K

The last dispersion plot will  be along the line that goes 
from K back to  Γ.  This  part  of  the  dispersion looks as 
follows:
4
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Figure 6. Dispersion relation, K to Γ

 
DISCUSSION

It is well worth noting that the inclusion of fourth 
nearest neighbors in this  model  is necessary in order to 
account  for  twisting  motions  that  contribute  to  the 
vibrational properties of graphene. It is clear to see from 
our  results  that  we  can  reproduce  experimentally 
measured dispersion relations very well [2].  

We get  six  branches  in  the  dispersion,  which is 
expected since our dynamical matrix was 6x6, and each 
atom in the unit cell has three degrees of freedom. Of the 
six  branches,  the  three  that  originate  at  the  Γ-point  are 
known as acoustic branches, while the remaining three are 
known  optical  branches.  Acoustic  phonons  have  much 
higher  group  velocities  (generally  associated  with  the 
speed  of  sound  in  the  material),  and  are  therefore 
responsible  for  the  majority  of  heat  conducted  by  the 
material. Optical branches, on the other hand, are a result 
of atoms vibrating out of phase from each other, and can 
be sparked into action by interactions with photons. They 
do not contribute heavily to heat conduction. 
Each of these branch types  can also be associated with 
three distinct directions of atomic vibration: Longitudinal 
(L), Transverse (T), and Out-of-plane (Z). 

CONCLUSIONS

We have seen that it is important to understand the 
vibrational  properties of  materials  in order to  maximize 
their  full  potential  in  technological  applications,  and  to 
also avoid pitfalls and unintended consequences. A very 
powerful way of analyzing thermal properties of materials 
is to study their phonon dispersion relations. We have seen 
in this paper how to construct one of the models (4NNFC) 
used to calculate the phonon band structure of materials, 
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and we have seen a specific  application with graphene. 
This  information is  useful  in  the  calculation  of  thermal 
properties like heat capacity, heat conductivity and several 
other transport phenomena. 
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