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Abstract: A novel graphical method is introduced for evaluation of the state of equilib-

rium of a solution crystallizing within a porous medium. This tool makes it 
easy to anticipate the effects of changes in pore size distribution, initial con-
centration of salt, or type of salt, on the crystallization pressure at equilibrium. 
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1. INTRODUCTION 

 Salt crystallization is widely recognized as a cause of weathering of po-
rous building materials, including stone, mortar and concrete1,2,3. A century 
of research has revealed the key mechanisms involved in such phenom-
ena4,5,6, and the thermodynamic aspects of the problem are well under-
stood7,8. However, predicting damage to porous media by salt crystallization 
requires consideration of crystal growth kinetics and fracture mechanics, and 
no detailed theory is yet available, although progress is being made9. In this 
paper we consider the influence of a pore size distribution on crystallization 
pressure, using a novel graphical approach that will be described in detail in 
a future publication10. 

2. SUPERSATURATION AND PRESSURE 

 The solubility product for a crystal whose chemical formula is of the 
form AaBbCc is 
    K = a
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where {ai} is the activity of ion type i. The equilibrium value of the solubil-
ity product, K0, is the value of K when a macroscopic crystal is in equilib-
rium with a solution. If K > K0, the solution is said to be supersaturated, and 



2  Chanvillard and Scherer 

the crystal will grow until the supersaturation is consumed (i.e., until K is 
reduced to K0). The supersaturation is written as β  = K/K0. 
 Chemical equilibrium is reached when β = 1, leading to a macroscopic 
crystal with a radius of curvature equal to zero. As the curvature, κCL, of the 
crystal/liquid interface increases (i.e., as the radius decreases), equilibrium 
requires a higher salt concentration in the solution, according to the Ostwald-
Freundlich equation11: 
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where γCL is the crystal/solution interfacial energy, R is the gas constant, T is 
the absolute temperature, and vc is the molar volume of the crystal. Conse-
quently, the smaller the pore, the higher β must be to allow a crystal to pene-
trate [8]. 
 As crystals grow they consume ions from the solution and consequently 
its supersaturation decreases. At a given supersaturation, equilibrium re-
quires that all the crystals present have the same radius of curvature. If two 
crystals (one large and one small) are in the same solution, the smaller crys-
tal will be more soluble, so it will dissolve as the larger one grows. Of 
course, crystal growth and dissolution depend on solute transport by diffu-
sion. This can be the critical mechanism leading to a transient state of equi-
librium. 
 The pore size distribution can be represented as a cumulative curve of the 
pore volumes, beginning with the larger pores. If Vp(r) dr is the volume of 
pores with radii between r and r+ dr, then the cumulative volume fraction of 
pores larger than r is 

    Vp
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The volume is normalized by the total porous volume, V

p

T . During crystalli-
zation, the pore volume will be filled beginning with the larger pores. The 
normalized pore size distribution is therefore equivalent to a degree of salt 
saturation in the pores. 
 Crystals growing in pores are separated from the pore walls by a film of 
solution8, owing to disjoining forces that oppose contact of the dissimilar 
crystals. The portion of the crystal in contact with the pore liquid, but not 
against the pore wall, has a curvature dictated by eq. (2). Elsewhere, the cur-
vature of the crystal is dictated by the shape of the pore wall, even though it 
is in contact with the same solution. To preserve equilibrium, a mechanical 
pressure must be applied on the crystal by the pore wall. In the simple case 
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of a cylindrical pore (and neglecting the thickness of the solution film), the 
pressure on the pore wall is expressed by3,12 
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where 2/rp is the curvature of the hemispheric ends and 1/rp is the curvature 
of the pore wall. For a crystal of arbitrary shape, the pressure varies from 
point to point on the pore wall, according to the difference in curvature at 
that point and at the pore entry where the free crystal is in contact with the 
pore liquid8.  
 Now consider the case of a crystal that has filled a large pore and contin-
ues to grow into smaller pores (as a result of an increase in β brought about 
by evaporation or a change in temperature). The smaller pore radius controls 
the curvature of the advancing (hemispherical) end. The pressure on the pore 
wall increases in the larger pores and becomes proportional to the difference 
between the local curvature and that of the hemispherical end in the pore 
being invaded. The average pressure exerted on the pore walls by salt crys-
tallization in the pores can be evaluated13,14 as a pore volume-weighted aver-
age of the local pressure over all pore radii containing crystals. If β is in 
equilibrium with radius rp, then the average pressure in the body is 
 

    P rp( ) =
Vp r( )PW r( )dr
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The smaller rp is, the higher the average pressure exerted on the pore walls. 
It is clear that when the average pressure increases, the risk of damage to the 
porous medium also increases. 

2. EQUILIBRIUM DIAGRAM 

 Equilibrium of a crystal in a porous medium can be represented on a 
unique graph, illustrated in . The four axes correspond to the relative volume 
(porosity or salt saturation), molality of the solution, supersaturation, and the 
pore radius. The average pressure versus pore radius is also included on this 
graph (dashed curve) introducing an additional axis called the pressure axis. 
 The two curves on the left side of Figure 1 are only dependent on the 
chemistry of the crystal, whereas the two curves on the right are specific to 
the porous medium. The top-right curve (Quandrant I) represents the solu-
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tion’s molality in the pores and its evolution when the salts precipitate. The 
bottom-right curve (Quadrant IV) describes the pore size distribution of the 
porous medium. Any change in the pore size distribution will affect this 
curve and, consequently, the average pressure curve. The unique state of 
equilibrium is indicated by the rectangular dashed frame. 
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Figure 1.  Four quadrant diagram showing the parameters controlling equilibrium. Quadrant I 
contains molality (m) as a function of fraction of pore volume crystallized (Vp

c ), Quadrant II 
shows supersaturation (β) as a function of molality, Quadrant III shows the pore size (rp) in 
equilibrium at supersaturation β, and Quadrant IV shows the cumulative pore size distribu-
tion. Also shown in Quadrant IV is the crystallization pressure from eq. (5) versus rp. The 
vertices of the rectangle identify the values of each of the quantities at the state of equilib-
rium. 

 
 Beginning in Quadrant I and turning counter clockwise, the functions are 
successively m(V

p

c ), β(m), rp(β), and V
p

c ( rp). Each of these four functions is 
monotonic, meaning that the signs of their derivatives are constant. Suppose 
that we pick a particular value of the relative volume, say V

p

c . The molality 
of the solution at the point where the salt fills that volume fraction is m(V

p

c ), 
the supersaturation of the solution at that point is β(m(V

p

c )), the size of the 
crystal that would be in equilibrium with that supersaturation is 
rp(β(m(V

p

c ))), and the cumulative pore volume up to that pore size is 
V
p

c (rp(β(m(V
p

c )))). If the system is in equilibrium, then the latter quantity 
must be equal to V

p

c . It can be shown that the root V
p

c  exists and is unique10. 
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Convergence to the solution can be graphically illustrated: starting at any 
point on one of the curves and circulating clockwise, as in Figure 2, the loop 
inevitably converges on the equilibrium rectangle. 
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Figure 2. Demonstration of convergence on equilibrium from an arbitrary starting point. 

 
 This diagram makes is easy to anticipate the consequences of changes in 
the parameters. For example, increasing the initial molality of the solution in 
the pores (i.e., shifting the curve m(V

p

c ) upward) raises the equilibrium crys-
tallization pressure by a predictable amount. Similarly, the effects of changes 
in the type of solute, which affects β(m), or in the shape of the pore size 
distribution can be quantified. 

3. CONCLUSIONS 

  A novel graphical approach facilitates the prediction of crystallization 
pressure, taking account of the effects of supersaturation and the shape of the 
pore size distribution. Application of this tool to the stress caused by sodium 
sulfate in limestone will be presented in a forthcoming paper15. 
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