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We investigate the delay-independently asymptotic stability of fractional-order linear singular delay differential systems. Based
on the algebraic approach, the sufficient conditions are presented to ensure the asymptotic stability for any delay parameter. By
applying the stability criteria, one can avoid solving the roots of transcendental equations. An example is also provided to illustrate
the effectiveness and applicability of the theoretical results.

1. Introduction

Singular systems play important roles in modelling and
analyzing a lot of practical systems, such as power systems,
economic systems, chemical processes, and network analysis.
Depending on these fields of applications, they are also called
differential-algebraic systems, descriptor systems, semistate
systems, or generalized state-space systems. Over the last
two decades, many results regarding integer-order singular
systems have been obtained (see [1–10]). In [3–10], various
stability problems of integer-order singular systemshave been
considered by applying the different methods, such as linear
matrix inequality (LMI) method [3, 4, 6, 7], 𝜃-method and
BDF method [5], Lyapunov-Krasovskii functional method
[8, 9], and Lyapunov direct method [10].

The fractional dynamics system is a recent focus of inter-
est to many researchers [11–32]. Many practical phenomena
in the fields of economics, engineering, and physics can be
represented more accurately through fractional derivative
formulation. The basic theory of factional calculus can be
found in the monographs of Miller and Ross [11], Podlubny
[12], Kilbas et al. [13], and Diethelm [14]. Moreover, Laksh-
mikantham et al. [15] and Baleanu et al. [16] have elaborated
the theory of fractional-order dynamics systems and the
recent developments.

As we all know, stability is an important performance
metric for dynamic systems. Since the fractional derivative
has the nonlocal property and weakly singular kernels, the
analysis of stability of fractional-order systems is more com-
plex than that of integer-order differential systems. In recent
years, there are some results on the stability of fractional-
order differential systems [18–20]. For example, Li et al. [18,
19] proposed the Mittag-Leffler stability of fractional-order
systems based on fractional comparison principle [18] and
Lyapunov direct method [19]. On the other hand, time delay
has an important effect on the stability and performance of
dynamic systems. It is worth mentioning that the notable
contributions have been made to the stability of fractional-
order delay differential systems (see [21–30]). In particular,
Deng et al. [24] studied Lyapunov asymptotic stability of frac-
tional linear delay differential systems by using the final-value
theorem of Laplace transform. De la Sen [25] considered
Robust stability of fractional-order linear delayed dynamic
systems by means of fixed point theory. In [26], Li and Zhang
presented a survey on the stability of fractional-order (delay)
differential equations. Kaslik and Sivasundaram [27] investi-
gated the asymptotic stability of linear fractional-order delay
differential equations by using the analytical and numerical
methods. By employing Lyapunov functional method, Sadati
et al. [28] and Baleanu et al. [29] established Mittag-Leffler
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stability theorem and Razumikhin stability theorem for
fractional-order nonlinear delay systems, respectively.

For fractional-order linear singular systems without
delay, N’Doye et al. [31] studied the stabilization problems by
means of LMI method. However, to the best of our knowl-
edge, there are very few works on the stability of fractional-
order linear singular delay differential systems as reported in
the current literatures except [32], in which Zhang and Jiang
investigated the finite-time stability of fractional-order singu-
lar delay differential systems in terms of theGronwall integral
inequality. Compared to the stability theory of integer-order
singular dynamics systems [3–10] and fractional-order delay
differential systems [21–30], the stability theory of fractional-
order singular delay systems is not yet sufficiently elaborated.

In this paper, we are interested in the delay-independent
stability of the Caputo fractional-order singular delay differ-
ential system as follows:

𝐸𝐷
𝛼

𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝜏) , 𝑡 ≥ 0,

𝑥 (𝑡) = 𝜑 (𝑡) , −𝜏 ≤ 𝑡 ≤ 0

(1)

and the Caputo fractional-order singular neutral delay differ-
ential system

𝐷
𝛼

[𝐸𝑥 (𝑡) − 𝐶𝑥 (𝑡 − 𝜏)] = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝜏) , 𝑡 ≥ 0,

𝑥 (𝑡) = 𝜑 (𝑡) , −𝜏 ≤ 𝑡 ≤ 0,

(2)

where 0 < 𝛼 < 1; 𝑥(𝑡) ∈ R𝑛 is the state vector; 𝐷𝛼𝑥(𝑡)
denotes an 𝛼 order Caputo fractional-order derivative of 𝑥(𝑡);
matrices 𝐴, 𝐵, 𝐴, 𝐵, 𝐶 ∈ R𝑛×𝑛 and matrices 𝐸, 𝐸 ∈ R𝑛×𝑛 are
singular with rank(𝐸) = 𝑟 < 𝑛, rank(𝐸) = 𝑟 < 𝑛; 𝜏 ∈ R+ is the
time delay; and 𝜑, 𝜑 are both the consistent initial functions.

Different from the methods in [18–32], we apply the
algebraic approach to establish the delay-independently
asymptotic stability criteria for system (1) and system (2).
The novelty of this paper lies in the following aspects. Firstly,
we synchronously take into account the factors of such
systems including the Caputo’s fractional-order derivative,
pseudostate delay, and singular coefficient matrices. Sec-
ondly, the algebraic approach is applied to derive the sufficient
conditions of the delay-independent stability, which ensure
the asymptotic stability for any delay parameter 𝜏 ∈ R+.
Thirdly, by applying these stability criteria, one can avoid
solving the roots of transcendental equations.

This paper is organized as follows. In Section 2, we intro-
duce some definitions and preliminary facts used in the
paper. In Section 3, the sufficient conditions of the delay-
independently asymptotic stability for system (1) and system
(2) are derived based on the algebraic approach, respectively.
In Section 4, an example is provided to illustrate the effective-
ness and applicability of the proposed criteria. Finally, some
concluding remarks are drawn in Section 5.

2. Preliminaries

In this section, we recall some definitions of fractional
calculus (see [11–14]) and preliminary facts used in the paper.

Definition 1 (see [12]). Riemann-Liouville’s fractional integral
of order 𝑞 > 0 for a function 𝑓 : R+ → R𝑛 is defined as

𝐷
−𝑞

𝑓 (𝑡) =
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠) 𝑑𝑠, 𝑡 > 0, (3)

where Γ(⋅) is the Gamma function.

Definition 2 (see [12]). The Riemann-Liouville’s fractional
derivative of order 𝑞 for a function 𝑓 : R+ → R𝑛 is defined
as

RL
𝐷
𝑞

𝑓 (𝑡) =
1

Γ (𝑚 − 𝑞)

𝑑
𝑚

𝑑𝑡𝑚
∫

𝑡

0

(𝑡 − 𝑠)
𝑚−𝑞−1

𝑓 (𝑠) 𝑑𝑠, (4)

where 0 ≤ 𝑚 − 1 ≤ 𝑞 < 𝑚,𝑚 ∈ Z+.

Definition 3 (see [12]). The Caputo’s fractional derivative of
order 𝑞 for a function 𝑓 : R+ → R𝑛 is defined as

𝐶

𝐷
𝑞

𝑓 (𝑡) =
1

Γ (𝑚 − 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑚−𝑞−1

𝑓
(𝑚)

(𝑠) 𝑑𝑠, (5)

where 0 ≤ 𝑚 − 1 ≤ 𝑞 < 𝑚, 𝑚 ∈ Z+. For the sake of conve-
nience, 𝐶𝐷𝑞 is still written as𝐷𝑞.

Definition 4 (see [12]). The Mittag-Leffler function in two
parameters is defined as

𝐸
𝑞,𝛽
(𝑧) =

+∞

∑

𝑘=0

𝑧
𝑘

Γ (𝑘𝑞 + 𝛽)
, (6)

where 𝑞 > 0, 𝛽 > 0 and 𝑧 ∈ C and C denotes the complex
plane. In particular, for 𝛽 = 1, the Mittag-Leffler function in
one parameter is defined as

𝐸
𝑞
(𝑧) =

+∞

∑

𝑘=0

𝑧
𝑘

Γ (1 + 𝑘𝑞)
, 𝑞 > 0, 𝑧 ∈ C. (7)

For 𝛼 ∈ (0, 1), the Laplace transform of Caputo fraction-
al-order derivative𝐷𝛼𝑓(𝑡) is given as follows:

£ [ 𝑐𝐷𝛼𝑓 (𝑡)] = 𝑠𝛼£ [𝑓 (𝑡)] − 𝑠𝛼−1𝑓 (0) . (8)

Throughout this paper, let C([−𝜏, 0],R𝑛) be the space of
all continuous functions mapping the interval [−𝜏, 0] into
R𝑛, and C1

([−𝜏, 0],R𝑛) denotes the space of all continuous
differential functions mapping the interval [−𝜏, 0] into R𝑛.
The consistent initial function 𝜑(⋅) ∈ C([−𝜏, 0],R𝑛) and
𝜑(⋅) ∈ C1

([−𝜏, 0],R𝑛).

As discussed by Zhang [21], applying themethod of steps,
we obtain the following lemmaswhich generalizewell-known
results of integer-order singular systems without delay (see
[1]) to fractional-order singular delay differential systems.

Definition 5. For any given two matrices 𝐸,𝐴 ∈ R𝑛×𝑛, the
matrix pair (𝐸, 𝐴) is called regular if det(𝜆𝛼𝐸 − 𝐴) is not
identically zero, where 𝜆 ∈ C.
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Lemma 6. Assume that (𝐸, 𝐴) is regular, and 𝜑(⋅) ∈

C1
([−𝜏, 0],R𝑛) is the consistent initial function, then system

(2) has a unique solution on [0, +∞).

Proof. For system (2), on the interval [−𝜏, 0], 𝑥(𝑡) = 𝜑(𝑡).
Thus, when 𝑡 ∈ [0, 𝜏], system (2) is given by

𝐷
𝛼

[𝐸𝑥 (𝑡) − 𝐶𝜑 (𝑡 − 𝜏)] = 𝐴𝑥 (𝑡) + 𝐵𝜑 (𝑡 − 𝜏) , (9)

that is,

𝐸𝐷
𝛼

𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝜑 (𝑡 − 𝜏) + 𝐶𝐷
𝛼

[𝜑 (𝑡 − 𝜏)] . (10)

Since (𝐸, 𝐴) is regular, and 𝐵𝜑(𝑡 − 𝜏) + 𝐶𝐷
𝛼

[𝜑(𝑡 − 𝜏)] is
continuous on [0, 𝜏], by applying Theorem 3.2 in [32], we
obtain that 𝑥

1
(𝑡) is a unique solution of system (2) on [0, 𝜏].

For 𝑡 ∈ [𝜏, 2𝜏], system (2) is given by

𝐸𝐷
𝛼

[𝑥 (𝑡) − 𝐶𝑥
1
(𝑡 − 𝜏)] = 𝐴𝑥 (𝑡) + 𝐵𝑥

1
(𝑡 − 𝜏) , (11)

that is,

𝐸𝐷
𝛼

𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥
1
(𝑡 − 𝜏) + 𝐶𝐷

𝛼

[𝑥
1
(𝑡 − 𝜏)] . (12)

Since 𝐵𝑥
1
(𝑡 − 𝜏) + 𝐶𝐷

𝛼

[𝑥
1
(𝑡 − 𝜏)] is continuous on [𝜏, 2𝜏],

similarly, we obtain that 𝑥
2
(𝑡) is a unique solution of system

(2) on [𝜏, 2𝜏].
Assume that system (2) has a unique solution 𝑥

𝑘
(𝑡) on

[(𝑘 − 1)𝜏, 𝑘𝜏]. For 𝑡 ∈ [𝑘𝜏, (𝑘 + 1)𝜏], system (2) is given by

𝐸𝐷
𝛼

[𝑥 (𝑡) − 𝐶𝑥
𝑘
(𝑡 − 𝜏)] = 𝐴𝑥 (𝑡) + 𝐵𝑥

𝑘
(𝑡 − 𝜏) , (13)

that is,

𝐸𝐷
𝛼

𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥
𝑘
(𝑡 − 𝜏) + 𝐶𝐷

𝛼

[𝑥
𝑘
(𝑡 − 𝜏)] . (14)

Since𝐵𝑥
𝑘
(𝑡−𝜏)+𝐶𝐷

𝛼

[𝑥
𝑘
(𝑡−𝜏)] is continuous on [𝑘𝜏, (𝑘+1)𝜏],

similarly, we obtain that 𝑥
𝑘+1

(𝑡) is a unique solution of system
(2) on [𝑘𝜏, (𝑘 + 1)𝜏].

According to the mathematical induction, we know that
system (2) has a unique solution on [0, +∞). Therefore, the
proof is completed.

Lemma 7 (see [32]). Assume that (𝐸, 𝐴) is regular and 𝜑(⋅) ∈

C([−𝜏, 0],R𝑛) is the consistent initial function; then system (1)
has a unique solution on [0, +∞).

Assume that the conditions in Lemmas 6 and 7 are
satisfied, which ensure the existence and uniqueness of the
solutions of system (1) and system (2). FromDefinition 3, the
Caputo’s fractional derivative of a constant is equal to zero;
then 𝑥(𝑡) ≡ 0 is the zero solution of system (1) and system
(2), respectively.

Definition 8. Assume that (𝐸, 𝐴) (or (𝐸, 𝐴)) is regular; then
the zero solution 𝑥(𝑡) ≡ 0 of system (1) (or (2)) is
called delay-independently asymptotically stable if, for any
consistent initial function 𝜑(⋅) ∈ C([−𝜏, 0],R𝑛) (or 𝜑(⋅) ∈

C1
([−𝜏, 0],R𝑛)), its analytic solution 𝑥(𝑡) satisfies

lim
𝑡→+∞

𝑥 (𝑡) = 0 (15)

for any delay parameter 𝜏 > 0.

Now, we introduce the first equivalent form of system (1)
by means of the nonsingular transform, which is also called
the standard canonical decomposition of a singular system.

Assume that (𝐸, 𝐴) is regular, then there exist two
nonsingular matrices 𝑃,𝑄 ∈ R𝑛×𝑛, such that system (1) is
equivalent to canonical system as follows:

𝑐

𝐷
𝛼

𝑥
1
(𝑡) = 𝐴̄

1
𝑥
1
(𝑡) + 𝐵̄

11
𝑥
1
(𝑡 − 𝜏)

+ 𝐵̄
12
𝑥
2
(𝑡 − 𝜏) , 𝑡 ≥ 0,

𝑁
𝑐

𝐷
𝛼

𝑥
2
(𝑡) = 𝑥

2
(𝑡) + 𝐵̄

21
𝑥
1
(𝑡 − 𝜏)

+ 𝐵̄
22
𝑥
2
(𝑡 − 𝜏) , 𝑡 ≥ 0,

𝑥
1
(𝑡) = 𝜑̄

1
(𝑡) , −𝜏 ≤ 𝑡 ≤ 0,

𝑥
2
(𝑡) = 𝜑̄

2
(𝑡) , −𝜏 ≤ 𝑡 ≤ 0,

(16)

where 0 < 𝛼 < 1, 𝑥
1
∈ R𝑟, 𝑥

2
∈ R𝑛−𝑟, and 𝑁 is nilpotent

whose nilpotent index is denoted by ] = ind(𝐸, 𝐴), that is,
𝑁

]
= 0,𝑁]−1

̸= 0, and

𝑃𝐸𝑄 = [
𝐼
𝑟
0

0 𝑁
] , 𝑃𝐴𝑄 = [

𝐴
1

0

0 𝐼
𝑛−𝑟

] ,

𝑃𝐵𝑄 = [

[

𝐵
11

𝐵
12

𝐵
21

𝐵
22

]

]

, 𝑄
−1

𝑥 (𝑡) = [
𝑥
1
(𝑡)

𝑥
2
(𝑡)
] .

(17)

In particular, when 𝜏 = 0 and ind(𝐸, 𝐴) = 1, system (1) is
equivalent to the following canonical system without delay:

𝐷
𝛼

𝑥
1
(𝑡) = (𝐴

1
+ 𝐵
1
) 𝑥
1
(𝑡) , 𝑡 ≥ 0,

0 = 𝑥
2
(𝑡) , 𝑡 ≥ 0,

𝑥
1
(𝑡) = 𝜑

1
(𝑡) , −𝜏 ≤ 𝑡 ≤ 0,

𝑥
2
(𝑡) = 𝜑

2
(𝑡) , −𝜏 ≤ 𝑡 ≤ 0.

(18)

In addition, taking the Laplace transform on both sides of
system (1) yields

𝑠
𝛼

𝐸£ [𝑥 (𝑡)] − 𝑠𝛼−1𝜑 (0) = 𝐴£ [𝑥 (𝑡)] + 𝐵£ [𝑥 (𝑡 − 𝜏)] , (19)

where 0 < 𝛼 < 1. It follows from the properties of integral
that

£ [𝑥 (𝑡 − 𝜏)] = 𝑒−𝑠𝜏£ [𝑥 (𝑡)] + 𝑒−𝑠𝜏 ∫
0

−𝜏

𝑒
−𝑠𝑡

𝜑 (𝑡) 𝑑𝑡. (20)

Thus, we obtain

[𝑠
𝛼

𝐸 − 𝐴 − 𝐵𝑒
−𝑠𝜏

] £ [𝑥 (𝑡)]

= 𝑠
𝛼−1

𝜑 (0) + 𝐵𝑒
−𝑠𝜏

∫

0

−𝜏

𝑒
−𝑠𝑡

𝜑 (𝑡) ,

(21)

where

Δ (𝑠, 𝜏) = det [𝑠𝛼𝐸 − 𝐴 − 𝐵𝑒
−𝑠𝜏

] (22)

is the characteristic polynomial of system (1).
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3. Stability Criteria

In this section, we derive the sufficient conditions of the
delay-independently asymptotic stability for system (1) and
system (2), respectively.

Theorem 9. Assume that (𝐸, 𝐴) is regular, and ind(𝐸, 𝐴) = 1;
then system (1) is delay-independently asymptotically stable if
the following conditions simultaneously hold.

(H
1
) All the eigenvalues 𝜆s of matrix 𝐴

1
+ 𝐵
1
satisfy

󵄨󵄨󵄨󵄨󵄨
arg (𝜆 (𝐴

1
+ 𝐵
1
))
󵄨󵄨󵄨󵄨󵄨
>
𝛼𝜋

2
. (23)

(H
2
) For any 𝑦 ∈ R, 𝜏 ∈ R+, and 𝑖 = √−1, then

Δ (𝑖𝑦, 𝜏) = det [(𝑖𝑦)𝛼𝐸 − 𝐴 − 𝐵𝑒
−𝑖𝑦𝜏

] ̸= 0. (24)

Proof. For any 𝜏 ∈ R+, we only need to prove that all the roots
of equation Δ(𝑠, 𝜏) = 0 lie in open left-half complex plane.

When 𝜏 = 0 and ind(𝐸, 𝐴) = 1, system (1) is reduced to
the slow fractional-order subsystem

𝐷
𝛼

𝑥
1
(𝑡) = (𝐴

1
+ 𝐵
1
) 𝑥
1
(𝑡) (25)

and the fast subsystem

0 = 𝑥
2
(𝑡) . (26)

Thus, the asymptotic stability of system (18) entirely depends
on 𝑥
1
(𝑡) irrespective of 𝑥

2
(𝑡).

From condition (H
1
), any root of equation det(𝜆𝐼

𝑛
1

−𝐴
1
−

𝐵
1
) = 0 satisfies

󵄨󵄨󵄨󵄨arg (𝜆)
󵄨󵄨󵄨󵄨 >

𝛼𝜋

2
. (27)

Let 𝜆 = 𝑠
𝛼, then we have 𝑠 = 𝜆

1/𝛼. It follows from inequality
(27) that

󵄨󵄨󵄨󵄨arg (𝑠)
󵄨󵄨󵄨󵄨 >

𝜋

2
, (28)

where 𝑠 is just the root of the following characteristic equation
of the slow fractional-order subsystem

det (𝑠𝛼𝐼
𝑟
− 𝐴
1
− 𝐵
1
) = 0. (29)

By computation of the determinants, we have

det (𝑠𝛼𝐸 − 𝐴 − 𝐵)

= det{𝑃−1 [𝑠
𝛼

𝐼
𝑟
− 𝐴
1
− 𝐵
1

0

0 −𝐼
𝑛−𝑟

]𝑄
−1

}

= (−1)
𝑛−𝑟 det (𝑠𝛼𝐼

𝑟
− 𝐴
1
− 𝐵
1
) det (𝑃−1𝑄−1) .

(30)

Taking into account (28), (29), and (30), one can get that all
the roots of equation det(𝑠𝛼𝐸 − 𝐴 − 𝐵) = 0 have negative

real parts. Hence, it follows from (H
1
) that system (18) is

asymptotically stable.
On the other hand, since rank(𝐸) = 𝑟, the characteristic

polynomial of system (1) can be expressed as

Δ (𝑠, 𝜏) = 𝑃
0
⋅ (𝑠
𝛼

)
𝑟

+ 𝑃
1
⋅ (𝑠
𝛼

)
𝑟−1

+ ⋅ ⋅ ⋅ + 𝑃
𝑟−1

⋅ 𝑠
𝛼

+ 𝑃
𝑟
, 𝑃
0
̸= 0,

(31)

where 𝑃
𝑖
(𝑖 = 0, 1, 2, . . . , 𝑟) are the polynomial of the expo-

nential function 𝑒−𝑠𝜏, and their coefficients are composed of
the elements of matrices 𝐸, 𝐴, 𝐵.

LetR𝑒(𝑠) represent the real part of the complex number
𝑠. In (31), for any 𝜏 ∈ R+, if we assume thatR𝑒(𝑠) ≥ 0, thenwe
have |𝑒−𝑠𝜏| ≤ 1 and 𝑃

𝑖
(𝑖 = 0, 1, 2, . . . , 𝑟) are bounded. Denote

𝑄 = max
1≤𝑖≤𝑟

󵄨󵄨󵄨󵄨𝑃𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑃0
󵄨󵄨󵄨󵄨

, 𝑀 = max {1, (1 + 𝑟)𝑄} . (32)

When |𝑠𝛼| > 𝑀 and R𝑒(𝑠) ≥ 0, the polynomial Δ(𝑠, 𝜏) has
the following estimates:

|Δ (𝑠, 𝜏)|

≥
󵄨󵄨󵄨󵄨𝑃0

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
(𝑠
𝛼

)
𝑟󵄨󵄨󵄨󵄨󵄨
[1 −

󵄨󵄨󵄨󵄨𝑃1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑃0
󵄨󵄨󵄨󵄨

1

|𝑠𝛼|
−

󵄨󵄨󵄨󵄨𝑃2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑃0
󵄨󵄨󵄨󵄨

1
󵄨󵄨󵄨󵄨󵄨
(𝑠𝛼)
2
󵄨󵄨󵄨󵄨󵄨

− ⋅ ⋅ ⋅ −

󵄨󵄨󵄨󵄨𝑃𝑟
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑃0
󵄨󵄨󵄨󵄨

1
󵄨󵄨󵄨󵄨(𝑠
𝛼)
𝑟󵄨󵄨󵄨󵄨

]

≥ 𝑀
𝑟

𝑃
0
[1 −

𝑟𝑄

(1 + 𝑟)𝑄
] > 0.

(33)

Thus, for |𝑠𝛼| > 𝑀 and R𝑒(𝑠) ≥ 0, equation Δ(𝑠, 𝜏) = 0 has
no root.

In addition, from condition (H
1
), we know that the roots

of equation Δ(𝑠, 0) = 0 are distributed in open left-half
complex plane. When 𝜏 = 0 increases from zero, the roots
of equation Δ(𝑠, 𝜏) = 0 are distributed in right-half complex
plane if and only if there exists some 𝑠 (|𝑠| ≤ 𝑀1/𝛼) such that
𝑠 passes through the imaginary axis. Yet, this is impossible by
condition (H

2
).Therefore, all the roots of equationΔ(𝑠, 𝜏) = 0

lie in open left-half complex plane.

According to the proof of Theorem 9, we immediately
have the following result.

Corollary 10. Assume that (𝐸, 𝐴) is regular and ind(𝐸, 𝐴) =
1; then system (1) is delay-independently asymptotically stable
if the following conditions simultaneously hold.

(H
1
)󸀠 All the roots of equation

Δ (𝑠, 0) = det [𝑠𝛼𝐸 − 𝐴 − 𝐵] = 0 (34)

have negative real parts.

(H
2
) For any 𝑦 ∈ R, 𝜏 ∈ R+ and 𝑖 = √−1, then

Δ (𝑖𝑦, 𝜏) = det [(𝑖𝑦)𝛼𝐸 − 𝐴 − 𝐵𝑒
−𝑖𝑦𝜏

] ̸= 0. (35)
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Note that condition (H
2
) inTheorem 9 is a transcendental

inequality, which is not convenient to use. Then we give an
improved form as follows.

Theorem 11. Assume that (𝐸, 𝐴) is regular and ind(𝐸, 𝐴) = 1;
then system (1) is delay-independently asymptotically stable if
the following conditions simultaneously hold.

(H
3
) All the eigenvalues 𝜆s of matrix 𝐴

1
+ 𝐵
1
satisfy

󵄨󵄨󵄨󵄨󵄨
arg (𝜆 (𝐴

1
+ 𝐵
1
))
󵄨󵄨󵄨󵄨󵄨
>
𝛼𝜋

2
. (36)

(H
4
) For any 𝑦 ∈ R, all the eigenvalues of the complex
function matrix

𝐺 (𝑦) = [𝐴 + 𝐵 − (𝑖𝑦)
𝛼

𝐸]
−1

𝐵 −
1

2
𝐼 (37)

have negative real parts, that is,R𝑒[𝜆(𝐺(𝑦))] < 0.

Proof. From Theorem 9, we only need to prove condition
(H
4
) is equivalent to (H

2
).

In fact, it follows from (H
1
) and Corollary 10 that matrix

(𝑖𝑦)
𝛼

𝐸 − 𝐴 − 𝐵 is nonsingular; then we have

Δ (𝑖𝑦, 𝜏) = det [(𝑖𝑦)𝛼𝐸 − 𝐴 − 𝐵𝑒
−𝑖𝑦𝜏

]

= det [(𝑖𝑦)𝛼𝐸 − 𝐴 − 𝐵]

× det {𝐼 − [(𝑖𝑦)𝛼𝐸 − 𝐴 − 𝐵]
−1

𝐵 (𝑒
−𝑖𝑦𝜏

− 1)}

̸= 0.

(38)

Therefore,

det {𝐼 − [(𝑖𝑦)𝛼𝐸 − 𝐴 − 𝐵]
−1

𝐵 (𝑒
−𝑖𝑦𝜏

− 1)} ̸= 0. (39)

Obviously, if 𝑦𝜏 = 2𝑘𝜋 (𝑘 = 0, ±1, ±2, . . .), then
inequality (39) holds. Now, let 𝑦𝜏 ̸= 2𝑘𝜋 (𝑘 = 0, ±1, ±2, . . .);
then we have

det [ 1

𝑒−𝑖𝑦𝜏 − 1
𝐼 − ((𝑖𝑦)

𝛼

𝐸 − 𝐴 − 𝐵)
−1

𝐵] ̸= 0,

∀𝑦𝜏 ̸= 2𝑘𝜋, 𝑘 = 0, ±1, ±2, . . . , 𝑦 ∈ R, 𝜏 > 0.

(40)

From inequality (40), we know that (𝑒−𝑖𝑦𝜏 − 1)−1 is not the
eigenvalue of matrix [(𝑖𝑦)𝛼𝐸−𝐴−𝐵]

−1

𝐵, here 𝑦𝜏 ̸= 2𝑘𝜋 (𝜏 >

0, 𝑘 = 0, ±1, ±2, . . .). In addition, it is easy to know

[𝑒
−𝑖𝑦𝜏

− 1]
−1

= −
1

2
+ 𝑖

sin𝑦𝜏
2 (1 − cos𝑦𝜏)

. (41)

Then inequality (40) is equivalent to

R𝑒 {𝜆 [((𝑖𝑦)
𝛼

𝐸 − 𝐴 − 𝐵)
−1

𝐵]} ̸= −
1

2
, ∀𝑦 ∈ R. (42)

When 𝑦 → ∞, we have

󵄨󵄨󵄨󵄨󵄨󵄨
𝜆 [((𝑖𝑦)

𝛼

𝐸 − 𝐴 − 𝐵)
−1

𝐵]
󵄨󵄨󵄨󵄨󵄨󵄨
󳨀→ 0, (43)

but

󵄨󵄨󵄨󵄨󵄨󵄨
[𝑒
−𝑖𝑦𝜏

− 1]
−1󵄨󵄨󵄨󵄨󵄨󵄨

≥
1

2
. (44)

Therefore, inequality (40) is equivalent to

R𝑒 {𝜆 [((𝑖𝑦)
𝛼

𝐸 − 𝐴 − 𝐵)
−1

𝐵]} > −
1

2
, ∀𝑦 ∈ R. (45)

Accordingly, we have

R𝑒 {𝜆 [(𝐴 + 𝐵 − (𝑖𝑦)
𝛼

𝐸)
−1

𝐵]} <
1

2
, ∀𝑦 ∈ R, (46)

which shows that condition (H
2
) implies that condition (H

4
)

holds and vice versa. The proof is completed.

Next, we further consider the delay-independently
asymptotic stability of system (2). The characteristic polyno-
mial of system (2) can be represented as

ℎ (𝑠, 𝜏) = det [𝑠𝛼𝐸 − 𝐴 − 𝐵𝑒
−𝑠𝜏

− 𝑠
𝛼

𝐶𝑒
−𝑠𝜏

] . (47)

Theorem 12. Assume that (𝐸, 𝐴) is regular and ind(𝐸, 𝐴) = 1;
then system (2) is delay-independently asymptotically stable if
the following conditions simultaneously hold.

(H
5
) All the roots of equation

ℎ (𝑠, 0) = det [𝑠𝛼𝐸 − 𝐴 − 𝐵 − 𝑠
𝛼

𝐶] = 0 (48)

have negative real parts.

(H
6
) For any 𝑦 ∈ R and 𝜏 ∈ R+, then

ℎ (𝑖𝑦, 𝜏) = det [(𝑖𝑦)𝛼𝐸 − 𝐴 − 𝐵𝑒
−𝑖𝑦𝜏

− (𝑖𝑦)
𝛼

𝐶𝑒
−𝑖𝑦𝜏

] ̸= 0.

(49)

Proof. Let 𝑧(𝑡) = 𝐷𝛼𝑥(𝑡)); then system (2) can be written as

𝐷
𝛼

𝑥 (𝑡) = 𝑧 (𝑡) ,

0 = 𝐴𝑥 (𝑡) − 𝐸𝑧 (𝑡) + 𝐵𝑥 (𝑡 − 𝜏) + 𝐶𝑧 (𝑡 − 𝜏) .

(50)

Take

𝑥 (𝑡) = [
𝑥 (𝑡)

𝑧 (𝑡)
] , 𝐸 = [

𝐼 0

0 0
] ,

𝐴 = [
0 𝐼

𝐴 −𝐸
] , 𝐵 = [

0 0

𝐵 𝐶
] ;

(51)

then system (18) is equivalent to

𝐸𝐷
𝛼

𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝜏) . (52)
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Hence, system (2) is delay-independently asymptotically sta-
ble if and only if system (52) is delay-independently asymp-
totically stable. Since

det [𝑠𝛼𝐸 − 𝐴 − 𝐵] = det [ 𝑠
𝛼

𝐼 −𝐼

−𝐴 − 𝐵 𝐸 − 𝐶
]

= det [𝑠𝛼𝐸 − 𝐴 − 𝐵 − 𝜆𝐶] ,

(53)

det [(𝑖𝑦)𝛼𝐸 − 𝐴 − 𝐵𝑒
−𝑖𝑦𝜏

]

= det [ (𝑖𝑦)
𝛼

𝐼 −𝐼

−𝐴 − 𝐵𝑒
−𝑖𝑦𝜏

𝐸 − 𝐶𝑒
−𝑖𝑦𝜏

]

= det [(𝑖𝑦)𝛼𝐸 − 𝐴 − 𝐵𝑒
−𝑖𝑦𝜏

− (𝑖𝑦)
𝛼

𝐶𝑒
−𝑖𝑦𝜏

]

(54)

are true, by Theorem 9 and Corollary 10, it is easy to get the
conclusion. The proof is completed.

Similar to the analysis of Theorem 11, we have the follow-
ing result.

Theorem 13. Assume that (𝐸, 𝐴) is regular and ind(𝐸, 𝐴) = 1;
then system (2) is delay-independently asymptotically stable if
the following conditions simultaneously hold.

(H
7
) All the roots of equation

ℎ (𝑠, 0) = det [𝑠𝛼𝐸 − 𝐴 − 𝐵 − 𝑠
𝛼

𝐶] = 0 (55)

have negative real parts.

(H
8
) For any 𝑦 ∈ R, all the eigenvalues of the complex
function matrix

𝐻(𝑦) = [𝐴 + 𝐵 − (𝑖𝑦)
𝛼

(𝐸 − 𝐶)]
−1

[𝐵 + (𝑖𝑦)
𝛼

𝐶] −
1

2
𝐼 (56)

have negative real parts, that is,R𝑒[𝜆(𝐻(𝑦))] < 0.

Proof. We only need to prove that condition (H
8
) is equiva-

lent to (H
6
). From condition (H

5
), we know that the matrix

(𝑖𝑦)
𝛼

(𝐸−𝐶)−𝐴−𝐵 is nonsingular.Then, it follows from (H
6
)

that

ℎ (𝑖𝑦, 𝜏) = det [(𝑖𝑦)𝛼𝐸 − 𝐴 − [𝐵 + (𝑖𝑦)
𝛼

𝐶] 𝑒
−𝑖𝑦𝜏

]

= det [(𝑖𝑦)𝛼 (𝐸 − 𝐶) − 𝐴 − 𝐵]

× det {𝐼 − [(𝑖𝑦)𝛼 (𝐸 − 𝐶) − 𝐴 − 𝐵]
−1

× [𝐵 + (𝑖𝑦)
𝛼

𝐶] (𝑒
−𝑖𝑦𝜏

− 1)}

̸= 0.

(57)

Then we obtain

det {𝐼 − [(𝑖𝑦)𝛼 (𝐸 − 𝐶) − 𝐴 − 𝐵]
−1

[𝐵 + (𝑖𝑦)
𝛼

𝐶] (𝑒
−𝑖𝑦𝜏

− 1)}

̸= 0, ∀𝑦𝜏 ̸= 2𝑘𝜋, 𝑘 = 0, ±1, ±2, . . . , 𝑦 ∈ R, 𝜏 > 0.

(58)

Obviously, if 𝑦𝜏 = 2𝑘𝜋 (𝑘 = 0, ±1, ±2, . . .), then
inequality (58) holds. Now, let 𝑦𝜏 ̸= 2𝑘𝜋 (𝑘 = 0, ±1, ±2, . . .);
then we have

det { 1

𝑒−𝑖𝑦𝜏 − 1
𝐼 − [(𝑖𝑦)

𝛼

(𝐸 − 𝐶) − 𝐴 − 𝐵]
−1

[𝐵 + (𝑖𝑦)
𝛼

𝐶]}

̸= 0, ∀𝑦𝜏 ̸= 2𝑘𝜋, 𝑘 = 0, ±1, ±2, . . . , 𝑦 ∈ R, 𝜏 > 0.

(59)

From inequality (59), we know that (𝑒−𝑖𝑦𝜏 − 1)−1 is not the
eigenvalue of matrix

[(𝑖𝑦)
𝛼

(𝐸 − 𝐶) − 𝐴 − 𝐵]
−1

[𝐵 + (𝑖𝑦)
𝛼

𝐶] , (60)

where 𝑦𝜏 ̸= 2𝑘𝜋 (𝜏 > 0, 𝑘 = 0, ±1, ±2, . . .). In addition, it is
easy to know

[𝑒
−𝑖𝑦𝜏

− 1]
−1

= −
1

2
+ 𝑖

sin𝑦𝜏
2 (1 − cos𝑦𝜏)

. (61)

Then inequality (59) is equivalent to

R𝑒 {𝜆 [[(𝑖𝑦)
𝛼

(𝐸 − 𝐶) − 𝐴 − 𝐵]
−1

[𝐵 + (𝑖𝑦)
𝛼

𝐶]]} ̸= −
1

2
.

(62)

When 𝑦 → ∞, we have
󵄨󵄨󵄨󵄨󵄨󵄨
𝜆 {[(𝑖𝑦)

𝛼

(𝐸 − 𝐶) − 𝐴 − 𝐵]
−1

[𝐵 + (𝑖𝑦)
𝛼

𝐶]}
󵄨󵄨󵄨󵄨󵄨󵄨
󳨀→ 0, (63)

but
󵄨󵄨󵄨󵄨󵄨󵄨
[𝑒
−𝑖𝑦𝜏

− 1]
−1󵄨󵄨󵄨󵄨󵄨󵄨

≥
1

2
. (64)

Therefore, inequality (59) is equivalent to

R𝑒 {𝜆 [(𝐴 + 𝐵 − (𝑖𝑦)
𝛼

(𝐸 − 𝐶))
−1

(𝐵 + (𝑖𝑦)
𝛼

𝐶)]} <
1

2
,

(65)

which shows that condition (H
6
) implies that condition (H

8
)

is true and vice versa. The proof is completed.

Remark 14. Compared with Theorems 9 and 12, Theorems
11 and 13 actually offer two algebraic criteria of the delay-
independently asymptotic stability of delayed fractional-
order linear singular differential systems, which is more
concise and convenient to check the stability of such systems
without solving the transcendental equations.

4. An Illustrative Example

The following example is presented to illustrate the usefulness
of the proposed theoretical results.

Example 1. Consider two-dimensional Caputo fractional-
order singular differential difference system

𝐷
1/3

𝑥
1
(𝑡) = −𝑥

1
(𝑡) ,

𝑥
2
(𝑡) =

1

2
𝑥
2
(𝑡 − 𝜏) .

(66)
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It can be written as

𝐷
1/3

𝑥
1
(𝑡) = −𝑥

1
(𝑡) ,

0 = 𝑥
2
(𝑡) −

1

2
𝑥
2
(𝑡 − 𝜏) .

(67)

Then we have

𝐸 = [
1 0

0 0
] , 𝐴 = [

−1 0

0 1
] ,

𝐵 = [

0 0

0 −
1

2

] , 𝐴
1
+ 𝐵
1
= −2,

𝐺 (𝑦) = [𝐴 + 𝐵 − (𝑖𝑦)
𝛼

𝐸]
−1

𝐵 −
1

2
𝐼 =

[
[
[

[

−
1

2
0

0 −
3

2

]
]
]

]

.

(68)

It follows from equation det[𝜆𝐼 − 𝐴
1
− 𝐵
1
] = 0 that

󵄨󵄨󵄨󵄨arg (𝜆)
󵄨󵄨󵄨󵄨 = 𝜋 >

𝛼𝜋

2
. (69)

Moreover, R𝑒[𝜆(𝐺(𝑦))] < 0. Thus, condition (H
3
) and

condition (H
4
) are satisfied. FromTheorem 11, we know that

system (66) is delay-independently asymptotically stable.
In fact, when 𝜏 = 0, the solution of (50) is

𝑥
1
(𝑡) = 𝐸

𝛼
(−𝑡
𝛼

) 𝑥
1
(0) ,

𝑥
2
(𝑡) = 0.

(70)

When 𝜏 ̸= 0, the solution of (50) is

𝑥
1
(𝑡) = 𝐸

𝛼
(−𝑡
𝛼

) 𝑥
1
(0) ,

𝑥
2
(𝑡) = (

1

2
)

𝑘

𝑥
2
(𝑡 − 𝑘𝜏) .

(71)

Here 𝑡 − 𝑘𝜏 ≤ 0, then 𝑘 ≥ 𝑡/𝜏. When 𝑡 → +∞, we have
𝑘 → +∞. From [25], there exists a positive constant𝑀

1
≥ 1,

such that for 𝛼 = 1/3 ∈ (0, 1)
󵄨󵄨󵄨󵄨𝐸𝛼 (−𝑡

𝛼

)
󵄨󵄨󵄨󵄨 ≤ 𝑀1𝑒

−𝑡

. (72)

When 𝑡 → +∞, one can obtain

𝑥
1
(𝑡) 󳨀→ 0, 𝑥

2
(𝑡) 󳨀→ 0. (73)

Therefore, the zero solution of system (66) is asymptotically
stable for any 𝜏 ∈ R+; that is, system (66) is delay-
independently asymptotically stable.

5. Conclusions

In this paper, the delay-independently asymptotic stabil-
ity of delayed fractional-order linear singular differential
systems has been discussed. We have synchronously taken
into account the factors of such systems including Caputo
fractional-order derivative, state delay, and singular coef-
ficient matrices. In terms of the algebraic approach, some

sufficient conditions are derived to ensure the asymptotic
stability of the systems without solving the transcendental
equations, which are very convenient to check the stability
of such systems. An example is also provided to illustrate the
theoretical results.
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