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Abstract 

Containerless solidification, in which the melt is confined by its own surface tension, is an important technique by which 
very pure materials can be produced. The form of the solidified product is sensitive to conditions at the tri-junction between 
the solid, the melt and the surrounding vapor. An understanding of the dynamics of tri-junctions is therefore crucial to the 
modelling and prediction of containerless solidification systems. We consider experimentally and analytically the simple 
system of a liquid droplet solidifying on a cold plate. Our experimental results provide a simple test of tri-junction conditions 
which can be used in theoretical analyses of more complicated systems. A new dynamical boundary condition at the 
tri-junction is introduced here and explains the surprising features of solidified water droplets on a cold surface. 

1. Introduct ion  

Containerless solidification is one of the most 
common methods of growing crystals from melts. 
Many such systems (e.g. Czochralski crystal growth, 
float-zone processing, and laser welding) have com- 
plex geometries with free boundaries that are gov- 
erned in part by the dynamics of  the tri-junction, 
where the solid, its melt, and a vapor phase meet [1]. 
By influencing the shape of the l i qu id -vapor  menis- 
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CUS, the tri-junction can directly or indirectly (in 
conjunction with capillary- or buoyancy-driven con- 
vection) affect the crystal purity, uniformity and the 
presence of  defects. An understanding of the dynam- 
ics of  tri-junctions is therefore crucial to the mod- 
elling and prediction of containerless solidification 
systems. We explore four tri-junction conditions, 
each familiar in studies of evolving contact lines 
[2,3], in a simple model of  the solidifying sessile 
water droplet  (Fig. 1). The curious shape of the 
solidified water droplet provides a simple test of 
tri-junction conditions that can be used in theoretical 
analyses of  more complicated systems. We discover 
that only by having a dynamic tri-junction condition 
can the observed inflexion in the shape of the solidi- 
fied water droplet  be predicted. 
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2. Modelling 

The geometry of  our mathematical model follows 
those of  previous authors [4-6]  and is shown in Fig. 
2. The solidifying droplet is axisymmetric with 
known initial contact angle 4'o and volume v o. We 
assume the solidification front to be planar. This is a 
simplifying assumption but one which is consistent 
with one-dimensional heat conduction through the 
solid. An apparent macroscopic contact angle 4' 
defines the angle between the horizontal and the 
tangent to the l iquid-vapor interface at the tri-junc- 
tion. 

The shape of  the solidified droplet is determined 
by the evolution of the height of  the solid-liquid 
interface h and the radial position of  the tri-junction 
R. The evolution of  the radius R, however, is cou- 
pled to the evolution of  the volume v of the liquid 

,, ~iJ',, , ) 

T c R(t) R o 

Fig. 2. A schematic diagram showing the features of the theoreti- 
cal model used to describe how a droplet solidifies. The liquid- 
vapor interface is given by H L, the solid-vapor interface by H s, 
and the solid-liquid interface by h. The tri-junction is given by 
the intersection of H L, H s, and h. The radial coordinate of the 
tri-junction R(t) evolves from the initial droplet radius R m It is 
the locus of the tri-junction that determines Hs, which, once 
formed, is constant in time. The growth angle 49i is the angle 
between the tangents to the solid-vapor and liquid-vapor inter- 
faces at the tri-junction. The liquid volume c(t) decreases as the 
droplet solidifies. The inset shows the likely curvature of the 
solid-liquid interface very near the edge. A simplified tri-junc- 
tion, with horizontal solid-liquid interface and an apparent contact 
angle 49 is used in the models. 

Fig. 1. (a) The initial water droplet at room temperature. The ruler 
on the left shows millimeter markings. The plate is cooled and 
freezes the droplet from below. The frozen droplet (b) has an 
inflexion point and a cusp-like apex. 

portion of  the droplet and the apparent contact angle 
4'- First, mass conservation relates the rate of change 
of  liquid volume to the radius and solidification rate 
d h / d t  by 

dv dh 
= - ~ p R 2 - - ~ t ,  (2.1) d--T 

where p = P s / P L  is the density ratio (solid to liq- 
uid). Second, the shape of the l iquid-vapor interface, 
which is a free boundary subject to the effects of 
capillarity and gravity, imposes a relation between 
R, v and 4'. These two relations are sufficient to 
determine the shape of the solidified droplet once the 
contact angle is known. This angle is the focus of 
our study. 

For simplicity and clarity we shall focus first on 
the case where gravitational effects are neglected. It 
is in this context where we first compare four differ- 
ent conditions imposed at the tri-junction. Once these 
conditions are introduced and analysed we shall then 
include the effects of gravity in the model in order to 
make more direct comparison with the experimental 
results. 
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2.1. Zero gravity 

If the droplet is small (specifically, if the Bond 
number B = pLg l2 /o  - is small, where PL is the 
liquid density, g is the gravitational acceleration, l 
is the initial radius of  the droplet, and cr is the 
l iquid-vapor  surface tension), then gravity can be 
neglected and surface tension holds the l iquid-vapor 
interface in the shape of a spherical cap. Straightfor- 
ward geometry relates the volume v of the liquid 
cap, the radius R of its base and the apparent contact 
angle 05 via 

2rrR 3 (1 - cos 05)2(1 + ½cos 05) 

v 3 sin 3 q) (2.2)  

In what follows, we use Eqs. (2.1) and (2.2) and 
each of four different conditions at the tri-junction 
corresponding to fixed contact angle, fixed contact 
line, fixed growth angle and dynamic growth angle, 
to determine the shape of the solidified droplet. 

2.1.1. Fixed contact angle 
The simplest condition that one can impose is that 

the apparent contact angle remains at a fixed value, 
05 = 05o- Here the liquid volume remains in the shape 
of a droplet in "static equil ibrium" by slipping 
along the solid. The resulting solidified droplet is a 
straight-sided cone with profile given by 

H s ( R )  7rR2 O 1 -  , (2.3)  

where v 0 and R 0 are the initial droplet volume and 
radius, respectively, related via Eq. (2.2). The droplet 
evolution in this case is shown in Fig. 3. Note that 
the angle of the cone is not equal to 05o- While this 
model illustrates that shape changes can occur during 
containerless solidification, it clearly does not de- 
scribe the experimental observations. 

2.1.2. Fixed contact line 
An alternative, simple condition is obtained by 

keeping the contact line fixed and allowing 05 to 
vary through a range of static contact angles [2,3]. 
The idea is that 05 lies between a receding angle 05R 
and an advancing angle 05A but is otherwise not 
constrained. At each instant the tri-junction advances 
exactly in the direction of the l iquid-vapor  interface 

t 

Fig. 3. Constant contact angle: four sketches of the droplet profile. 
The initial profile corresponds to an arc of a circle with contact 
angle cho. The solidification begins with a constant-sloped solid- 
vapor interface. The intermediate liquid-vapor interface is always 
circular with the same contact angle but at each instant in time 
encloses less volume. This evolution continues until the liquid 
volume vanishes, leaving a solidified droplet with a linear profile. 

with no slipping, so that the contact line is essen- 
tially pinned. This tri-junction condition is written 

dR  1 dh 

d~- - tan 05 d t "  (2 .4)  

The model is solved as described below and predicts 
that the solidified droplet is either concave upwards 
(dZR/dh 2 > 0) or concave downwards (dZR/dh 2 < 
0), depending on the values of the initial contact 
angle 05o and the density ratio p relative to the 
dashed curve in Fig. 4. Note that while the droplet is 
three-dimensional (axisymmetric), the concavity of  
interest is that associated with the two-dimensional 
projection of the droplet surface so that the use of  
dZR/dh  2 is appropriate. For an initial condition 
corresponding to a point below the dashed curve the 
droplets are concave up with nonzero slope at the 
top. For initial conditions above the dashed curve 
and with p < 0.75 the solidified droplets are concave 
down with nonzero slope at the top. For initial 
conditions with p > 0.75 the droplets are concave 
down with zero slope at the top. Therefore, a water 
droplet ( p =  0.917) is predicted to solidify into a 
shape which is concave down with zero slope at its 
apex. Again this is inconsistent with the experimen- 
tal observations. 

2.1.3. Fixed growth angle 
The previous condition is a special case (i.e. 

05i = 0) of  a more general condition in which the 
"growth angle"  05i, defined as the angle between the 
tangents to the so l id-vapor  and l iquid-vapor  inter- 
faces (Fig. 2), is held fixed [1,5,7,8]. The idea of  a 
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Fig. 4. Fixed contact line and fixed growth angle: A phase 
diagram of parameter values (~,p)  showing where the final 
profile is concave up or concave down when the growth angle chi 
is held fixed. When ~, = 0 and p < 0.75 the droplets are concave 
up for ~bo < &c(P) and concave down for ~ho > ch~(p), where 
&c(P) is shown by the dashed curve. When chi = 0 and p >_ 0.75, 
&c(P) = 0, so all droplets are concave down and have zero slope 
at their apexes. In contrast, when q5 i :g 0 (the solid curve shows 
4', = 1 1°), the tops of the solidified droplets are always pointed. 
Droplets with q5 i < &o < qS(p) are concave up and droplets with 
q5 o > qSc(p) are concave down, where ~b~(p) is shown by the 
solid curve. In all cases, the solidified droplet has final slope 
-tan(4~( p ) -  qSi). Note also that 49 < qSi is not physically possi- 
ble. When ~i = 0 and p = 1, the final and initial shapes are 
identical. The evolution of the liquid angle qb at the tri-junction is 
from ~5 o at the base to ~hc(p) at the apex as indicated by the 
arrows. The insets show sketches of droplet profiles that are 
concave down (upper fight) and concave up (lower left). 

f ixed growth angle  was deve loped  for  conta iner less  
sol id i f ica t ion by Bards ley  et al. [9] and is based on 
arguments  of  local t he rmodynamic  equi l ibr ium.  The 
actual value of  this angle  has typ ica l ly  been found 
exper imenta l ly  [10,4]. Solut ions  in this case  have 
been given by Sanz [5]. W e  present  the main  features 
in a somewha t  s impl i f ied  form here. S t ra ight forward  
t r igonometry  shows that the t r i - junct ion condi t ion  is 
expressed  as 

d R  1 d h  
( 2 . 5 )  

d t  t a n ( 4 , -  ~bi) d t  

Eqs. (2.1) and (2.5) de te rmine  dv/dh and dR/dh 
respect ively ,  and, together  with Eq. (2.2), are solved 
numer ica l ly  using a R u n g e - K u t t a  scheme to deter-  
mine  the final shape of  the droplet .  

For  any f ixed value of  6 i ,  the curvature  of  the 
sol id i f ied  drople t  d2R/dh 2 is one-s igned.  The drople t  

is ei ther  concave  up (d2R/d h 2 > 0) or concave  down 
(d2R/dh 2 < 0) depend ing  on whether  q50 is less or 
greater  than a cri t ical  angle  ~bc( p,q5 i) g iven impl ic -  
itly by 

(1 -- cos ~bc) 2 [ 
p = 1 sin -~ ~b~ [ 1 + ( 2 c o s  4'c + c o s 2  q5 ) 

( tan ch~ ) ]  ( 2 . 6 )  
x l t a n ( 4 c 7 4 , i  ) , 

except  when ~hi = 0 and p >  0.75 in which case  
q~c(p,q~i) = 0. This  express ion  cor responds  to p =  
a/f(a) in the notat ion used by Sanz [5], who  identi-  
f ied this as the cri t ical  point  of  the sys tem.  The 
cri t ical  angle  4,c(p,~bi) is shown in Fig.  4 by the 
dashed  curve for ~ i  ~--- 0 (f ixed contact  l ine) and by 
the sol id  curve for a non-zero value of  chi. As  
demons t ra ted  by Sanz [5] and as indica ted  by the 
ar rows in Fig.  4, ~ b ~  4,c(p,~bi) as R ~ 0  so Eq. 
(2.5) indicates  that the s lope (d h/d R) at the apex of  
the sol id i f ied  drople t  is - tan[ ~b¢( p,O5 i) - ~b i]. 

Previous  inves t igators  [4,5] have used this mode l  
to obtain es t imates  for 4'~ for semi -conduc to r  mater i -  
als by f i t t ing the theoret ical  drople t  prof i les  to those 
ob ta ined  exper imenta l ly .  Sanz et al. [6] ex tended  this 
analysis  to include the effects of  gravi ty  on the 
sol id i f ica t ion  of  sessile and pendant  droplets .  This  
a l lowed  for  more  accurate  shape predic t ions  on 
droplets  of  larger  size. However ,  their  theoret ical  
predic t ions  indicate  that while  gravi ta t ional  effects  
can lead to an inf lexion point  in the case of  pendant  
droplets ,  they do not lead to an inflexion point  for 
sessi le  droplets .  Therefore ,  none of  the t r i - junct ion 
condi t ions  so far cons idered  leads to a predic t ion  of  
the observed  change  in concavi ty  of  the so l id i f ied  
water  droplets .  

2.1.4. Dynamic growth angle 
The m o d e l s  using f ixed contact  angle or f ixed 

non-zero  growth  angle  inherently involve s l ipping at 
the t r i - junct ion,  which suggests  that a dynamica l  
condi t ion  on the contact  angle  may  apply  [2]. The  
idea of  s l ipping  at the tr i - junction during container-  
less so l id i f ica t ion  has been sugges ted  by Tropp  and 
Yuferev  [1 1], who  noted the presence of  a d iscont i -  
nuity in the veloci ty  field at the tr i - junction when 
05 i 4= 0, which  can also be seen from the results  of  
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Anderson and Davis [12]. That is, the fluid velocity 
at the tri-junction as measured along the l iquid-vapor 
interface differs from the fluid velocity at the tri- 
junction as measured along the solidification front. 
The relation between slip and discontinuous velocity 
fields is perhaps more familiar in contact line prob- 
lems involving the spreading of  liquids along solid 
surfaces [13,2]. There, slip can be introduced at the 
moving contact line as a means of relieving the 
infinite force singularity created by the discontinuous 
velocity field. Note that slip in that context as well as 
in the present context is effective slip on a micron 
scale and not actual slip on a molecular scale. To 
understand the idea of slip further in the present 
context, recall first the case where 05i = 0. In this 
case, the direction of motion of the tri-junction is 
always locally tangent to the l iquid-vapor interface 
and so there is no need to accommodate horizontal 
motion by slipping. In fact, if p = 1 in this case the 
initial and final droplet profiles are identical. When 
05i :g 0 or the fixed contact angle condition as de- 
scribed above is used, the direction of  motion of the 
tri-junction is not aligned with the local tangent to 
the l iquid-vapor interface. Our claim is that this 
additional motion should be related to slipping at the 
tri-junction. This horizontal slip velocity V s is geo- 
metrically related to the solidification rate V = d h / d t  
by 

V s = V  tan(05-05i )  tan 05 ' 

(see Fig. 5) which can be inverted to give 

05i = 05 - tan- l  ~ + - -  • (2.8) 
tan 05 

We note here that another possible geometric defini- 
tion of  the slip velocity involves slipping along the 
lateral solid surface (the sol id-vapor interface) rather 
than along the horizontal solid surface (the sol id-  
liquid interface) since in the present context these 
surfaces are not co-planar. If the slip velocity is 
defined to be along the lateral surface, a relation like 
that given in Eq. (2.7) is obtained for V s but has 
" t a n "  replaced with " s in" .  We have analysed this 
possibility as well and have found no qualitative 
differences in the results. Therefore, in what follows, 
we shall assume that the horizontal slip velocity as 

V """ i 

V$ 

Fig. 5. Dynamic growth angle: a schematic diagram showing 
slipping motion of the tri-junction. When the solidification front 
advances at speed V and thi is nonzero, the contact line slips 
horizontally at a speed V s. There is a geometrical relation between 
V, V s, ~i and the liquid angle ~b given by Eq. (2.7). Note that the 
case 4~i = 0 is consistent with no slip (V s = 0). 

defined by Eq. (2.7) is appropriate. We introduce a 
new condition at the tri-junction by assuming that 
there is a dynamical relation between this slip veloc- 
ity V s and the apparent contact angle 05. Here we 

use Vs(05) - -  T](05 R - -  0 5 ) / 0 5  for 05 < (DR and V s = 0 
for 05 _> 05R, where 05R is a receding angle and 7/ is a 
characteristic slip velocity. Note that the dynamic 
growth angle condition is specified by this slip rela- 
tion alone, since Eqs. (2.7) and (2.8) are geometrical 
identities. As is expected by the geometry of  Fig. 2, 
we do not consider the possibility that the liquid 
drop spreads. We have investigated other forms of  
Vs(05), such as Vs(05)= r/(05 R - 05)3, and found lit- 
tle change in the results. The use of  such 
spreading/receding relations has been well docu- 
mented in the literature on the spreading of  liquids 
on solids (see Refs. [2,3,14]) and it is our assumption 
that such a description applies in the present context. 
Note that with this dynamical condition 05i is not 
constant; a fact that has been discovered experimen- 
tally [10,4] but has not previously been incorporated 
in theoretical analyses. In fact, direct measurements 
of digitized images of  our experimentally solidified 
droplets also show that the growth angle 05~ is not 
constant. We shall discuss this further below. 
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The first three models (fixed contact angle, fixed 
contact line and fixed growth angle) are purely geo- 
metrical; the final shape is independent of  the solidi- 
fication rate. In contrast, with a dynamic growth 
angle, it is necessary to determine the rate of  solidifi- 
cation in order to predict the solidified shape. By 
assuming one-dimensional heat conduction through 
the solid, and employing a quasi-steady approxima- 
tion whereby the temperature field is taken to be 
linear, conservation of heat at the solid-l iquid inter- 
lace gives 

[ cAT ~1/2 
h(t) =~2--~-Kt] , (2.9)  

where c is the specific heat of  the solid, L is the 
latent heat per unit mass, K is the thermal diffusivity 
in the solid, and A T = T  M - T c ,  where T M is the 
freezing temperature and T c is the temperature of  
the cold plate. 

We calculate the final droplet shape in the same 
way as in the previous model but the constant value 
of q5 i used in (2.5) is now replaced by its dynami- 
call), determined value given by (2.8). The solidifi- 
cation rate V =  dh/dt  is initially infinite and de- 
creases with time, giving (from Eq. (2.8) that 4'i is 
initially zero and increases once d ' <  d~R. Thus, in 
the phase plane of Fig. 4, the separating curve 
qSc(p,~b i) moves to the right as time evolves while 
the point representing the state of  the system (with 
p >  0.75, say) moves to the left. Our calculations 
show that with a dynamic growth angle it is possible 
for the system to evolve from the concave-down 
region to the concave-up region to produce an inflex- 
ion point, as observed experimentally. 

Before presenting these results graphically, we 
shall, with a qualitative basis for comparison estab- 
lished, incorporate the effects of  gravity into the 
model to make possible more direct comparison with 
the experimental results. 

2.2. Nonzero gravi O' and experiments 

When the Bond number B is not small, the effects 
of gravity alter the shape of the solidified droplet 
indirectly through the direct effect on the shape of 
the l iquid-vapor  interface. In our experiments the 
Bond number is approximately 1.6 so gravity does 

play some role. The equation governing the shape of 
the l iquid-vapor interface HL(r,t) is well known and 
is given here in dimensionless form by 

1 O ( rHL~ ) (2.10) 
8 ( H t , - h ) - P = 7 ~  (1 + H ~ r ) , / -  ~ 

where p is a spatially uniform pressure. The bound- 
ary conditions that apply are symmetry at r = 0 and 
H E = h and OH~Or = - t a n  4' at the tri-junction r = 
R. 

The solution to this equation must be found nu- 
merically and we follow the approach described by 
Huh and Reed [15], which was also used by Sanz et 
al. [6]. The solution of this equation gives the shape 
of the l iquid-vapor interface and therefore relates 
the three variables R, v and 4'. This relation then 
plays the role for nonzero B that Eq. (2.2) played for 
B = 0 .  

The system is closed by again using Eq. (2.1) and 
any one of the four tri-junction conditions discussed 
in the previous section. Since we have determined 
that only the dynamic growth angle model for the 
tri-junction leads to an inflexion point for zero grav- 
ity, we shall consider only that case below. Further, 
recall that the results of  Sanz et al. [6] have shown 
that the inclusion of gravity for the case of  constant 
~b i does not lead to an inflexion point for sessile 
drops. 

We conducted a series of  experiments in which 35 
~1 droplets of  distilled and de-aerated water were 
frozen from below on a cold aluminum plate for a 
range of plate temperatures. Care was taken to assure 
consistency in the initial conditions of  the droplets. 
The droplet diameters were kept consistent by plac- 
ing each droplet on a raised disk of diameter 7 mm 
and a micropipette was used to place drops of consis- 
tent volume. The water droplets froze from below as 
a nearly planar solidification front advanced upwards 
through the droplet. A typical freezing time with 
A T =  10°C was 40 s. We believe that as a conse- 
quence of this rapid growth, we are above the rough- 
ening transition in the experiments and are dealing 
with continuous rather than facetted growth. Typical 
profiles before and after solidification are shown in 
the photographs in Fig. 1. As pointed out previously, 
the solidified droplet profile has an identifiable in- 
flexion point. Video images of  the frozen droplets 
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were digitized in order to allow direct comparison 
with theoretically predicted shapes. Fig. 6 shows 
typical initial and resulting final profiles obtained 
experimentally (open circles and open diamonds, 
respectively). These data correspond to a droplet 
solidified with undercooling A T =  10°C and mea- 
sured inflexion point near R / R  o = 0.21 (see below 
and Fig. 7). To compare our theoretical results to the 
experimental results we first obtained the appropriate 
values of  R 0, v 0 and ~b 0 to fit the initial profile. We 
find good agreement between the theory (lower solid 
curve) and experiment for the initial droplet shape. 
With these initial conditions we then chose the pa- 
rameters ~b R and r/ to "bes t  f i t"  the experimentally 
solidified droplet profile. The result for thR = 0.127r 
and r / =  0.6 mm s - I  (upper solid curve) indicates 
that the theoretically calculated profile agrees quite 
well with the experimentally obtained profile. For 
further comparison, the solidified shape predicted for 
a fixed growth angle of ¢hi = 0 (gravity included) is 

E 
E 

v 

0 3  

t ' -  

2.0 

1.5 I 2 -  

1.0 

0.5 

0.0 , , , L , , 

0.0 1.0 2.0 3.0 
radius (ram) 

Fig. 6. Experimental initial and final profiles compared with those 
computed theoretically. The open circles represent the initial 
droplet profile measured experimentally and the open diamonds 
represent the resulting experimentally solidified droplet ( A T =  
10°C). With the initial values of % = 33.05 and R 0 = 3.45 chosen 
so that the initial droplet profile computed theoretically (lower 
solid curve) fit the experimental initial profile, we chose the 
values of ~b R and rt to best fit the experimentally solidified 
droplet profile. The upper solid curve shows the theoretical predic- 
tion for ~R = 0.12~" and'O = 0.6 mm s - l  . The material parame- 
ters were taken to be B =  1.6 and p=0.917.  For comparison 
purposes we have shown the predicted solidified shape when the 
growth angle a5 i is taken to be zero (dashed curve). 

R 0.25 

Ro 
0.2O 

\ 
0.15 \ ~ "-~O.09~x ,0.57) ~ 

\ \ (0.10~,0.33~-~o 
(t~R,rl)=(0.25n ,0-022) ( 0.~2.n; ,0.16)"~-...,,~ 
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Fig. 7. Experimental data (open circles) and theoretical predictions 
(solid curves) of the radial coordinate R of the infiexion point in 
the solidified droplets for different parameter values OR and r/. 
The experimental data was obtained through a series of experi- 
ments in which 35 gl  droplets of distilled and de-aerated water 
were frozen from below on a cold aluminum plate for a range of 
plate temperatures. Video images of the frozen droplets were 
digitized and a local curve-fitting procedure was used to deter- 
mine the position of the inflexion point. The scatter in the data is 
representative of the error involved in determining the precise 
location of the inflexion point from the digitized images. The 
theoretical results were obtained using the slip law .f(~h)= r/(~hR 
- ~)/¢k- In (a), ~R is varied and r t (given in units o fmm s -a ) is 
chosen so that the curves pass through a common point. This 
figure shows that a value of 05 R = 0.09-n" _+0.01-rr (16°_+2 °) is 
required to predict the observed rate of variation of R with 
undercooling AT. Figure (b) has q5 R = 0.09-rr and shows that a 
value of r /=  0.6 +__ 0.2 mm s i provides a reasonable fit of the 
experimental data. These empirical values are approximate to the 
extent that the model used to determine them incorporates a 
number of simplifying assumptions and the data used to fit them 
contains a fair amount of scatter. 

shown by the dashed curve. While it is not clear 
exactly how to vary the two free parameters ~b R and 
r/ to get the best fit, we are guided by the fact that 
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the value of 95R effectively determines the point at 
which the droplet shape deviates from that predicted 
with ~b i = 0 (the solid and dashed curves coincide 
until 95i becomes nonzero in the dynamic growth 
angle calculations) and r/ measures the strength of 
this deviation. Note that while the case with 95~ = 0 
fits the lower part of the solidified droplet well, it 
differs noticeably near the top. We note here the 
difficulty in identifying a precise location of the 
inflexion point from the digitized image. 

As was the case for zero gravity, we find that the 
using of the dynamic growth angle condition here 
predicts that it is possible for the solidified droplet to 
have an inflexion point. Further, we find that the 
predicted shape of the solidified droplet varies with 
the solidification rate. In particular, the radial coordi- 
nate of the inflexion point is predicted to decrease 
with increasing undercooling AT. To test this predic- 
tion, a local curve-fitting procedure was used to 
determine the position of the inflexion point from the 
digitized images of droplets solidified at different 
undercoolings. We find that for our experimentally 
solidified droplets the radial coordinate of the inflex- 
ion point decreases with increasing undercooling AT 
(see open circles in Fig. 7). The scatter in the data is 
representative of the error involved in determining 
the precise location of the inflexion point from the 
digitized images. These experimental results agree 
qualitatively with the theoretical trends predicted by 
direct calculation of the solidified droplet profiles, as 
shown in Fig. 7 by the solid curves corresponding to 
different values of 95R and T/. The theoretical results 
were obtained using the slip relation f (95)=  "r/(~b R 
- 95)/4). In Fig. 7a, 95R is varied and ~/ (given in 
units of mm s -1) is chosen so that the curves pass 
through a common point. This figure indicates that a 
value of 95R = 0.09Ir _+ 0.01~- required to predict the 
observed rate of variation of R with undercooling 
AT. Fig. 7b has 4~R = 0.09~" (16°~and shows that a 
value of 7/= 0.6 4- 0.2 mm s-  1 leads to a reasonable 
fit of the experimental data.These empirical values 
are approximate to the extent that the model used to 
determine them incorporates a number of simplifying 
assumptions and the experimental data used to fit 
them contains a fair amount of scatter. Nonetheless, 
we expect that the overall trend indicating that the 
position of the inflexion point moves towards the 
center of the droplet as the undercooling is increased, 

which is predicted theoretically and observed experi- 
mentally, is robust. An important overall idea, which 
is quantified in Fig. 7, is that the shape of the 
solidified droplet varies with solidification rate. 

We note that the best fit values of ~ and 4'R 
based on the position of the inflexion point (Fig. 7b) 
differ from the best fit values based on the overall 
shape (Fig. 6), which predict an inflexion point near 
R / R  o = 0.3. That is, the values predicted in Fig. 7 fit 
the overall trend but do not necessarily fit any one 
particular experiment. However, the dynamic growth 
angle model appears to capture the same behavior in 
terms of the dependence of the inflexion point posi- 
tion on the undercooling and is also able to fit the 
experimental profiles reasonably accurately. 

Finally, we have calculated the variation in 4)i 
directly from the digitized images and compared the 
results with the theoretical predictions. In order to 
calculate 4'~ from images of the initial and final 
solidified shape alone, we need to predict theoreti- 
cally the liquid-vapor interface shape at intermediate 
stages. The results of Fig. 6 demonstrate that this can 
be done accurately. For any given height h we 
measure the radius and solid slope (or equivalently 
the solid angle 4, s) directly and compute the solid 
volume vs(h) numerically. Next, the liquid volume 
vL(h) for any height h can be computed from the 
solid volume at that height and the initial and final 
volumes, v 0 and t,f, respectively, using the relation 
VL(h)= VO--(VO//b'f)Vs(h). Then, given the liquid 
volume and radius, the shape of the liquid-vapor 
interface is computed theoretically and the liquid 
angle ~b is obtained. The growth angle at any height 
is given by ~b i = 95-  ~b s. Fig. 8 shows these results 
for the same experimental droplet as shown in Fig. 6. 
For comparison purposes, we show two sets of data 
corresponding to the cases where the liquid-vapor 
interface, as described above, is computed with B = 0 
(lower data points) and B = 1.6 (upper data points). 
This comparison illustrates the expected result that 
the effects of gravity increase 95 and therefore 95~. 
Also shown by the solid curve is the predicted 
variation of 95i with h corresponding to the best fit 
profile in Fig. 6. While the fit between theory and 
experiment is not perfect (the appropriate compari- 
son is with the upper set of data), both results are 
dominated by small or zero growth angle for the 
lower portion of the droplet and increased growth 
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Fig. 8. Experimental data showing the variation in growth angle 
05i with height h. The experimentally measured variation of 05 i is 
shown by the open diamonds (with the liquid-vapor interface 
calculated with B = 1.6) and by the open circles (with the liquid- 
vapor interface calculated with B = 0). The error in the measured 
value of 05i can be estimated to be +_0.02. The solid curve 
represents the value of 05, from the theoretical results using the 
dynamic growth angle condition (and corresponding to the theo- 
retically calculated profile in Fig. 6). 

angle near the top. The error involved in measuring 
4, i from the digitized image data can be estimated to 
be +_0.02 and is one possible explanation for the 
measured negative growth angles during the initial 
stages of growth. 

The results shown in Fig. 8 indicate quite clearly 
that the growth angle ~b i in our experiments is not 
constant and suggest that our growth rates are too 
fast to allow relaxation to equilibrium tri-junction 
conditions, which would predict a constant value of 
~bi[9]. While it is possible, for example, that the 
nature of crystallisation changes from the bottom of 
the droplet to the top (perhaps polycrystalline near 
the bottom with ~b~ = 0 to monocrystalline near the 
top with ~b i :g 0), this issue is difficult to resolve 
given the level of sophistication of our experiments. 
Further, since we have treated the trijunction by 
using overall balances, the model neglects micro- 
scopic details associated with the poly/monocrystal- 
line nature of solidification in favour of a macro- 
scopic description. We additionally note that the 
symmetry of the solidified droplets and the lack of 
flat facets on the solidified droplet surface suggest 
that we are dealing here with continuous rather than 
facetted growth. In any case, it seems apparent that 

when solidification occurs at a tri-junction where the 
growth angle is nonzero, there must accompany a 
slipping of the liquid on the solid. The simple model 
for the solidification of a water droplet in conjunc- 
tion with our proposed dynamic growth angle condi- 
tion appears to support this claim. 

3. Summary 

We have investigated theoretically and experi- 
mentally the simple configuration of a liquid droplet 
solidifying on a cold plate. We find that the experi- 
mentally solidified water droplet has an inflexion 
point and a cusp-like top. Further, the position of the 
inflexion point varies with the solidification rate. We 
considered a simple theoretical model (both with and 
without gravitational effects) in which four different 
tri-junction boundary conditions could be tested. 
These conditions correspond to fixed contact angle, 
fixed contact line, fixed growth angle [5], and dy- 
namic growth angle. We find that only with a dy- 
namic growth angle can an inflexion point in the 
solidified droplet profile be predicted. Both theory 
and experiment predict that the radial coordinate of 
the inflexion point decreases with increasing under- 
cooling. We have shown that it is possible to obtain 
reasonable fits to the experimentally solidified droplet 
profiles. Further, analysis of our experimental data 
indicates that the growth angle ~b~ is not constant 
throughout the solidification process. Our theoretical 
predictions agree qualitatively with this result. 

Several critical issues in containerless solidifica- 
tion hinge upon an accurate description of the tri- 
junction. The shape of the free melt-vapor interface 
can influence various forms of buoyancy- and capil- 
lary-driven flows of the melt. These flows alter the 
distribution of heat and solute in the melt, and hence 
are crucial in determining the resulting composition 
and structure of the solid. In order to predict the 
shape of the free interface, accurate conditions at the 
tri-junction are needed. Also, the premature detach- 
ing of the crystal from the melt during Czochralski 
growth, for example, is a dynamic event controlled 
directly by wetting effects at the tri-junction. The 
present study indicates that in order to address these 
issues, a dynamic tri-junction condition that takes 
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into account the slipping of the contact line is re- 
quired. We hope that our introduction of this idea 
will stimulate others capable of performing more 
sophisticated experiments to investigate this hypoth- 
esis more fully. 
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